Temporal filters in response to presynaptic spike trains: interplay of cellular, synaptic and short-term plasticity time scales
Abstract Temporal filters, the ability of postsynaptic neurons to preferentially select certain presynaptic input patterns over others, have been shown to be associated with the notion of information filtering and coding of sensory inputs. Short-term plasticity (depression and facilitation; STP) has...
Ausführliche Beschreibung
Autor*in: |
Mondal, Yugarshi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of computational neuroscience - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994, 50(2022), 4 vom: 23. Juli, Seite 395-429 |
---|---|
Übergeordnetes Werk: |
volume:50 ; year:2022 ; number:4 ; day:23 ; month:07 ; pages:395-429 |
Links: |
---|
DOI / URN: |
10.1007/s10827-022-00822-y |
---|
Katalog-ID: |
SPR048630683 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR048630683 | ||
003 | DE-627 | ||
005 | 20230509120119.0 | ||
007 | cr uuu---uuuuu | ||
008 | 221116s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10827-022-00822-y |2 doi | |
035 | |a (DE-627)SPR048630683 | ||
035 | |a (SPR)s10827-022-00822-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Mondal, Yugarshi |e verfasserin |0 (orcid)0000-0002-7620-8436 |4 aut | |
245 | 1 | 0 | |a Temporal filters in response to presynaptic spike trains: interplay of cellular, synaptic and short-term plasticity time scales |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 | ||
520 | |a Abstract Temporal filters, the ability of postsynaptic neurons to preferentially select certain presynaptic input patterns over others, have been shown to be associated with the notion of information filtering and coding of sensory inputs. Short-term plasticity (depression and facilitation; STP) has been proposed to be an important player in the generation of temporal filters. We carry out a systematic modeling, analysis and computational study to understand how characteristic postsynaptic (low-, high- and band-pass) temporal filters are generated in response to periodic presynaptic spike trains in the presence STP. We investigate how the dynamic properties of these filters depend on the interplay of a hierarchy of processes, including the arrival of the presynaptic spikes, the activation of STP, its effect on the excitatory synaptic connection efficacy, and the response of the postsynaptic cell. These mechanisms involve the interplay of a collection of time scales that operate at the single-event level (roughly, during each presynaptic interspike-interval) and control the long-term development of the temporal filters over multiple presynaptic events. These time scales are generated at the levels of the presynaptic cell (captured by the presynaptic interspike-intervals), short-term depression and facilitation, synaptic dynamics and the post-synaptic cellular currents. We develop mathematical tools to link the single-event time scales with the time scales governing the long-term dynamics of the resulting temporal filters for a relatively simple model where depression and facilitation interact at the level of the synaptic efficacy change. We extend our results and tools to account for more complex models. These include multiple STP time scales and non-periodic presynaptic inputs. The results and ideas we develop have implications for the understanding of the generation of temporal filters in complex networks for which the simple feedforward network we investigate here is a building block. | ||
650 | 4 | |a Synaptic depression |7 (dpeaa)DE-He213 | |
650 | 4 | |a Synaptic facilitation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Short-term synaptic dynamics |7 (dpeaa)DE-He213 | |
650 | 4 | |a Frequency dependent filters |7 (dpeaa)DE-He213 | |
650 | 4 | |a Temporal resonance |7 (dpeaa)DE-He213 | |
650 | 4 | |a Low-pass temporal filter |7 (dpeaa)DE-He213 | |
650 | 4 | |a High-pass temporal filter |7 (dpeaa)DE-He213 | |
650 | 4 | |a Band-pass temporal filter |7 (dpeaa)DE-He213 | |
650 | 4 | |a Interplay of time scales across levels of organization |7 (dpeaa)DE-He213 | |
700 | 1 | |a Pena, Rodrigo F. O. |0 (orcid)0000-0002-2037-9746 |4 aut | |
700 | 1 | |a Rotstein, Horacio G. |0 (orcid)0000-0002-4387-5160 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of computational neuroscience |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994 |g 50(2022), 4 vom: 23. Juli, Seite 395-429 |w (DE-627)268760713 |w (DE-600)1473055-8 |x 1573-6873 |7 nnns |
773 | 1 | 8 | |g volume:50 |g year:2022 |g number:4 |g day:23 |g month:07 |g pages:395-429 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10827-022-00822-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 50 |j 2022 |e 4 |b 23 |c 07 |h 395-429 |
author_variant |
y m ym r f o p rfo rfop h g r hg hgr |
---|---|
matchkey_str |
