Improving the absorption load, high viscosity, and regeneration efficiency of $ CO_{2} $ capture using a novel tri-solvent biphasic solvents of TETA-AMP-1DMA2P
Abstract Currently, biphasic solvents are receiving more attention for $ CO_{2} $ capture due to their energy-saving potential. Whereas, most of the current biphasic solvents still suffer from high viscosity and low regeneration efficiency. To solve this problem, a novel tri-solvent biphasic solvent...
Ausführliche Beschreibung
Autor*in: |
Zhao, Shujie [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Environmental science and pollution research - Berlin : Springer, 1994, 29(2022), 56 vom: 05. Juli, Seite 84903-84915 |
---|---|
Übergeordnetes Werk: |
volume:29 ; year:2022 ; number:56 ; day:05 ; month:07 ; pages:84903-84915 |
Links: |
---|
DOI / URN: |
10.1007/s11356-022-21822-6 |
---|
Katalog-ID: |
SPR048582603 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR048582603 | ||
003 | DE-627 | ||
005 | 20230509115623.0 | ||
007 | cr uuu---uuuuu | ||
008 | 221110s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11356-022-21822-6 |2 doi | |
035 | |a (DE-627)SPR048582603 | ||
035 | |a (SPR)s11356-022-21822-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Zhao, Shujie |e verfasserin |4 aut | |
245 | 1 | 0 | |a Improving the absorption load, high viscosity, and regeneration efficiency of $ CO_{2} $ capture using a novel tri-solvent biphasic solvents of TETA-AMP-1DMA2P |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 | ||
520 | |a Abstract Currently, biphasic solvents are receiving more attention for $ CO_{2} $ capture due to their energy-saving potential. Whereas, most of the current biphasic solvents still suffer from high viscosity and low regeneration efficiency. To solve this problem, a novel tri-solvent biphasic solvent triethylenetetramine (TETA)-2–amino–2–methyl–1–propanol (AMP)-1-dimethylamino-2-propanol (1DMA2P) was proposed in this study, and its absorption properties, viscosity changes, desorption properties, recyclability capacity, and reaction mechanism were explored. The results showed that the $ CO_{2} $ absorption load showed a trend of firstly increasing and then decreasing with the increase of AMP concentration. Although the volume of the rich phase increased with increasing AMP concentration after the absorption, it also decreases the viscosity growth. The viscosity of the solution decreased from 498 mPa•s to 91 mPa•s. During the desorption process, the maximal desorption rates of AMP-containing solvents is significantly greater than that of 2 mol/L (M) TETA + 2 M 1DMA2P (2T2D). Simultaneously, the recyclability capacity of the AMP-containing solvents were also significantly higher than that of 2T2D. The regeneration efficiency of 1.5 M TETA + 0.5 M AMP + 2 M 1DMA2P (1.5T0.5A2D) was 81.92%. It was concluded by 13C NMR analysis that amino groups in TETA and AMP can react with $ CO_{2} $ to form carbamates and carbonates. Since AMP in the biphasic solution can generate free protons through various pathways during the desorption process, it promotes the decomposition of TETA-carbamate. This process achieves the deep stripping of $ CO_{2} $ in biphasic solvent. Overall, TETA-AMP-1DMA2P solution is a promising energy-saving candidate for industrial $ CO_{2} $ capture due to its competitive absorption–desorption performance and low viscosity. | ||
650 | 4 | |a CO |7 (dpeaa)DE-He213 | |
650 | 4 | |a capture |7 (dpeaa)DE-He213 | |
650 | 4 | |a Absorption method |7 (dpeaa)DE-He213 | |
650 | 4 | |a Biphasic solvent |7 (dpeaa)DE-He213 | |
650 | 4 | |a 2-amino-2-methyl-1-propanol (AMP) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Reaction mechanism |7 (dpeaa)DE-He213 | |
700 | 1 | |a Wang, Yongqiang |4 aut | |
700 | 1 | |a Zhu, Kaili |4 aut | |
700 | 1 | |a Zhao, Dongfeng |4 aut | |
700 | 1 | |a Song, Qingbin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Environmental science and pollution research |d Berlin : Springer, 1994 |g 29(2022), 56 vom: 05. Juli, Seite 84903-84915 |w (DE-627)320517926 |w (DE-600)2014192-0 |x 1614-7499 |7 nnns |
773 | 1 | 8 | |g volume:29 |g year:2022 |g number:56 |g day:05 |g month:07 |g pages:84903-84915 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11356-022-21822-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2360 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 29 |j 2022 |e 56 |b 05 |c 07 |h 84903-84915 |
author_variant |
s z sz y w yw k z kz d z dz q s qs |
---|---|
matchkey_str |
