Bismuth and nitrogen co-doped graphene oxide for efficient electrochemical sensing of Pb(II) by synergistic dual-site interaction
Carbon electrode materials have been widely explored with surface functionalization to find novel properties and electrochemical applications. The study reports ionic lead ($ Pb^{2+} $) detection over bismuth (Bi) and nitrogen (N) atomically co-doped graphene oxide (GO) flakes in an electrochemical...
Ausführliche Beschreibung
Autor*in: |
Wang, Chien-Tsung [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of solid state electrochemistry - Berlin : Springer, 1997, 26(2022), 12 vom: 27. Aug., Seite 2699-2711 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:2022 ; number:12 ; day:27 ; month:08 ; pages:2699-2711 |
Links: |
---|
DOI / URN: |
10.1007/s10008-022-05277-w |
---|
Katalog-ID: |
SPR048569585 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR048569585 | ||
003 | DE-627 | ||
005 | 20230509115519.0 | ||
007 | cr uuu---uuuuu | ||
008 | 221109s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10008-022-05277-w |2 doi | |
035 | |a (DE-627)SPR048569585 | ||
035 | |a (SPR)s10008-022-05277-w-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Wang, Chien-Tsung |e verfasserin |4 aut | |
245 | 1 | 0 | |a Bismuth and nitrogen co-doped graphene oxide for efficient electrochemical sensing of Pb(II) by synergistic dual-site interaction |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Carbon electrode materials have been widely explored with surface functionalization to find novel properties and electrochemical applications. The study reports ionic lead ($ Pb^{2+} $) detection over bismuth (Bi) and nitrogen (N) atomically co-doped graphene oxide (GO) flakes in an electrochemical sensor and their facile synthesis by a combined wet chemical and photochemical process. Both surface state and electronic transition manipulated by the heteroatom doping were characterized by spectroscopic analyses. The Bi- and N-added GO sensors exhibited a relatively higher sensitivity for the detection of $ Pb^{2+} $ ions in acetate buffer solution than the bare GO one as measured by square wave anodic stripping voltammetry (SWASV), and their stripping current and potential are dependent upon the dopant content. The Bi and N co-doped GO electrode showed a noticeable electrocatalytic activity toward $ Pb^{2+} $ detection compared with the singly Bi- and N-doped GO ones as measured by cyclic voltammetry (CV). Formation of electroactive Bi and N dual sites exerts a major influence on the adsorption of $ Pb^{2+} $ ions and deposition-stripping process, and their synergistic interaction in the electron transfer and catalysis is responsible for the remarkably enhanced sensing activity. The co-doped GO sensor reveals a linear dependence of the current response and peak potential on the $ Pb^{2+} $ concentration and offers sensitive assaying of $ Pb^{2+} $ ions with a quite low limit of detection (LOD) of 10.9 pM and low limit of quantification (LOQ) of 36.4 pM. Its analytical performance with good selectivity against several interfering ions and determination in tap water samples was acquired. Results demonstrate the feasibility of coupling metal with nonmetal co-dopants to tailor the electrical conduction and surface reactivity of the two-dimensional (2D) carbon materials toward efficient sensing operation. Graphical abstract | ||
650 | 4 | |a Graphene oxide |7 (dpeaa)DE-He213 | |
650 | 4 | |a Electrochemical sensing |7 (dpeaa)DE-He213 | |
650 | 4 | |a Atomic doping |7 (dpeaa)DE-He213 | |
650 | 4 | |a Surface functionalization |7 (dpeaa)DE-He213 | |
650 | 4 | |a Dual-site mechanism |7 (dpeaa)DE-He213 | |
700 | 1 | |a Chen, Wei-Shen |4 aut | |
700 | 1 | |a Fan, Keng-Hao |4 aut | |
700 | 1 | |a Chiang, Chang-Yue |4 aut | |
700 | 1 | |a Wu, Chin-Wei |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of solid state electrochemistry |d Berlin : Springer, 1997 |g 26(2022), 12 vom: 27. Aug., Seite 2699-2711 |w (DE-627)271175400 |w (DE-600)1478940-1 |x 1433-0768 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:2022 |g number:12 |g day:27 |g month:08 |g pages:2699-2711 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10008-022-05277-w |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 26 |j 2022 |e 12 |b 27 |c 08 |h 2699-2711 |
author_variant |
c t w ctw w s c wsc k h f khf c y c cyc c w w cww |
---|---|
matchkey_str |