article:15736873:2022----::eprlitrirsostpeyatcpktanitrlyfellryatcns |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s10827-022-00822-y doi (DE-627)SPR048630683 (SPR)s10827-022-00822-y-e DE-627 ger DE-627 rakwb eng Mondal, Yugarshi verfasserin (orcid)0000-0002-7620-8436 aut Temporal filters in response to presynaptic spike trains: interplay of cellular, synaptic and short-term plasticity time scales 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Temporal filters, the ability of postsynaptic neurons to preferentially select certain presynaptic input patterns over others, have been shown to be associated with the notion of information filtering and coding of sensory inputs. Short-term plasticity (depression and facilitation; STP) has been proposed to be an important player in the generation of temporal filters. We carry out a systematic modeling, analysis and computational study to understand how characteristic postsynaptic (low-, high- and band-pass) temporal filters are generated in response to periodic presynaptic spike trains in the presence STP. We investigate how the dynamic properties of these filters depend on the interplay of a hierarchy of processes, including the arrival of the presynaptic spikes, the activation of STP, its effect on the excitatory synaptic connection efficacy, and the response of the postsynaptic cell. These mechanisms involve the interplay of a collection of time scales that operate at the single-event level (roughly, during each presynaptic interspike-interval) and control the long-term development of the temporal filters over multiple presynaptic events. These time scales are generated at the levels of the presynaptic cell (captured by the presynaptic interspike-intervals), short-term depression and facilitation, synaptic dynamics and the post-synaptic cellular currents. We develop mathematical tools to link the single-event time scales with the time scales governing the long-term dynamics of the resulting temporal filters for a relatively simple model where depression and facilitation interact at the level of the synaptic efficacy change. We extend our results and tools to account for more complex models. These include multiple STP time scales and non-periodic presynaptic inputs. The results and ideas we develop have implications for the understanding of the generation of temporal filters in complex networks for which the simple feedforward network we investigate here is a building block. Synaptic depression (dpeaa)DE-He213 Synaptic facilitation (dpeaa)DE-He213 Short-term synaptic dynamics (dpeaa)DE-He213 Frequency dependent filters (dpeaa)DE-He213 Temporal resonance (dpeaa)DE-He213 Low-pass temporal filter (dpeaa)DE-He213 High-pass temporal filter (dpeaa)DE-He213 Band-pass temporal filter (dpeaa)DE-He213 Interplay of time scales across levels of organization (dpeaa)DE-He213 Pena, Rodrigo F. O. (orcid)0000-0002-2037-9746 aut Rotstein, Horacio G. (orcid)0000-0002-4387-5160 aut Enthalten in Journal of computational neuroscience Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994 50(2022), 4 vom: 23. Juli, Seite 395-429 (DE-627)268760713 (DE-600)1473055-8 1573-6873 nnns volume:50 year:2022 number:4 day:23 month:07 pages:395-429 https://dx.doi.org/10.1007/s10827-022-00822-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 50 2022 4 23 07 395-429 |
spelling |
10.1007/s10827-022-00822-y doi (DE-627)SPR048630683 (SPR)s10827-022-00822-y-e DE-627 ger DE-627 rakwb eng Mondal, Yugarshi verfasserin (orcid)0000-0002-7620-8436 aut Temporal filters in response to presynaptic spike trains: interplay of cellular, synaptic and short-term plasticity time scales 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Temporal filters, the ability of postsynaptic neurons to preferentially select certain presynaptic input patterns over others, have been shown to be associated with the notion of information filtering and coding of sensory inputs. Short-term plasticity (depression and facilitation; STP) has been proposed to be an important player in the generation of temporal filters. We carry out a systematic modeling, analysis and computational study to understand how characteristic postsynaptic (low-, high- and band-pass) temporal filters are generated in response to periodic presynaptic spike trains in the presence STP. We investigate how the dynamic properties of these filters depend on the interplay of a hierarchy of processes, including the arrival of the presynaptic spikes, the activation of STP, its effect on the excitatory synaptic connection efficacy, and the response of the postsynaptic cell. These mechanisms involve the interplay of a collection of time scales that operate at the single-event level (roughly, during each presynaptic interspike-interval) and control the long-term development of the temporal filters over multiple presynaptic events. These time scales are generated at the levels of the presynaptic cell (captured by the presynaptic interspike-intervals), short-term depression and facilitation, synaptic dynamics and the post-synaptic cellular currents. We develop mathematical tools to link the single-event time scales with the time scales governing the long-term dynamics of the resulting temporal filters for a relatively simple model where depression and facilitation interact at the level of the synaptic efficacy change. We extend our results and tools to account for more complex models. These include multiple STP time scales and non-periodic presynaptic inputs. The