article:16147499:2022----::mrvntebopinodihicstadeeeainfiinyfo2atruignvlrsle |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s11356-022-21822-6 doi (DE-627)SPR048582603 (SPR)s11356-022-21822-6-e DE-627 ger DE-627 rakwb eng Zhao, Shujie verfasserin aut Improving the absorption load, high viscosity, and regeneration efficiency of $ CO_{2} $ capture using a novel tri-solvent biphasic solvents of TETA-AMP-1DMA2P 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Currently, biphasic solvents are receiving more attention for $ CO_{2} $ capture due to their energy-saving potential. Whereas, most of the current biphasic solvents still suffer from high viscosity and low regeneration efficiency. To solve this problem, a novel tri-solvent biphasic solvent triethylenetetramine (TETA)-2–amino–2–methyl–1–propanol (AMP)-1-dimethylamino-2-propanol (1DMA2P) was proposed in this study, and its absorption properties, viscosity changes, desorption properties, recyclability capacity, and reaction mechanism were explored. The results showed that the $ CO_{2} $ absorption load showed a trend of firstly increasing and then decreasing with the increase of AMP concentration. Although the volume of the rich phase increased with increasing AMP concentration after the absorption, it also decreases the viscosity growth. The viscosity of the solution decreased from 498 mPa•s to 91 mPa•s. During the desorption process, the maximal desorption rates of AMP-containing solvents is significantly greater than that of 2 mol/L (M) TETA + 2 M 1DMA2P (2T2D). Simultaneously, the recyclability capacity of the AMP-containing solvents were also significantly higher than that of 2T2D. The regeneration efficiency of 1.5 M TETA + 0.5 M AMP + 2 M 1DMA2P (1.5T0.5A2D) was 81.92%. It was concluded by 13C NMR analysis that amino groups in TETA and AMP can react with $ CO_{2} $ to form carbamates and carbonates. Since AMP in the biphasic solution can generate free protons through various pathways during the desorption process, it promotes the decomposition of TETA-carbamate. This process achieves the deep stripping of $ CO_{2} $ in biphasic solvent. Overall, TETA-AMP-1DMA2P solution is a promising energy-saving candidate for industrial $ CO_{2} $ capture due to its competitive absorption–desorption performance and low viscosity. CO (dpeaa)DE-He213 capture (dpeaa)DE-He213 Absorption method (dpeaa)DE-He213 Biphasic solvent (dpeaa)DE-He213 2-amino-2-methyl-1-propanol (AMP) (dpeaa)DE-He213 Reaction mechanism (dpeaa)DE-He213 Wang, Yongqiang aut Zhu, Kaili aut Zhao, Dongfeng aut Song, Qingbin aut Enthalten in Environmental science and pollution research Berlin : Springer, 1994 29(2022), 56 vom: 05. Juli, Seite 84903-84915 (DE-627)320517926 (DE-600)2014192-0 1614-7499 nnns volume:29 year:2022 number:56 day:05 month:07 pages:84903-84915 https://dx.doi.org/10.1007/s11356-022-21822-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 29 2022 56 05 07 84903-84915 |
spelling |
10.1007/s11356-022-21822-6 doi (DE-627)SPR048582603 (SPR)s11356-022-21822-6-e DE-627 ger DE-627 rakwb eng Zhao, Shujie verfasserin aut Improving the absorption load, high viscosity, and regeneration efficiency of $ CO_{2} $ capture using a novel tri-solvent biphasic solvents of TETA-AMP-1DMA2P 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Currently, biphasic solvents are receiving more attention for $ CO_{2} $ capture due to their energy-saving potential. Whereas, most of the current biphasic solvents still suffer from high viscosity and low regeneration efficiency. To solve this problem, a novel tri-solvent biphasic solvent triethylenetetramine (TETA)-2–amino–2–methyl–1–propanol (AMP)-1-dimethylamino-2-propanol (1DMA2P) was proposed in this study, and its absorption properties, viscosity changes, desorption properties, recyclability capacity, and reaction mechanism were explored. The results showed that the $ CO_{2} $ absorption load showed a trend of firstly increasing and then decreasing with the increase of AMP concentration. Although the volume of the rich phase increased with increasing AMP concentration after the absorption, it also decreases the viscosity growth. The viscosity of the solution decreased from 498 mPa•s to 91 mPa•s. During the desorption process, the maximal desorption rates of AMP-containing solvents is significantly greater than that of 2 mol/L (M) TETA + 2 M 1DMA2P (2T2D). Simultaneously, the recyclability capacity of the AMP-containing solvents were also significantly higher than that of 2T2D. The regeneration efficiency of 1.5 M TETA + 0.5 M AMP + 2 M 1DMA2P (1.5T0.5A2D) was 81.92%. It was concluded by 13C NMR analysis that amino groups in TETA and AMP can react with $ CO_{2} $ to form carbamates and carbonates. Since AMP in the biphasic