article:14330768:2022----::imtadirgnooegahnoieoefcetlcrceiasnigfbiy |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s10008-022-05277-w doi (DE-627)SPR048569585 (SPR)s10008-022-05277-w-e DE-627 ger DE-627 rakwb eng Wang, Chien-Tsung verfasserin aut Bismuth and nitrogen co-doped graphene oxide for efficient electrochemical sensing of Pb(II) by synergistic dual-site interaction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Carbon electrode materials have been widely explored with surface functionalization to find novel properties and electrochemical applications. The study reports ionic lead ($ Pb^{2+} $) detection over bismuth (Bi) and nitrogen (N) atomically co-doped graphene oxide (GO) flakes in an electrochemical sensor and their facile synthesis by a combined wet chemical and photochemical process. Both surface state and electronic transition manipulated by the heteroatom doping were characterized by spectroscopic analyses. The Bi- and N-added GO sensors exhibited a relatively higher sensitivity for the detection of $ Pb^{2+} $ ions in acetate buffer solution than the bare GO one as measured by square wave anodic stripping voltammetry (SWASV), and their stripping current and potential are dependent upon the dopant content. The Bi and N co-doped GO electrode showed a noticeable electrocatalytic activity toward $ Pb^{2+} $ detection compared with the singly Bi- and N-doped GO ones as measured by cyclic voltammetry (CV). Formation of electroactive Bi and N dual sites exerts a major influence on the adsorption of $ Pb^{2+} $ ions and deposition-stripping process, and their synergistic interaction in the electron transfer and catalysis is responsible for the remarkably enhanced sensing activity. The co-doped GO sensor reveals a linear dependence of the current response and peak potential on the $ Pb^{2+} $ concentration and offers sensitive assaying of $ Pb^{2+} $ ions with a quite low limit of detection (LOD) of 10.9 pM and low limit of quantification (LOQ) of 36.4 pM. Its analytical performance with good selectivity against several interfering ions and determination in tap water samples was acquired. Results demonstrate the feasibility of coupling metal with nonmetal co-dopants to tailor the electrical conduction and surface reactivity of the two-dimensional (2D) carbon materials toward efficient sensing operation. Graphical abstract Graphene oxide (dpeaa)DE-He213 Electrochemical sensing (dpeaa)DE-He213 Atomic doping (dpeaa)DE-He213 Surface functionalization (dpeaa)DE-He213 Dual-site mechanism (dpeaa)DE-He213 Chen, Wei-Shen aut Fan, Keng-Hao aut Chiang, Chang-Yue aut Wu, Chin-Wei aut Enthalten in Journal of solid state electrochemistry Berlin : Springer, 1997 26(2022), 12 vom: 27. Aug., Seite 2699-2711 (DE-627)271175400 (DE-600)1478940-1 1433-0768 nnns volume:26 year:2022 number:12 day:27 month:08 pages:2699-2711 https://dx.doi.org/10.1007/s10008-022-05277-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 26 2022 12 27 08 2699-2711 |
spelling |
10.1007/s10008-022-05277-w doi (DE-627)SPR048569585 (SPR)s10008-022-05277-w-e DE-627 ger DE-627 rakwb eng Wang, Chien-Tsung verfasserin aut Bismuth and nitrogen co-doped graphene oxide for efficient electrochemical sensing of Pb(II) by synergistic dual-site interaction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Carbon electrode materials have been widely explored with surface functionalization to find novel properties and electrochemical applications. The study reports ionic lead ($ Pb^{2+} $) detection over bismuth (Bi) and nitrogen (N) atomically co-doped graphene oxide (GO) flakes in an electrochemical sensor and their facile synthesis by a combined wet chemical and photochemical process. Both surface state and electronic transition manipulated by the heteroatom doping were characterized by spectroscopic analyses. The Bi- and N-added GO sensors exhibited a relatively higher sensitivity for the detection of $ Pb^{2+} $ ions in acetate buffer solution than the bare GO one as measured by square wave anodic stripping voltammetry (SWASV), and their stripping current and potential are dependent upon the dopant content. The Bi and N co-doped GO electrode showed a noticeable electrocatalytic activity toward $ Pb^{2+} $ detection compared with the singly Bi- and N-doped GO ones as measured by cyclic voltammetry (CV). Formation of electroactive Bi and N dual sites exerts a major influence on the adsorption of $ Pb^{2+} $ ions and deposition-stripping process, and their synergistic interaction in the electron transfer and catalysis is responsible for the remarkably enhanced sensing activity. The co-doped GO sensor reveals a linear dependence of the current response and peak potential on the $ Pb^{2+} $ concentration and offers sensitive assaying of $ Pb^{2+} $ ions with a quite low limit of detection (LOD) of 10.9 pM