results and ideas we develop have implications for the understanding of the generation of temporal filters in complex networks for which the simple feedforward network we investigate here is a building block. Synaptic depression (dpeaa)DE-He213 Synaptic facilitation (dpeaa)DE-He213 Short-term synaptic dynamics (dpeaa)DE-He213 Frequency dependent filters (dpeaa)DE-He213 Temporal resonance (dpeaa)DE-He213 Low-pass temporal filter (dpeaa)DE-He213 High-pass temporal filter (dpeaa)DE-He213 Band-pass temporal filter (dpeaa)DE-He213 Interplay of time scales across levels of organization (dpeaa)DE-He213 Pena, Rodrigo F. O. (orcid)0000-0002-2037-9746 aut Rotstein, Horacio G. (orcid)0000-0002-4387-5160 aut Enthalten in Journal of computational neuroscience Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994 50(2022), 4 vom: 23. Juli, Seite 395-429 (DE-627)268760713 (DE-600)1473055-8 1573-6873 nnns volume:50 year:2022 number:4 day:23 month:07 pages:395-429 https://dx.doi.org/10.1007/s10827-022-00822-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 50 2022 4 23 07 395-429 |
allfields_unstemmed |
10.1007/s10827-022-00822-y doi (DE-627)SPR048630683 (SPR)s10827-022-00822-y-e DE-627 ger DE-627 rakwb eng Mondal, Yugarshi verfasserin (orcid)0000-0002-7620-8436 aut Temporal filters in response to presynaptic spike trains: interplay of cellular, synaptic and short-term plasticity time scales 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Temporal filters, the ability of postsynaptic neurons to preferentially select certain presynaptic input patterns over others, have been shown to be associated with the notion of information filtering and coding of sensory inputs. Short-term plasticity (depression and facilitation; STP) has been proposed to be an important player in the generation of temporal filters. We carry out a systematic modeling, analysis and computational study to understand how characteristic postsynaptic (low-, high- and band-pass) temporal filters are generated in response to periodic presynaptic spike trains in the presence STP. We investigate how the dynamic properties of these filters depend on the interplay of a hierarchy of processes, including the arrival of the presynaptic spikes, the activation of STP, its effect on the excitatory synaptic connection efficacy, and the response of the postsynaptic cell. These mechanisms involve the interplay of a collection of time scales that operate at the single-event level (roughly, during each presynaptic interspike-interval) and control the long-term development of the temporal filters over multiple presynaptic events. These time scales are generated at the levels of the presynaptic cell (captured by the presynaptic interspike-intervals), short-term depression and facilitation, synaptic dynamics and the post-synaptic cellular currents. We develop mathematical tools to link the single-event time scales with the time scales governing the long-term dynamics of the resulting temporal filters for a relatively simple model where depression and facilitation interact at the level of the synaptic efficacy change. We extend our results and tools to account for more complex models. These include multiple STP time scales and non-periodic presynaptic inputs. The results and ideas we develop have implications for the understanding of the generation of temporal filters in complex networks for which the simple feedforward network we investigate here is a building block. Synaptic depression (dpeaa)DE-He213 Synaptic facilitation (dpeaa)DE-He213 Short-term synaptic dynamics (dpeaa)DE-He213 Frequency dependent filters (dpeaa)DE-He213 Temporal resonance (dpeaa)DE-He213 Low-pass temporal filter (dpeaa)DE-He213 High-pass temporal filter (dpeaa)DE-He213 Band-pass temporal filter (dpeaa)DE-He213 Interplay of time scales across levels of organization (dpeaa)DE-He213 Pena, Rodrigo F. O. (orcid)0000-0002-2037-9746 aut Rotstein, Horacio G. (orcid)0000-0002-4387-5160 aut Enthalten in Journal of computational neuroscience Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994 50(2022), 4 vom: 23. Juli, Seite 395-429 (DE-627)268760713 (DE-600)1473055-8 1573-6873 nnns volume:50 year:2022 number:4 day:23 month:07 pages:395-429 https://dx.doi.org/10.1007/s10827-022-00822-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 50 2022 4 23 07 395-429 |
allfieldsGer |
10.1007/s10827-022-00822-y doi (DE-627)SPR048630683 (SPR)s10827-022-00822-y-e DE-627 ger DE-627 rakwb eng Mondal, Yugarshi verfasserin (orcid)0000-0002-7620-8436 aut Temporal filters in response to presynaptic spike trains: interplay of cellular, synaptic and short-term plasticity time scales 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Temporal filters, the ability of postsynaptic neurons to preferentially select certain presynaptic input patterns over others, have been shown to be associated with the notion of information filtering and coding of sensory inputs. Short-term plasticity (depression and facilitation; STP) has been proposed to be an important player in the generation of temporal filters. We carry out a systematic modeling, analysis and computational study to understand how characteristic