solution can generate free protons through various pathways during the desorption process, it promotes the decomposition of TETA-carbamate. This process achieves the deep stripping of $ CO_{2} $ in biphasic solvent. Overall, TETA-AMP-1DMA2P solution is a promising energy-saving candidate for industrial $ CO_{2} $ capture due to its competitive absorption–desorption performance and low viscosity. CO (dpeaa)DE-He213 capture (dpeaa)DE-He213 Absorption method (dpeaa)DE-He213 Biphasic solvent (dpeaa)DE-He213 2-amino-2-methyl-1-propanol (AMP) (dpeaa)DE-He213 Reaction mechanism (dpeaa)DE-He213 Wang, Yongqiang aut Zhu, Kaili aut Zhao, Dongfeng aut Song, Qingbin aut Enthalten in Environmental science and pollution research Berlin : Springer, 1994 29(2022), 56 vom: 05. Juli, Seite 84903-84915 (DE-627)320517926 (DE-600)2014192-0 1614-7499 nnns volume:29 year:2022 number:56 day:05 month:07 pages:84903-84915 https://dx.doi.org/10.1007/s11356-022-21822-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 29 2022 56 05 07 84903-84915 |
allfields_unstemmed |
10.1007/s11356-022-21822-6 doi (DE-627)SPR048582603 (SPR)s11356-022-21822-6-e DE-627 ger DE-627 rakwb eng Zhao, Shujie verfasserin aut Improving the absorption load, high viscosity, and regeneration efficiency of $ CO_{2} $ capture using a novel tri-solvent biphasic solvents of TETA-AMP-1DMA2P 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Currently, biphasic solvents are receiving more attention for $ CO_{2} $ capture due to their energy-saving potential. Whereas, most of the current biphasic solvents still suffer from high viscosity and low regeneration efficiency. To solve this problem, a novel tri-solvent biphasic solvent triethylenetetramine (TETA)-2–amino–2–methyl–1–propanol (AMP)-1-dimethylamino-2-propanol (1DMA2P) was proposed in this study, and its absorption properties, viscosity changes, desorption properties, recyclability capacity, and reaction mechanism were explored. The results showed that the $ CO_{2} $ absorption load showed a trend of firstly increasing and then decreasing with the increase of AMP concentration. Although the volume of the rich phase increased with increasing AMP concentration after the absorption, it also decreases the viscosity growth. The viscosity of the solution decreased from 498 mPa•s to 91 mPa•s. During the desorption process, the maximal desorption rates of AMP-containing solvents is significantly greater than that of 2 mol/L (M) TETA + 2 M 1DMA2P (2T2D). Simultaneously, the recyclability capacity of the AMP-containing solvents were also significantly higher than that of 2T2D. The regeneration efficiency of 1.5 M TETA + 0.5 M AMP + 2 M 1DMA2P (1.5T0.5A2D) was 81.92%. It was concluded by 13C NMR analysis that amino groups in TETA and AMP can react with $ CO_{2} $ to form carbamates and carbonates. Since AMP in the biphasic solution can generate free protons through various pathways during the desorption process, it promotes the decomposition of TETA-carbamate. This process achieves the deep stripping of $ CO_{2} $ in biphasic solvent. Overall, TETA-AMP-1DMA2P solution is a promising energy-saving candidate for industrial $ CO_{2} $ capture due to its competitive absorption–desorption performance and low viscosity. CO (dpeaa)DE-He213 capture (dpeaa)DE-He213 Absorption method (dpeaa)DE-He213 Biphasic solvent (dpeaa)DE-He213 2-amino-2-methyl-1-propanol (AMP) (dpeaa)DE-He213 Reaction mechanism (dpeaa)DE-He213 Wang, Yongqiang aut Zhu, Kaili aut Zhao, Dongfeng aut Song, Qingbin aut Enthalten in Environmental science and pollution research Berlin : Springer, 1994 29(2022), 56 vom: 05. Juli, Seite 84903-84915 (DE-627)320517926 (DE-600)2014192-0 1614-7499 nnns volume:29 year:2022 number:56 day:05 month:07 pages:84903-84915 https://dx.doi.org/10.1007/s11356-022-21822-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 29 2022 56 05 07 84903-84915 |
allfieldsGer |
10.1007/s11356-022-21822-6 doi (DE-627)SPR048582603 (SPR)s11356-022-21822-6-e DE-627 ger DE-627 rakwb eng Zhao, Shujie verfasserin aut Improving the absorption load, high viscosity, and regeneration efficiency of $ CO_{2} $ capture using a novel tri-solvent biphasic solvents of TETA-AMP-1DMA2P 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Currently, biphasic solvents are receiving more attention for $ CO_{2} $ capture due to their energy-saving potential. Whereas, most of the current biphasic solvents still suffer from high viscosity and low regeneration efficiency. To solve this problem, a novel tri-solvent biphasic solvent triethylenetetramine (TETA)-2–amino–2–methyl–1–propanol (AMP)-1-dimethylamino-2-propanol (1DMA2P) was proposed in this study, and its absorption properties, viscosity changes, desorption properties, recyclability capacity, and reaction mechanism were explored. The results showed that the $ CO_{2} $ absorption load showed a trend of firstly increasing and then decreasing with the increase of AMP concentration. Although the volume of the rich phase increased with increasing AMP concentration after the absorption, it also decreases the viscosity growth. The viscosity of the solution decreased from 498 mPa•s to 91 mPa•s. During the desorption process, the maximal desorption rates of AMP-containing solvents is significantly greater than that of 2 mol/L (M) TETA + 2 M 1DMA2P (2T2D). Simultaneously, the recyclability capacity of the AMP-containing solvents were also significantly higher than that of 2T2D. The regeneration efficiency of 1.5 M TETA + 0.5 M AMP + 2 M 1DMA2P (1.5T0.5A2D) was 81.92%. It was concluded by 13C NMR analysis that amino groups in TETA and AMP can react with $ CO_{2} $ to form carbamates and carbonates. Since AMP in the biphasic solution can generate free protons through various pathways during the desorption process, it promotes the decomposition of TETA-carbamate. This process achieves the deep stripping of $ CO_{2} $ in biphasic solvent. Overall, TETA-AMP-1DMA2P solution is a promising energy-saving candidate for industrial $ CO_{2} $ capture due to its competitive absorption–desorption performance and low viscosity. CO (dpeaa)DE-He213 capture (dpeaa)DE-He213 Absorption method (dpeaa)DE-He213 Biphasic solvent (dpeaa)DE-He213 2-amino-2-methyl-1-propanol (AMP) (dpeaa)DE-He213 Reaction mechanism (dpeaa)DE-He213 Wang, Yongqiang aut Zhu, Kaili aut Zhao, Dongfeng aut Song, Qingbin aut Enthalten in Environmental science and pollution research Berlin : Springer, 1994 29(2022), 56 vom: 05. Juli, Seite 84903-84915 (DE-627)320517926 (DE-600)2014192-0 1614-7499 nnns volume:29 year:2022 number:56 day:05 month:07 pages:84903-84915 https://dx.doi.org/10.1007/s11356-022-21822-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 29 2022 56 05 07 84903-84915 |
allfieldsSound |
10.1007/s11356-022-21822-6 doi (DE-627)SPR048582603 (SPR)s11356-022-21822-6-e DE-627 ger DE-627 rakwb eng Zhao, Shujie verfasserin aut Improving the absorption load, high viscosity, and regeneration efficiency of $ CO_{2} $ capture using a novel tri-solvent biphasic solvents of TETA-AMP-1DMA2P 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Currently, biphasic solvents are receiving more attention for $ CO_{2} $ capture due to their energy-saving potential. Whereas, most of the current biphasic solvents still suffer from high viscosity and low regeneration efficiency. To solve this problem, a novel tri-solvent biphasic solvent triethylenetetramine (TETA)-2–amino–2–methyl–1–propanol (AMP)-1-dimethylamino-2-propanol (1DMA2P) was proposed in this study, and its absorption properties, viscosity changes, desorption properties, recyclability capacity, and reaction mechanism were explored. The results showed that the $ CO_{2} $ absorption load showed a trend of firstly increasing and then decreasing with the increase of AMP concentration. Although the volume of the rich phase increased with increasing AMP concentration after the absorption, it also decreases the viscosity growth. The viscosity of the solution decreased from 498 mPa•s to 91 mPa•s. During the desorption process, the maximal desorption rates of AMP-containing solvents is significantly greater than that of 2 mol/L (M) TETA + 2 M 1DMA2P (2T2D). Simultaneously, the recyclability capacity of the AMP-containing solvents were also significantly higher than that of 2T2D. The regeneration efficiency of 1.5 M TETA + 0.5 M AMP + 2 M 1DMA2P (1.5T0.5A2D) was 81.92%. It was concluded by 13C NMR analysis that amino groups in TETA and AMP can react with $ CO_{2} $ to form carbamates and carbonates. Since AMP in the biphasic solution can generate free protons through various pathways during the desorption process, it promotes the decomposition of TETA-carbamate. This process achieves the deep stripping of $ CO_{2} $ in biphasic solvent. Overall, TETA-AMP-1DMA2P solution is a promising energy-saving candidate for industrial $ CO_{2} $ capture due to its competitive absorption–desorption performance and low viscosity. CO (dpeaa)DE-He213 capture (dpeaa)DE-He213 Absorption method (dpeaa)DE-He213 Biphasic solvent (dpeaa)DE-He213 2-amino-2-methyl-1-propanol (AMP) (dpeaa)DE-He213 Reaction mechanism (dpeaa)DE-He213 Wang, Yongqiang aut Zhu, Kaili aut Zhao, Dongfeng aut Song, Qingbin aut Enthalten in Environmental science and pollution research Berlin : Springer, 1994 29(2022), 56 vom: 05. Juli, Seite 84903-84915 (DE-627)320517926 (DE-600)2014192-0 1614-7499 nnns volume:29 year:2022 number:56 day:05 month:07 pages:84903-84915 https://dx.doi.org/10.1007/s11356-022-21822-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 29 2022 56 05 07 84903-84915 |