and low limit of quantification (LOQ) of 36.4 pM. Its analytical performance with good selectivity against several interfering ions and determination in tap water samples was acquired. Results demonstrate the feasibility of coupling metal with nonmetal co-dopants to tailor the electrical conduction and surface reactivity of the two-dimensional (2D) carbon materials toward efficient sensing operation. Graphical abstract Graphene oxide (dpeaa)DE-He213 Electrochemical sensing (dpeaa)DE-He213 Atomic doping (dpeaa)DE-He213 Surface functionalization (dpeaa)DE-He213 Dual-site mechanism (dpeaa)DE-He213 Chen, Wei-Shen aut Fan, Keng-Hao aut Chiang, Chang-Yue aut Wu, Chin-Wei aut Enthalten in Journal of solid state electrochemistry Berlin : Springer, 1997 26(2022), 12 vom: 27. Aug., Seite 2699-2711 (DE-627)271175400 (DE-600)1478940-1 1433-0768 nnns volume:26 year:2022 number:12 day:27 month:08 pages:2699-2711 https://dx.doi.org/10.1007/s10008-022-05277-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 26 2022 12 27 08 2699-2711 |
allfields_unstemmed |
10.1007/s10008-022-05277-w doi (DE-627)SPR048569585 (SPR)s10008-022-05277-w-e DE-627 ger DE-627 rakwb eng Wang, Chien-Tsung verfasserin aut Bismuth and nitrogen co-doped graphene oxide for efficient electrochemical sensing of Pb(II) by synergistic dual-site interaction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Carbon electrode materials have been widely explored with surface functionalization to find novel properties and electrochemical applications. The study reports ionic lead ($ Pb^{2+} $) detection over bismuth (Bi) and nitrogen (N) atomically co-doped graphene oxide (GO) flakes in an electrochemical sensor and their facile synthesis by a combined wet chemical and photochemical process. Both surface state and electronic transition manipulated by the heteroatom doping were characterized by spectroscopic analyses. The Bi- and N-added GO sensors exhibited a relatively higher sensitivity for the detection of $ Pb^{2+} $ ions in acetate buffer solution than the bare GO one as measured by square wave anodic stripping voltammetry (SWASV), and their stripping current and potential are dependent upon the dopant content. The Bi and N co-doped GO electrode showed a noticeable electrocatalytic activity toward $ Pb^{2+} $ detection compared with the singly Bi- and N-doped GO ones as measured by cyclic voltammetry (CV). Formation of electroactive Bi and N dual sites exerts a major influence on the adsorption of $ Pb^{2+} $ ions and deposition-stripping process, and their synergistic interaction in the electron transfer and catalysis is responsible for the remarkably enhanced sensing activity. The co-doped GO sensor reveals a linear dependence of the current response and peak potential on the $ Pb^{2+} $ concentration and offers sensitive assaying of $ Pb^{2+} $ ions with a quite low limit of detection (LOD) of 10.9 pM and low limit of quantification (LOQ) of 36.4 pM. Its analytical performance with good selectivity against several interfering ions and determination in tap water samples was acquired. Results demonstrate the feasibility of coupling metal with nonmetal co-dopants to tailor the electrical conduction and surface reactivity of the two-dimensional (2D) carbon materials toward efficient sensing operation. Graphical abstract Graphene oxide (dpeaa)DE-He213 Electrochemical sensing (dpeaa)DE-He213 Atomic doping (dpeaa)DE-He213 Surface functionalization (dpeaa)DE-He213 Dual-site mechanism (dpeaa)DE-He213 Chen, Wei-Shen aut Fan, Keng-Hao aut Chiang, Chang-Yue aut Wu, Chin-Wei aut Enthalten in Journal of solid state electrochemistry Berlin : Springer, 1997 26(2022), 12 vom: 27. Aug., Seite 2699-2711 (DE-627)271175400 (DE-600)1478940-1 1433-0768 nnns volume:26 year:2022 number:12 day:27 month:08 pages:2699-2711 https://dx.doi.org/10.1007/s10008-022-05277-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 26 2022 12 27 08 2699-2711 |
allfieldsGer |