postsynaptic (low-, high- and band-pass) temporal filters are generated in response to periodic presynaptic spike trains in the presence STP. We investigate how the dynamic properties of these filters depend on the interplay of a hierarchy of processes, including the arrival of the presynaptic spikes, the activation of STP, its effect on the excitatory synaptic connection efficacy, and the response of the postsynaptic cell. These mechanisms involve the interplay of a collection of time scales that operate at the single-event level (roughly, during each presynaptic interspike-interval) and control the long-term development of the temporal filters over multiple presynaptic events. These time scales are generated at the levels of the presynaptic cell (captured by the presynaptic interspike-intervals), short-term depression and facilitation, synaptic dynamics and the post-synaptic cellular currents. We develop mathematical tools to link the single-event time scales with the time scales governing the long-term dynamics of the resulting temporal filters for a relatively simple model where depression and facilitation interact at the level of the synaptic efficacy change. We extend our results and tools to account for more complex models. These include multiple STP time scales and non-periodic presynaptic inputs. The results and ideas we develop have implications for the understanding of the generation of temporal filters in complex networks for which the simple feedforward network we investigate here is a building block. Synaptic depression (dpeaa)DE-He213 Synaptic facilitation (dpeaa)DE-He213 Short-term synaptic dynamics (dpeaa)DE-He213 Frequency dependent filters (dpeaa)DE-He213 Temporal resonance (dpeaa)DE-He213 Low-pass temporal filter (dpeaa)DE-He213 High-pass temporal filter (dpeaa)DE-He213 Band-pass temporal filter (dpeaa)DE-He213 Interplay of time scales across levels of organization (dpeaa)DE-He213 Pena, Rodrigo F. O. (orcid)0000-0002-2037-9746 aut Rotstein, Horacio G. (orcid)0000-0002-4387-5160 aut Enthalten in Journal of computational neuroscience Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994 50(2022), 4 vom: 23. Juli, Seite 395-429 (DE-627)268760713 (DE-600)1473055-8 1573-6873 nnns volume:50 year:2022 number:4 day:23 month:07 pages:395-429 https://dx.doi.org/10.1007/s10827-022-00822-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 50 2022 4 23 07 395-429 |
allfieldsSound |
10.1007/s10827-022-00822-y doi (DE-627)SPR048630683 (SPR)s10827-022-00822-y-e DE-627 ger DE-627 rakwb eng Mondal, Yugarshi verfasserin (orcid)0000-0002-7620-8436 aut Temporal filters in response to presynaptic spike trains: interplay of cellular, synaptic and short-term plasticity time scales 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Temporal filters, the ability of postsynaptic neurons to preferentially select certain presynaptic input patterns over others, have been shown to be associated with the notion of information filtering and coding of sensory inputs. Short-term plasticity (depression and facilitation; STP) has been proposed to be an important player in the generation of temporal filters. We carry out a systematic modeling, analysis and computational study to understand how characteristic postsynaptic (low-, high- and band-pass) temporal filters are generated in response to periodic presynaptic spike trains in the presence STP. We investigate how the dynamic properties of these filters depend on the interplay of a hierarchy of processes, including the arrival of the presynaptic spikes, the activation of STP, its effect on the excitatory synaptic connection efficacy, and the response of the postsynaptic cell. These mechanisms involve the interplay of a collection of time scales that operate at the single-event level (roughly, during each presynaptic interspike-interval) and control the long-term development of the temporal filters over multiple presynaptic events. These time scales are generated at the levels of the presynaptic cell (captured by the presynaptic interspike-intervals), short-term depression and facilitation, synaptic dynamics and the post-synaptic cellular currents. We develop mathematical tools to link the single-event time scales with the time scales governing the long-term dynamics of the resulting temporal filters for a relatively simple model where depression and facilitation interact at the level of the synaptic efficacy change. We extend our results and tools to account for more complex models. These include multiple STP time scales and non-periodic presynaptic inputs. The results and ideas we develop have implications for the understanding of the generation of temporal filters in complex networks for which the simple feedforward network we investigate here is a building block. Synaptic depression (dpeaa)DE-He213 Synaptic facilitation (dpeaa)DE-He213 Short-term synaptic dynamics (dpeaa)DE-He213 Frequency dependent filters (dpeaa)DE-He213 Temporal resonance (dpeaa)DE-He213 Low-pass temporal filter (dpeaa)DE-He213 High-pass temporal filter (dpeaa)DE-He213 Band-pass temporal filter (dpeaa)DE-He213 Interplay of time scales across levels of organization (dpeaa)DE-He213 Pena, Rodrigo F. O. (orcid)0000-0002-2037-9746 aut Rotstein, Horacio G. (orcid)0000-0002-4387-5160 aut Enthalten in Journal of computational neuroscience Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994 50(2022), 4 vom: 23. Juli, Seite 395-429 (DE-627)268760713 (DE-600)1473055-8 1573-6873 nnns volume:50 year:2022 number:4 day:23 month:07 pages:395-429 https://dx.doi.org/10.1007/s10827-022-00822-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 50 2022 4 23 07 395-429 |