language |
English |
source |
Enthalten in Environmental science and pollution research 29(2022), 56 vom: 05. Juli, Seite 84903-84915 volume:29 year:2022 number:56 day:05 month:07 pages:84903-84915 |
sourceStr |
Enthalten in Environmental science and pollution research 29(2022), 56 vom: 05. Juli, Seite 84903-84915 volume:29 year:2022 number:56 day:05 month:07 pages:84903-84915 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
CO capture Absorption method Biphasic solvent 2-amino-2-methyl-1-propanol (AMP) Reaction mechanism |
isfreeaccess_bool |
false |
container_title |
Environmental science and pollution research |
authorswithroles_txt_mv |
Zhao, Shujie @@aut@@ Wang, Yongqiang @@aut@@ Zhu, Kaili @@aut@@ Zhao, Dongfeng @@aut@@ Song, Qingbin @@aut@@ |
publishDateDaySort_date |
2022-07-05T00:00:00Z |
hierarchy_top_id |
320517926 |
id |
SPR048582603 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048582603</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509115623.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221110s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11356-022-21822-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048582603</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11356-022-21822-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhao, Shujie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving the absorption load, high viscosity, and regeneration efficiency of $ CO_{2} $ capture using a novel tri-solvent biphasic solvents of TETA-AMP-1DMA2P</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Currently, biphasic solvents are receiving more attention for $ CO_{2} $ capture due to their energy-saving potential. Whereas, most of the current biphasic solvents still suffer from high viscosity and low regeneration efficiency. To solve this problem, a novel tri-solvent biphasic solvent triethylenetetramine (TETA)-2–amino–2–methyl–1–propanol (AMP)-1-dimethylamino-2-propanol (1DMA2P) was proposed in this study, and its absorption properties, viscosity changes, desorption properties, recyclability capacity, and reaction mechanism were explored. The results showed that the $ CO_{2} $ absorption load showed a trend of firstly increasing and then decreasing with the increase of AMP concentration. Although the volume of the rich phase increased with increasing AMP concentration after the absorption, it also decreases the viscosity growth. The viscosity of the solution decreased from 498 mPa•s to 91 mPa•s. During the desorption process, the maximal desorption rates of AMP-containing solvents is significantly greater than that of 2 mol/L (M) TETA + 2 M 1DMA2P (2T2D). Simultaneously, the recyclability capacity of the AMP-containing solvents were also significantly higher than that of 2T2D. The regeneration efficiency of 1.5 M TETA + 0.5 M AMP + 2 M 1DMA2P (1.5T0.5A2D) was 81.92%. It was concluded by 13C NMR analysis that amino groups in TETA and AMP can react with $ CO_{2} $ to form carbamates and carbonates. Since AMP in the biphasic solution can generate free protons through various pathways during the desorption process, it promotes the decomposition of TETA-carbamate. This process achieves the deep stripping of $ CO_{2} $ in biphasic solvent. Overall, TETA-AMP-1DMA2P solution is a promising energy-saving candidate for industrial $ CO_{2} $ capture due to its competitive absorption–desorption performance and low viscosity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CO</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">capture</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Absorption method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biphasic solvent</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">2-amino-2-methyl-1-propanol (AMP)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reaction mechanism</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yongqiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Kaili</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Dongfeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Qingbin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Environmental science and pollution research</subfield><subfield code="d">Berlin : Springer, 1994</subfield><subfield code="g">29(2022), 56 vom: 05. Juli, Seite 84903-84915</subfield><subfield code="w">(DE-627)320517926</subfield><subfield code="w">(DE-600)2014192-0</subfield><subfield code="x">1614-7499</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:56</subfield><subfield code="g">day:05</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:84903-84915</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11356-022-21822-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2360</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2022</subfield><subfield code="e">56</subfield><subfield code="b">05</subfield><subfield code="c">07</subfield><subfield code="h">84903-84915</subfield></datafield></record></collection>
