State-of-the-Art Development of Two-Waves Artificial Intelligence Modeling Techniques for River Streamflow Forecasting

Abstract Streamflow forecasting is the most well studied hydrological science but still portray numerous unknown knowledge. The conventional physical-based model is unable to yield a high accuracy of forecast due to the embedded noises, non-linear and stochastic nature of hydrological data. This pap...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Tan, Woon Yang [verfasserIn]

Lai, Sai Hin

Teo, Fang Yenn

El-Shafie, Ahmed

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2022

Anmerkung:

© The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2022

Übergeordnetes Werk:

Enthalten in: Archives of computational methods in engineering - Dordrecht [u.a.] : Springer, 1994, 29(2022), 7 vom: 11. Juni, Seite 5185-5211

Übergeordnetes Werk:

volume:29 ; year:2022 ; number:7 ; day:11 ; month:06 ; pages:5185-5211

Links:

Volltext

DOI / URN:

10.1007/s11831-022-09763-2

Katalog-ID:

SPR048583596

Nicht das Richtige dabei?

Schreiben Sie uns!