10.1007/s10008-022-05277-w doi (DE-627)SPR048569585 (SPR)s10008-022-05277-w-e DE-627 ger DE-627 rakwb eng Wang, Chien-Tsung verfasserin aut Bismuth and nitrogen co-doped graphene oxide for efficient electrochemical sensing of Pb(II) by synergistic dual-site interaction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Carbon electrode materials have been widely explored with surface functionalization to find novel properties and electrochemical applications. The study reports ionic lead ($ Pb^{2+} $) detection over bismuth (Bi) and nitrogen (N) atomically co-doped graphene oxide (GO) flakes in an electrochemical sensor and their facile synthesis by a combined wet chemical and photochemical process. Both surface state and electronic transition manipulated by the heteroatom doping were characterized by spectroscopic analyses. The Bi- and N-added GO sensors exhibited a relatively higher sensitivity for the detection of $ Pb^{2+} $ ions in acetate buffer solution than the bare GO one as measured by square wave anodic stripping voltammetry (SWASV), and their stripping current and potential are dependent upon the dopant content. The Bi and N co-doped GO electrode showed a noticeable electrocatalytic activity toward $ Pb^{2+} $ detection compared with the singly Bi- and N-doped GO ones as measured by cyclic voltammetry (CV). Formation of electroactive Bi and N dual sites exerts a major influence on the adsorption of $ Pb^{2+} $ ions and deposition-stripping process, and their synergistic interaction in the electron transfer and catalysis is responsible for the remarkably enhanced sensing activity. The co-doped GO sensor reveals a linear dependence of the current response and peak potential on the $ Pb^{2+} $ concentration and offers sensitive assaying of $ Pb^{2+} $ ions with a quite low limit of detection (LOD) of 10.9 pM and low limit of quantification (LOQ) of 36.4 pM. Its analytical performance with good selectivity against several interfering ions and determination in tap water samples was acquired. Results demonstrate the feasibility of coupling metal with nonmetal co-dopants to tailor the electrical conduction and surface reactivity of the two-dimensional (2D) carbon materials toward efficient sensing operation. Graphical abstract Graphene oxide (dpeaa)DE-He213 Electrochemical sensing (dpeaa)DE-He213 Atomic doping (dpeaa)DE-He213 Surface functionalization (dpeaa)DE-He213 Dual-site mechanism (dpeaa)DE-He213 Chen, Wei-Shen aut Fan, Keng-Hao aut Chiang, Chang-Yue aut Wu, Chin-Wei aut Enthalten in Journal of solid state electrochemistry Berlin : Springer, 1997 26(2022), 12 vom: 27. Aug., Seite 2699-2711 (DE-627)271175400 (DE-600)1478940-1 1433-0768 nnns volume:26 year:2022 number:12 day:27 month:08 pages:2699-2711 https://dx.doi.org/10.1007/s10008-022-05277-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 26 2022 12 27 08 2699-2711 |
allfieldsSound |
10.1007/s10008-022-05277-w doi (DE-627)SPR048569585 (SPR)s10008-022-05277-w-e DE-627 ger DE-627 rakwb eng Wang, Chien-Tsung verfasserin aut Bismuth and nitrogen co-doped graphene oxide for efficient electrochemical sensing of Pb(II) by synergistic dual-site interaction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Carbon electrode materials have been widely explored with surface functionalization to find novel properties and electrochemical applications. The study reports ionic lead ($ Pb^{2+} $) detection over bismuth (Bi) and nitrogen (N) atomically co-doped graphene oxide (GO) flakes in an electrochemical sensor and their facile synthesis by a combined wet chemical and photochemical process. Both surface state and electronic transition manipulated by the heteroatom doping were characterized by spectroscopic analyses. The Bi- and N-added GO sensors exhibited a relatively higher sensitivity for the detection of $ Pb^{2+} $ ions in acetate buffer solution than the bare GO one as measured by square wave anodic stripping voltammetry (SWASV), and their stripping current and potential are dependent upon the dopant content. The Bi and N co-doped GO electrode showed a noticeable electrocatalytic activity toward $ Pb^{2+} $ detection compared with the singly Bi- and N-doped GO ones as measured by cyclic voltammetry (CV). Formation of electroactive Bi and N dual sites exerts a major influence on the adsorption of $ Pb^{2+} $ ions and deposition-stripping process, and their synergistic interaction in the electron transfer and catalysis is responsible for the remarkably enhanced sensing activity. The co-doped GO sensor reveals a linear dependence of the current response and peak potential on the $ Pb^{2+} $ concentration and offers sensitive assaying of $ Pb^{2+} $ ions with a quite low limit of detection (LOD) of 10.9 pM and low limit of quantification (LOQ) of 36.4 pM. Its analytical performance with good selectivity against several interfering ions and determination in tap water samples was acquired. Results demonstrate the feasibility of coupling metal with nonmetal co-dopants to tailor the electrical conduction and surface reactivity of the two-dimensional (2D) carbon materials toward efficient sensing operation. Graphical abstract Graphene oxide (dpeaa)DE-He213 Electrochemical sensing (dpeaa)DE-He213 Atomic doping (dpeaa)DE-He213 Surface functionalization (dpeaa)DE-He213 Dual-site mechanism (dpeaa)DE-He213 Chen, Wei-Shen aut Fan, Keng-Hao aut Chiang, Chang-Yue aut Wu, Chin-Wei aut Enthalten in Journal of solid state electrochemistry Berlin : Springer, 1997 26(2022), 12 vom: 27. Aug., Seite 2699-2711 (DE-627)271175400 (DE-600)1478940-1 1433-0768 nnns volume:26 year:2022 number:12 day:27 month:08 pages:2699-2711 https://dx.doi.org/10.1007/s10008-022-05277-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 26 2022 12 27 08 2699-2711 |