language |
English |
source |
Enthalten in Journal of computational neuroscience 50(2022), 4 vom: 23. Juli, Seite 395-429 volume:50 year:2022 number:4 day:23 month:07 pages:395-429 |
sourceStr |
Enthalten in Journal of computational neuroscience 50(2022), 4 vom: 23. Juli, Seite 395-429 volume:50 year:2022 number:4 day:23 month:07 pages:395-429 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Synaptic depression Synaptic facilitation Short-term synaptic dynamics Frequency dependent filters Temporal resonance Low-pass temporal filter High-pass temporal filter Band-pass temporal filter Interplay of time scales across levels of organization |
isfreeaccess_bool |
false |
container_title |
Journal of computational neuroscience |
authorswithroles_txt_mv |
Mondal, Yugarshi @@aut@@ Pena, Rodrigo F. O. @@aut@@ Rotstein, Horacio G. @@aut@@ |
publishDateDaySort_date |
2022-07-23T00:00:00Z |
hierarchy_top_id |
268760713 |
id |
SPR048630683 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048630683</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509120119.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221116s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10827-022-00822-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048630683</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10827-022-00822-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mondal, Yugarshi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7620-8436</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Temporal filters in response to presynaptic spike trains: interplay of cellular, synaptic and short-term plasticity time scales</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Temporal filters, the ability of postsynaptic neurons to preferentially select certain presynaptic input patterns over others, have been shown to be associated with the notion of information filtering and coding of sensory inputs. Short-term plasticity (depression and facilitation; STP) has been proposed to be an important player in the generation of temporal filters. We carry out a systematic modeling, analysis and computational study to understand how characteristic postsynaptic (low-, high- and band-pass) temporal filters are generated in response to periodic presynaptic spike trains in the presence STP. We investigate how the dynamic properties of these filters depend on the interplay of a hierarchy of processes, including the arrival of the presynaptic spikes, the activation of STP, its effect on the excitatory synaptic connection efficacy, and the response of the postsynaptic cell. These mechanisms involve the interplay of a collection of time scales that operate at the single-event level (roughly, during each presynaptic interspike-interval) and control the long-term development of the temporal filters over multiple presynaptic events. These time scales are generated at the levels of the presynaptic cell (captured by the presynaptic interspike-intervals), short-term depression and facilitation, synaptic dynamics and the post-synaptic cellular currents. We develop mathematical tools to link the single-event time scales with the time scales governing the long-term dynamics of the resulting temporal filters for a relatively simple model where depression and facilitation interact at the level of the synaptic efficacy change. We extend our results and tools to account for more complex models. These include multiple STP time scales and non-periodic presynaptic inputs. The results and ideas we develop have implications for the understanding of the generation of temporal filters in complex networks for which the simple feedforward network we investigate here is a building block.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synaptic depression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synaptic facilitation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Short-term synaptic dynamics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency dependent filters</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temporal resonance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low-pass temporal filter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High-pass temporal filter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Band-pass temporal filter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interplay of time scales across levels of organization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pena, Rodrigo F. O.</subfield><subfield code="0">(orcid)0000-0002-2037-9746</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rotstein, Horacio G.</subfield><subfield code="0">(orcid)0000-0002-4387-5160</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of computational neuroscience</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994</subfield><subfield code="g">50(2022), 4 vom: 23. Juli, Seite 395-429</subfield><subfield code="w">(DE-627)268760713</subfield><subfield code="w">(DE-600)1473055-8</subfield><subfield code="x">1573-6873</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">day:23</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:395-429</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10827-022-00822-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="b">23</subfield><subfield code="c">07</subfield><subfield code="h">395-429</subfield></datafield></record></collection>