|
author |
Zhao, Shujie |
spellingShingle |
Zhao, Shujie misc CO misc capture misc Absorption method misc Biphasic solvent misc 2-amino-2-methyl-1-propanol (AMP) misc Reaction mechanism Improving the absorption load, high viscosity, and regeneration efficiency of $ CO_{2} $ capture using a novel tri-solvent biphasic solvents of TETA-AMP-1DMA2P |
authorStr |
Zhao, Shujie |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320517926 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1614-7499 |
topic_title |
Improving the absorption load, high viscosity, and regeneration efficiency of $ CO_{2} $ capture using a novel tri-solvent biphasic solvents of TETA-AMP-1DMA2P CO (dpeaa)DE-He213 capture (dpeaa)DE-He213 Absorption method (dpeaa)DE-He213 Biphasic solvent (dpeaa)DE-He213 2-amino-2-methyl-1-propanol (AMP) (dpeaa)DE-He213 Reaction mechanism (dpeaa)DE-He213 |
topic |
misc CO misc capture misc Absorption method misc Biphasic solvent misc 2-amino-2-methyl-1-propanol (AMP) misc Reaction mechanism |
topic_unstemmed |
misc CO misc capture misc Absorption method misc Biphasic solvent misc 2-amino-2-methyl-1-propanol (AMP) misc Reaction mechanism |
topic_browse |
misc CO misc capture misc Absorption method misc Biphasic solvent misc 2-amino-2-methyl-1-propanol (AMP) misc Reaction mechanism |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Environmental science and pollution research |
hierarchy_parent_id |
320517926 |
hierarchy_top_title |
Environmental science and pollution research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320517926 (DE-600)2014192-0 |
title |
Improving the absorption load, high viscosity, and regeneration efficiency of $ CO_{2} $ capture using a novel tri-solvent biphasic solvents of TETA-AMP-1DMA2P |
ctrlnum |
(DE-627)SPR048582603 (SPR)s11356-022-21822-6-e |
title_full |
Improving the absorption load, high viscosity, and regeneration efficiency of $ CO_{2} $ capture using a novel tri-solvent biphasic solvents of TETA-AMP-1DMA2P |
author_sort |
Zhao, Shujie |
journal |
Environmental science and pollution research |
journalStr |
Environmental science and pollution research |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
84903 |
author_browse |
Zhao, Shujie Wang, Yongqiang Zhu, Kaili Zhao, Dongfeng Song, Qingbin |
container_volume |
29 |
format_se |
Elektronische Aufsätze |
author-letter |
Zhao, Shujie |
doi_str_mv |
10.1007/s11356-022-21822-6 |
title_sort |
improving the absorption load, high viscosity, and regeneration efficiency of $ co_{2} $ capture using a novel tri-solvent biphasic solvents of teta-amp-1dma2p |
title_auth |
Improving the absorption load, high viscosity, and regeneration efficiency of $ CO_{2} $ capture using a novel tri-solvent biphasic solvents of TETA-AMP-1DMA2P |
abstract |
Abstract Currently, biphasic solvents are receiving more attention for $ CO_{2} $ capture due to their energy-saving potential. Whereas, most of the current biphasic solvents still suffer from high viscosity and low regeneration efficiency. To solve this problem, a novel tri-solvent biphasic solvent triethylenetetramine (TETA)-2–amino–2–methyl–1–propanol (AMP)-1-dimethylamino-2-propanol (1DMA2P) was proposed in this study, and its absorption properties, viscosity changes, desorption properties, recyclability capacity, and reaction mechanism were explored. The results showed that the $ CO_{2} $ absorption load showed a trend of firstly increasing and then decreasing with the increase of AMP concentration. Although the volume of the rich phase increased with increasing AMP concentration after the absorption, it also decreases the viscosity growth. The viscosity of the solution decreased from 498 mPa•s to 91 mPa•s. During the desorption process, the maximal desorption rates of AMP-containing solvents is significantly greater than that of 2 mol/L (M) TETA + 2 M 1DMA2P (2T2D). Simultaneously, the recyclability capacity of the AMP-containing solvents were also significantly higher than that of 2T2D. The regeneration efficiency of 1.5 M TETA + 0.5 M AMP + 2 M 1DMA2P (1.5T0.5A2D) was 81.92%. It was concluded by 13C NMR analysis that amino groups in TETA and AMP can react with $ CO_{2} $ to form carbamates and carbonates. Since AMP in the biphasic solution can generate free protons through various pathways during the desorption process, it promotes the decomposition of TETA-carbamate. This process achieves the deep stripping of $ CO_{2} $ in biphasic solvent. Overall, TETA-AMP-1DMA2P solution is a promising energy-saving candidate for industrial $ CO_{2} $ capture due to its competitive absorption–desorption performance and low viscosity. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
abstractGer |
Abstract Currently, biphasic solvents are receiving more attention for $ CO_{2} $ capture due to their energy-saving potential. Whereas, most of the current biphasic solvents still suffer from high viscosity and low regeneration efficiency. To solve this problem, a novel tri-solvent biphasic solvent triethylenetetramine (TETA)-2–amino–2–methyl–1–propanol (AMP)-1-dimethylamino-2-propanol (1DMA2P) was proposed in this study, and its absorption properties, viscosity changes, desorption properties, recyclability capacity, and reaction mechanism were explored. The results showed that the $ CO_{2} $ absorption load showed a trend of firstly increasing and then decreasing with the increase of AMP concentration. Although the volume of the rich phase increased with increasing AMP concentration after the absorption, it also decreases the viscosity growth. The viscosity of the solution decreased from 498 mPa•s to 91 mPa•s. During the desorption process, the maximal desorption rates of AMP-containing solvents is significantly greater than that of 2 mol/L (M) TETA + 2 M 1DMA2P (2T2D). Simultaneously, the recyclability capacity of the AMP-containing solvents were also significantly higher than that of 2T2D. The regeneration efficiency of 1.5 M TETA + 0.5 M AMP + 2 M 1DMA2P (1.5T0.5A2D) was 81.92%. It was concluded by 13C NMR analysis that amino groups in TETA and AMP can react with $ CO_{2} $ to form carbamates and carbonates. Since AMP in the biphasic solution can generate free protons through various pathways during the desorption process, it promotes the decomposition of TETA-carbamate. This process achieves the deep stripping of $ CO_{2} $ in biphasic solvent. Overall, TETA-AMP-1DMA2P solution is a promising energy-saving candidate for industrial $ CO_{2} $ capture due to its competitive absorption–desorption performance and low viscosity. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract Currently, biphasic solvents are receiving more attention for $ CO_{2} $ capture due to their energy-saving potential. Whereas, most of the current biphasic solvents still suffer from high viscosity and low regeneration efficiency. To solve this problem, a novel tri-solvent biphasic solvent triethylenetetramine (TETA)-2–amino–2–methyl–1–propanol (AMP)-1-dimethylamino-2-propanol (1DMA2P) was proposed in this study, and its absorption properties, viscosity changes, desorption properties, recyclability capacity, and reaction mechanism were explored. The results showed that the $ CO_{2} $ absorption load showed a trend of firstly increasing and then decreasing with the increase of AMP concentration. Although the volume of the rich phase increased with increasing AMP concentration after the absorption, it also decreases the viscosity growth. The viscosity of the solution decreased from 498 mPa•s to 91 mPa•s. During the desorption process, the maximal desorption rates of AMP-containing solvents is significantly greater than that of 2 mol/L (M) TETA + 2 M 1DMA2P (2T2D). Simultaneously, the recyclability capacity of the AMP-containing solvents were also significantly higher than that of 2T2D. The regeneration efficiency of 1.5 M TETA + 0.5 M AMP + 2 M 1DMA2P (1.5T0.5A2D) was 81.92%. It was concluded by 13C NMR analysis that amino groups in TETA and AMP can react with $ CO_{2} $ to form carbamates and carbonates. Since AMP in the biphasic solution can generate free protons through various pathways during the desorption process, it promotes the decomposition of TETA-carbamate. This process achieves the deep stripping of $ CO_{2} $ in biphasic solvent. Overall, TETA-AMP-1DMA2P solution is a promising energy-saving candidate for industrial $ CO_{2} $ capture due to its competitive absorption–desorption performance and low viscosity. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
56 |
title_short |