language |
English |
source |
Enthalten in Journal of solid state electrochemistry 26(2022), 12 vom: 27. Aug., Seite 2699-2711 volume:26 year:2022 number:12 day:27 month:08 pages:2699-2711 |
sourceStr |
Enthalten in Journal of solid state electrochemistry 26(2022), 12 vom: 27. Aug., Seite 2699-2711 volume:26 year:2022 number:12 day:27 month:08 pages:2699-2711 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Graphene oxide Electrochemical sensing Atomic doping Surface functionalization Dual-site mechanism |
isfreeaccess_bool |
false |
container_title |
Journal of solid state electrochemistry |
authorswithroles_txt_mv |
Wang, Chien-Tsung @@aut@@ Chen, Wei-Shen @@aut@@ Fan, Keng-Hao @@aut@@ Chiang, Chang-Yue @@aut@@ Wu, Chin-Wei @@aut@@ |
publishDateDaySort_date |
2022-08-27T00:00:00Z |
hierarchy_top_id |
271175400 |
id |
SPR048569585 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048569585</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509115519.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221109s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10008-022-05277-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048569585</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10008-022-05277-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Chien-Tsung</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bismuth and nitrogen co-doped graphene oxide for efficient electrochemical sensing of Pb(II) by synergistic dual-site interaction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Carbon electrode materials have been widely explored with surface functionalization to find novel properties and electrochemical applications. The study reports ionic lead ($ Pb^{2+} $) detection over bismuth (Bi) and nitrogen (N) atomically co-doped graphene oxide (GO) flakes in an electrochemical sensor and their facile synthesis by a combined wet chemical and photochemical process. Both surface state and electronic transition manipulated by the heteroatom doping were characterized by spectroscopic analyses. The Bi- and N-added GO sensors exhibited a relatively higher sensitivity for the detection of $ Pb^{2+} $ ions in acetate buffer solution than the bare GO one as measured by square wave anodic stripping voltammetry (SWASV), and their stripping current and potential are dependent upon the dopant content. The Bi and N co-doped GO electrode showed a noticeable electrocatalytic activity toward $ Pb^{2+} $ detection compared with the singly Bi- and N-doped GO ones as measured by cyclic voltammetry (CV). Formation of electroactive Bi and N dual sites exerts a major influence on the adsorption of $ Pb^{2+} $ ions and deposition-stripping process, and their synergistic interaction in the electron transfer and catalysis is responsible for the remarkably enhanced sensing activity. The co-doped GO sensor reveals a linear dependence of the current response and peak potential on the $ Pb^{2+} $ concentration and offers sensitive assaying of $ Pb^{2+} $ ions with a quite low limit of detection (LOD) of 10.9 pM and low limit of quantification (LOQ) of 36.4 pM. Its analytical performance with good selectivity against several interfering ions and determination in tap water samples was acquired. Results demonstrate the feasibility of coupling metal with nonmetal co-dopants to tailor the electrical conduction and surface reactivity of the two-dimensional (2D) carbon materials toward efficient sensing operation. Graphical abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graphene oxide</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrochemical sensing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atomic doping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface functionalization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dual-site mechanism</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Wei-Shen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Keng-Hao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chiang, Chang-Yue</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Chin-Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of solid state