|
author |
Mondal, Yugarshi |
spellingShingle |
Mondal, Yugarshi misc Synaptic depression misc Synaptic facilitation misc Short-term synaptic dynamics misc Frequency dependent filters misc Temporal resonance misc Low-pass temporal filter misc High-pass temporal filter misc Band-pass temporal filter misc Interplay of time scales across levels of organization Temporal filters in response to presynaptic spike trains: interplay of cellular, synaptic and short-term plasticity time scales |
authorStr |
Mondal, Yugarshi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)268760713 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-6873 |
topic_title |
Temporal filters in response to presynaptic spike trains: interplay of cellular, synaptic and short-term plasticity time scales Synaptic depression (dpeaa)DE-He213 Synaptic facilitation (dpeaa)DE-He213 Short-term synaptic dynamics (dpeaa)DE-He213 Frequency dependent filters (dpeaa)DE-He213 Temporal resonance (dpeaa)DE-He213 Low-pass temporal filter (dpeaa)DE-He213 High-pass temporal filter (dpeaa)DE-He213 Band-pass temporal filter (dpeaa)DE-He213 Interplay of time scales across levels of organization (dpeaa)DE-He213 |
topic |
misc Synaptic depression misc Synaptic facilitation misc Short-term synaptic dynamics misc Frequency dependent filters misc Temporal resonance misc Low-pass temporal filter misc High-pass temporal filter misc Band-pass temporal filter misc Interplay of time scales across levels of organization |
topic_unstemmed |
misc Synaptic depression misc Synaptic facilitation misc Short-term synaptic dynamics misc Frequency dependent filters misc Temporal resonance misc Low-pass temporal filter misc High-pass temporal filter misc Band-pass temporal filter misc Interplay of time scales across levels of organization |
topic_browse |
misc Synaptic depression misc Synaptic facilitation misc Short-term synaptic dynamics misc Frequency dependent filters misc Temporal resonance misc Low-pass temporal filter misc High-pass temporal filter misc Band-pass temporal filter misc Interplay of time scales across levels of organization |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of computational neuroscience |
hierarchy_parent_id |
268760713 |
hierarchy_top_title |
Journal of computational neuroscience |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)268760713 (DE-600)1473055-8 |
title |
Temporal filters in response to presynaptic spike trains: interplay of cellular, synaptic and short-term plasticity time scales |
ctrlnum |
(DE-627)SPR048630683 (SPR)s10827-022-00822-y-e |
title_full |
Temporal filters in response to presynaptic spike trains: interplay of cellular, synaptic and short-term plasticity time scales |
author_sort |
Mondal, Yugarshi |
journal |
Journal of computational neuroscience |
journalStr |
Journal of computational neuroscience |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
395 |
author_browse |
Mondal, Yugarshi Pena, Rodrigo F. O. Rotstein, Horacio G. |
container_volume |
50 |
format_se |
Elektronische Aufsätze |
author-letter |
Mondal, Yugarshi |
doi_str_mv |
10.1007/s10827-022-00822-y |
normlink |
(ORCID)0000-0002-7620-8436 (ORCID)0000-0002-2037-9746 (ORCID)0000-0002-4387-5160 |
normlink_prefix_str_mv |
(orcid)0000-0002-7620-8436 (orcid)0000-0002-2037-9746 (orcid)0000-0002-4387-5160 |
title_sort |
temporal filters in response to presynaptic spike trains: interplay of cellular, synaptic and short-term plasticity time scales |
title_auth |
Temporal filters in response to presynaptic spike trains: interplay of cellular, synaptic and short-term plasticity time scales |
abstract |
Abstract Temporal filters, the ability of postsynaptic neurons to preferentially select certain presynaptic input patterns over others, have been shown to be associated with the notion of information filtering and coding of sensory inputs. Short-term plasticity (depression and facilitation; STP) has been proposed to be an important player in the generation of temporal filters. We carry out a systematic modeling, analysis and computational study to understand how characteristic postsynaptic (low-, high- and band-pass) temporal filters are generated in response to periodic presynaptic spike trains in the presence STP. We investigate how the dynamic properties of these filters depend on the interplay of a hierarchy of processes, including the arrival of the presynaptic spikes, the activation of STP, its effect on the