Feature space partition: a local–global approach for classification

Abstract We propose a local–global classification scheme in which the feature space is, in a first phase, segmented by an unsupervised algorithm allowing, in a second phase, the application of distinct classification methods in each of the generated sub-regions. The proposed segmentation process int...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Marcelino, C. G. [verfasserIn]

Pedreira, C. E.

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Local–global

Clustering

Prototype selection

Cauchy–Schwarz

Anmerkung:

© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Neural computing & applications - London : Springer, 1993, 34(2022), 24 vom: 05. Aug., Seite 21877-21890

Übergeordnetes Werk:

volume:34 ; year:2022 ; number:24 ; day:05 ; month:08 ; pages:21877-21890

Links:

Volltext

DOI / URN:

10.1007/s00521-022-07647-x

Katalog-ID:

SPR048552348

Nicht das Richtige dabei?

Schreiben Sie uns!