electrochemistry</subfield><subfield code="d">Berlin : Springer, 1997</subfield><subfield code="g">26(2022), 12 vom: 27. Aug., Seite 2699-2711</subfield><subfield code="w">(DE-627)271175400</subfield><subfield code="w">(DE-600)1478940-1</subfield><subfield code="x">1433-0768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:12</subfield><subfield code="g">day:27</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:2699-2711</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10008-022-05277-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2022</subfield><subfield code="e">12</subfield><subfield code="b">27</subfield><subfield code="c">08</subfield><subfield code="h">2699-2711</subfield></datafield></record></collection>
|
author |
Wang, Chien-Tsung |
spellingShingle |
Wang, Chien-Tsung misc Graphene oxide misc Electrochemical sensing misc Atomic doping misc Surface functionalization misc Dual-site mechanism Bismuth and nitrogen co-doped graphene oxide for efficient electrochemical sensing of Pb(II) by synergistic dual-site interaction |
authorStr |
Wang, Chien-Tsung |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)271175400 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1433-0768 |
topic_title |
Bismuth and nitrogen co-doped graphene oxide for efficient electrochemical sensing of Pb(II) by synergistic dual-site interaction Graphene oxide (dpeaa)DE-He213 Electrochemical sensing (dpeaa)DE-He213 Atomic doping (dpeaa)DE-He213 Surface functionalization (dpeaa)DE-He213 Dual-site mechanism (dpeaa)DE-He213 |
topic |
misc Graphene oxide misc Electrochemical sensing misc Atomic doping misc Surface functionalization misc Dual-site mechanism |
topic_unstemmed |
misc Graphene oxide misc Electrochemical sensing misc Atomic doping misc Surface functionalization misc Dual-site mechanism |
topic_browse |
misc Graphene oxide misc Electrochemical sensing misc Atomic doping misc Surface functionalization misc Dual-site mechanism |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of solid state electrochemistry |
hierarchy_parent_id |
271175400 |
hierarchy_top_title |
Journal of solid state electrochemistry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)271175400 (DE-600)1478940-1 |
title |
Bismuth and nitrogen co-doped graphene oxide for efficient electrochemical sensing of Pb(II) by synergistic dual-site interaction |
ctrlnum |
(DE-627)SPR048569585 (SPR)s10008-022-05277-w-e |
title_full |
Bismuth and nitrogen co-doped graphene oxide for efficient electrochemical sensing of Pb(II) by synergistic dual-site interaction |
author_sort |
Wang, Chien-Tsung |
journal |
Journal of solid state electrochemistry |
journalStr |
Journal of solid state electrochemistry |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
2699 |
author_browse |
Wang, Chien-Tsung Chen, Wei-Shen Fan, Keng-Hao Chiang, Chang-Yue Wu, Chin-Wei |
container_volume |
26 |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Chien-Tsung |
doi_str_mv |
10.1007/s10008-022-05277-w |
title_sort |
bismuth and nitrogen co-doped graphene oxide for efficient electrochemical sensing of pb(ii) by synergistic dual-site interaction |
title_auth |
Bismuth and nitrogen co-doped graphene oxide for efficient electrochemical sensing of Pb(II) by synergistic dual-site interaction |
abstract |
Carbon electrode materials have been widely explored with surface functionalization to find novel properties and electrochemical applications. The study reports ionic lead ($ Pb^{2+} $) detection over bismuth (Bi) and nitrogen (N) atomically co-doped graphene oxide (GO) flakes in an electrochemical sensor and their facile synthesis by a combined wet chemical and photochemical process. Both surface state and electronic transition manipulated by the heteroatom doping were characterized by spectroscopic analyses. The Bi- and N-added GO sensors exhibited a relatively higher sensitivity for the detection of $ Pb^{2+} $ ions in acetate buffer solution than the bare GO one as measured by square wave anodic stripping voltammetry (SWASV), and their stripping current and potential are dependent upon the dopant content. The Bi and N co-doped GO electrode showed a noticeable electrocatalytic activity toward $ Pb^{2+} $ detection compared with the singly Bi- and N-doped GO ones as measured by cyclic voltammetry (CV). Formation of electroactive Bi and N dual sites exerts a major influence on the adsorption of $ Pb^{2+} $ ions and deposition-stripping process, and their synergistic interaction in the electron transfer and catalysis is responsible for the remarkably enhanced sensing activity. The co-doped GO sensor reveals a linear