Improving the absorption load, high viscosity, and regeneration efficiency of $ CO_{2} $ capture using a novel tri-solvent biphasic solvents of TETA-AMP-1DMA2P |
url |
https://dx.doi.org/10.1007/s11356-022-21822-6 |
remote_bool |
true |
author2 |
Wang, Yongqiang Zhu, Kaili Zhao, Dongfeng Song, Qingbin |
author2Str |
Wang, Yongqiang Zhu, Kaili Zhao, Dongfeng Song, Qingbin |
ppnlink |
320517926 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11356-022-21822-6 |
up_date |
2024-07-03T20:09:43.789Z |
_version_ |
1803589919746031617 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048582603</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509115623.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221110s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11356-022-21822-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048582603</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11356-022-21822-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhao, Shujie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving the absorption load, high viscosity, and regeneration efficiency of $ CO_{2} $ capture using a novel tri-solvent biphasic solvents of TETA-AMP-1DMA2P</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Currently, biphasic solvents are receiving more attention for $ CO_{2} $ capture due to their energy-saving potential. Whereas, most of the current biphasic solvents still suffer from high viscosity and low regeneration efficiency. To solve this problem, a novel tri-solvent biphasic solvent triethylenetetramine (TETA)-2–amino–2–methyl–1–propanol (AMP)-1-dimethylamino-2-propanol (1DMA2P) was proposed in this study, and its absorption properties, viscosity changes, desorption properties, recyclability capacity, and reaction mechanism were explored. The results showed that the $ CO_{2} $ absorption load showed a trend of firstly increasing and then decreasing with the increase of AMP concentration. Although the volume of the rich phase increased with increasing AMP concentration after the absorption, it also decreases the viscosity growth. The viscosity of the solution decreased from 498 mPa•s to 91 mPa•s. During the desorption process, the maximal desorption rates of AMP-containing solvents is significantly greater than that of 2 mol/L (M) TETA + 2 M 1DMA2P (2T2D). Simultaneously, the recyclability capacity of the AMP-containing solvents were also significantly higher than that of 2T2D. The regeneration efficiency of 1.5 M TETA + 0.5 M AMP + 2 M 1DMA2P (1.5T0.5A2D) was 81.92%. It was concluded by 13C NMR analysis that amino groups in TETA and AMP can react with $ CO_{2} $ to form carbamates and carbonates. Since AMP in the biphasic solution can generate free protons through various pathways during the desorption process, it promotes the decomposition of TETA-carbamate. This process achieves the deep stripping of $ CO_{2} $ in biphasic solvent. Overall, TETA-AMP-1DMA2P solution is a promising energy-saving candidate for industrial $ CO_{2} $ capture due to its competitive absorption–desorption performance and low viscosity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CO</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">capture</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Absorption method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biphasic solvent</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">2-amino-2-methyl-1-propanol (AMP)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reaction mechanism</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yongqiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Kaili</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Dongfeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Qingbin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Environmental science and pollution research</subfield><subfield code="d">Berlin : Springer, 1994</subfield><subfield code="g">29(2022), 56 vom: 05. Juli, Seite 84903-84915</subfield><subfield code="w">(DE-627)320517926</subfield><subfield code="w">(DE-600)2014192-0</subfield><subfield code="x">1614-7499</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:56</subfield><subfield code="g">day:05</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:84903-84915</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11356-022-21822-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2360</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2022</subfield><subfield code="e">56</subfield><subfield code="b">05</subfield><subfield code="c">07</subfield><subfield code="h">84903-84915</subfield></datafield></record></collection>
|
score |
7.400319 |