excitatory synaptic connection efficacy, and the response of the postsynaptic cell. These mechanisms involve the interplay of a collection of time scales that operate at the single-event level (roughly, during each presynaptic interspike-interval) and control the long-term development of the temporal filters over multiple presynaptic events. These time scales are generated at the levels of the presynaptic cell (captured by the presynaptic interspike-intervals), short-term depression and facilitation, synaptic dynamics and the post-synaptic cellular currents. We develop mathematical tools to link the single-event time scales with the time scales governing the long-term dynamics of the resulting temporal filters for a relatively simple model where depression and facilitation interact at the level of the synaptic efficacy change. We extend our results and tools to account for more complex models. These include multiple STP time scales and non-periodic presynaptic inputs. The results and ideas we develop have implications for the understanding of the generation of temporal filters in complex networks for which the simple feedforward network we investigate here is a building block. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstractGer |
Abstract Temporal filters, the ability of postsynaptic neurons to preferentially select certain presynaptic input patterns over others, have been shown to be associated with the notion of information filtering and coding of sensory inputs. Short-term plasticity (depression and facilitation; STP) has been proposed to be an important player in the generation of temporal filters. We carry out a systematic modeling, analysis and computational study to understand how characteristic postsynaptic (low-, high- and band-pass) temporal filters are generated in response to periodic presynaptic spike trains in the presence STP. We investigate how the dynamic properties of these filters depend on the interplay of a hierarchy of processes, including the arrival of the presynaptic spikes, the activation of STP, its effect on the excitatory synaptic connection efficacy, and the response of the postsynaptic cell. These mechanisms involve the interplay of a collection of time scales that operate at the single-event level (roughly, during each presynaptic interspike-interval) and control the long-term development of the temporal filters over multiple presynaptic events. These time scales are generated at the levels of the presynaptic cell (captured by the presynaptic interspike-intervals), short-term depression and facilitation, synaptic dynamics and the post-synaptic cellular currents. We develop mathematical tools to link the single-event time scales with the time scales governing the long-term dynamics of the resulting temporal filters for a relatively simple model where depression and facilitation interact at the level of the synaptic efficacy change. We extend our results and tools to account for more complex models. These include multiple STP time scales and non-periodic presynaptic inputs. The results and ideas we develop have implications for the understanding of the generation of temporal filters in complex networks for which the simple feedforward network we investigate here is a building block. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract Temporal filters, the ability of postsynaptic neurons to preferentially select certain presynaptic input patterns over others, have been shown to be associated with the notion of information filtering and coding of sensory inputs. Short-term plasticity (depression and facilitation; STP) has been proposed to be an important player in the generation of temporal filters. We carry out a systematic modeling, analysis and computational study to understand how characteristic postsynaptic (low-, high- and band-pass) temporal filters are generated in response to periodic presynaptic spike trains in the presence STP. We investigate how the dynamic properties of these filters depend on the interplay of a hierarchy of processes, including the arrival of the presynaptic spikes, the activation of STP, its effect on the excitatory synaptic connection efficacy, and the response of the postsynaptic cell. These mechanisms involve the interplay of a collection of time scales that operate at the single-event level (roughly, during each presynaptic interspike-interval) and control the long-term development of the temporal filters over multiple presynaptic events. These time scales are generated at the levels of the presynaptic cell (captured by the presynaptic interspike-intervals), short-term depression and facilitation, synaptic dynamics and the post-synaptic cellular currents. We develop mathematical tools to link the single-event time scales with the time scales governing the long-term dynamics of the resulting temporal filters for a relatively simple model where depression and facilitation interact at the level of the synaptic efficacy change. We extend our results and tools to account for more complex models. These include multiple STP time scales and non-periodic presynaptic inputs. The results and ideas we develop have implications for the understanding of the generation of temporal filters in complex networks for which the simple feedforward network we investigate here is a building block. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Temporal filters in response to presynaptic spike trains: interplay of cellular, synaptic and short-term plasticity time scales |