dependence of the current response and peak potential on the $ Pb^{2+} $ concentration and offers sensitive assaying of $ Pb^{2+} $ ions with a quite low limit of detection (LOD) of 10.9 pM and low limit of quantification (LOQ) of 36.4 pM. Its analytical performance with good selectivity against several interfering ions and determination in tap water samples was acquired. Results demonstrate the feasibility of coupling metal with nonmetal co-dopants to tailor the electrical conduction and surface reactivity of the two-dimensional (2D) carbon materials toward efficient sensing operation. Graphical abstract © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Carbon electrode materials have been widely explored with surface functionalization to find novel properties and electrochemical applications. The study reports ionic lead ($ Pb^{2+} $) detection over bismuth (Bi) and nitrogen (N) atomically co-doped graphene oxide (GO) flakes in an electrochemical sensor and their facile synthesis by a combined wet chemical and photochemical process. Both surface state and electronic transition manipulated by the heteroatom doping were characterized by spectroscopic analyses. The Bi- and N-added GO sensors exhibited a relatively higher sensitivity for the detection of $ Pb^{2+} $ ions in acetate buffer solution than the bare GO one as measured by square wave anodic stripping voltammetry (SWASV), and their stripping current and potential are dependent upon the dopant content. The Bi and N co-doped GO electrode showed a noticeable electrocatalytic activity toward $ Pb^{2+} $ detection compared with the singly Bi- and N-doped GO ones as measured by cyclic voltammetry (CV). Formation of electroactive Bi and N dual sites exerts a major influence on the adsorption of $ Pb^{2+} $ ions and deposition-stripping process, and their synergistic interaction in the electron transfer and catalysis is responsible for the remarkably enhanced sensing activity. The co-doped GO sensor reveals a linear dependence of the current response and peak potential on the $ Pb^{2+} $ concentration and offers sensitive assaying of $ Pb^{2+} $ ions with a quite low limit of detection (LOD) of 10.9 pM and low limit of quantification (LOQ) of 36.4 pM. Its analytical performance with good selectivity against several interfering ions and determination in tap water samples was acquired. Results demonstrate the feasibility of coupling metal with nonmetal co-dopants to tailor the electrical conduction and surface reactivity of the two-dimensional (2D) carbon materials toward efficient sensing operation. Graphical abstract © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Carbon electrode materials have been widely explored with surface functionalization to find novel properties and electrochemical applications. The study reports ionic lead ($ Pb^{2+} $) detection over bismuth (Bi) and nitrogen (N) atomically co-doped graphene oxide (GO) flakes in an electrochemical sensor and their facile synthesis by a combined wet chemical and photochemical process. Both surface state and electronic transition manipulated by the heteroatom doping were characterized by spectroscopic analyses. The Bi- and N-added GO sensors exhibited a relatively higher sensitivity for the detection of $ Pb^{2+} $ ions in acetate buffer solution than the bare GO one as measured by square wave anodic stripping voltammetry (SWASV), and their stripping current and potential are dependent upon the dopant content. The Bi and N co-doped GO electrode showed a noticeable electrocatalytic activity toward $ Pb^{2+} $ detection compared with the singly Bi- and N-doped GO ones as measured by cyclic voltammetry (CV). Formation of electroactive Bi and N dual sites exerts a major influence on the adsorption of $ Pb^{2+} $ ions and deposition-stripping process, and their synergistic interaction in the electron transfer and catalysis is responsible for the remarkably enhanced sensing activity. The co-doped GO sensor reveals a linear dependence of the current response and peak potential on the $ Pb^{2+} $ concentration and offers sensitive assaying of $ Pb^{2+} $ ions with a quite low limit of detection (LOD) of 10.9 pM and low limit of quantification (LOQ) of 36.4 pM. Its analytical performance with good selectivity against several interfering ions and determination in tap water samples was acquired. Results demonstrate the feasibility of coupling metal with nonmetal co-dopants to tailor the electrical conduction and surface reactivity of the two-dimensional (2D) carbon materials toward efficient sensing operation. Graphical abstract © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
12 |
title_short |
Bismuth and nitrogen co-doped graphene oxide for efficient electrochemical sensing of Pb(II) by synergistic dual-site interaction |
url |
https://dx.doi.org/10.1007/s10008-022-05277-w |
remote_bool |
true |
author2 |
Chen, Wei-Shen Fan, Keng-Hao Chiang, Chang-Yue Wu, Chin-Wei |
author2Str |
Chen, Wei-Shen Fan, Keng-Hao Chiang, Chang-Yue Wu, Chin-Wei |
ppnlink |
271175400 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10008-022-05277-w |
up_date |
2024-07-03T20:04:15.989Z |
_version_ |
1803589576027013120 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048569585</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509115519.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221109s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10008-022-05277-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048569585</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10008-022-05277-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Chien-Tsung</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bismuth and nitrogen co-doped graphene oxide for efficient electrochemical sensing of Pb(II) by synergistic dual-site interaction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Carbon electrode materials have been widely explored with surface functionalization to find novel properties and electrochemical applications. The study reports ionic lead ($ Pb^{2+} $) detection over bismuth (Bi) and nitrogen (N) atomically co-doped graphene oxide (GO) flakes in an electrochemical sensor and their facile synthesis by a combined wet chemical and photochemical process. Both surface state and electronic transition manipulated by the heteroatom doping were characterized by spectroscopic analyses. The Bi- and N-added GO sensors exhibited a relatively higher sensitivity for the detection of $ Pb^{2+} $ ions in acetate buffer solution than the bare GO one as measured by square wave anodic stripping voltammetry (SWASV), and their stripping current and potential are dependent upon the dopant content. The Bi and N co-doped GO electrode showed a noticeable electrocatalytic activity toward $ Pb^{2+} $ detection compared with the singly Bi- and N-doped GO ones as measured by cyclic voltammetry (CV). Formation of electroactive Bi and N dual sites exerts a major influence on the adsorption of $ Pb^{2+} $ ions and deposition-stripping process, and their synergistic interaction in the electron transfer and catalysis is responsible for the remarkably enhanced sensing activity. The co-doped GO sensor reveals a linear dependence of the current response and peak potential on the $ Pb^{2+} $ concentration and offers sensitive assaying of $ Pb^{2+} $ ions with a quite low limit of detection (LOD) of 10.9 pM and low limit of quantification (LOQ) of 36.4 pM. Its analytical performance with good selectivity against several interfering ions and determination in tap water samples was acquired. Results demonstrate the feasibility of coupling metal with nonmetal co-dopants to tailor the electrical conduction and surface reactivity of the two-dimensional (2D) carbon materials toward efficient sensing operation. Graphical abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graphene oxide</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrochemical sensing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atomic doping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface functionalization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dual-site mechanism</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Wei-Shen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Keng-Hao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chiang, Chang-Yue</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Chin-Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of solid state electrochemistry</subfield><subfield code="d">Berlin : Springer, 1997</subfield><subfield code="g">26(2022), 12 vom: 27. Aug., Seite 2699-2711</subfield><subfield code="w">(DE-627)271175400</subfield><subfield code="w">(DE-600)1478940-1</subfield><subfield code="x">1433-0768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:12</subfield><subfield code="g">day:27</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:2699-2711</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10008-022-05277-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2022</subfield><subfield code="e">12</subfield><subfield code="b">27</subfield><subfield code="c">08</subfield><subfield code="h">2699-2711</subfield></datafield></record></collection>
|
score |
7.400592 |