url |
https://dx.doi.org/10.1007/s10827-022-00822-y |
remote_bool |
true |
author2 |
Pena, Rodrigo F. O. Rotstein, Horacio G. |
author2Str |
Pena, Rodrigo F. O. Rotstein, Horacio G. |
ppnlink |
268760713 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10827-022-00822-y |
up_date |
2024-07-03T20:27:42.628Z |
_version_ |
1803591050993860608 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048630683</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509120119.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221116s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10827-022-00822-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048630683</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10827-022-00822-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mondal, Yugarshi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7620-8436</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Temporal filters in response to presynaptic spike trains: interplay of cellular, synaptic and short-term plasticity time scales</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Temporal filters, the ability of postsynaptic neurons to preferentially select certain presynaptic input patterns over others, have been shown to be associated with the notion of information filtering and coding of sensory inputs. Short-term plasticity (depression and facilitation; STP) has been proposed to be an important player in the generation of temporal filters. We carry out a systematic modeling, analysis and computational study to understand how characteristic postsynaptic (low-, high- and band-pass) temporal filters are generated in response to periodic presynaptic spike trains in the presence STP. We investigate how the dynamic properties of these filters depend on the interplay of a hierarchy of processes, including the arrival of the presynaptic spikes, the activation of STP, its effect on the excitatory synaptic connection efficacy, and the response of the postsynaptic cell. These mechanisms involve the interplay of a collection of time scales that operate at the single-event level (roughly, during each presynaptic interspike-interval) and control the long-term development of the temporal filters over multiple presynaptic events. These time scales are generated at the levels of the presynaptic cell (captured by the presynaptic interspike-intervals), short-term depression and facilitation, synaptic dynamics and the post-synaptic cellular currents. We develop mathematical tools to link the single-event time scales with the time scales governing the long-term dynamics of the resulting temporal filters for a relatively simple model where depression and facilitation interact at the level of the synaptic efficacy change. We extend our results and tools to account for more complex models. These include multiple STP time scales and non-periodic presynaptic inputs. The results and ideas we develop have implications for the understanding of the generation of temporal filters in complex networks for which the simple feedforward network we investigate here is a building block.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synaptic depression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synaptic facilitation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Short-term synaptic dynamics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency dependent filters</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temporal resonance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low-pass temporal filter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High-pass temporal filter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Band-pass temporal filter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interplay of time scales across levels of organization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pena, Rodrigo F. O.</subfield><subfield code="0">(orcid)0000-0002-2037-9746</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rotstein, Horacio G.</subfield><subfield code="0">(orcid)0000-0002-4387-5160</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of computational neuroscience</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994</subfield><subfield code="g">50(2022), 4 vom: 23. Juli, Seite 395-429</subfield><subfield code="w">(DE-627)268760713</subfield><subfield code="w">(DE-600)1473055-8</subfield><subfield code="x">1573-6873</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">day:23</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:395-429</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10827-022-00822-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="b">23</subfield><subfield code="c">07</subfield><subfield code="h">395-429</subfield></datafield></record></collection>
|
score |
7.401552 |