Materials’ characterization and properties of multiwalled carbon nanotubes from industrial waste as electromagnetic wave absorber
Abstract The development of high-frequency devices has attracted more research interest in electromagnetic wave–absorbing materials having lightweight, low filler content, thin thickness, minimum reflection loss and broad absorption bandwidth. Nevertheless, none of the materials uses steel waste (mi...
Ausführliche Beschreibung
Autor*in: |
Mohd Idris, Fadzidah [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of nanoparticle research - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1999, 24(2022), 12 vom: 21. Nov. |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2022 ; number:12 ; day:21 ; month:11 |
Links: |
---|
DOI / URN: |
10.1007/s11051-022-05625-x |
---|
Katalog-ID: |
SPR048690317 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR048690317 | ||
003 | DE-627 | ||
005 | 20230509123353.0 | ||
007 | cr uuu---uuuuu | ||
008 | 221123s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11051-022-05625-x |2 doi | |
035 | |a (DE-627)SPR048690317 | ||
035 | |a (SPR)s11051-022-05625-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Mohd Idris, Fadzidah |e verfasserin |0 (orcid)0000-0001-6630-7281 |4 aut | |
245 | 1 | 0 | |a Materials’ characterization and properties of multiwalled carbon nanotubes from industrial waste as electromagnetic wave absorber |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract The development of high-frequency devices has attracted more research interest in electromagnetic wave–absorbing materials having lightweight, low filler content, thin thickness, minimum reflection loss and broad absorption bandwidth. Nevertheless, none of the materials uses steel waste (mill scale) as a potential low-cost catalyst to synthesize carbon nanotubes (CNT) as an electromagnetic (EM) wave absorber. Hence, multiwalled carbon nanotubes loaded in epoxy resin with an increasing polymer composite thickness of 1 mm, 2 mm, and 3 mm were introduced in this study. With varying milling times of mill scale (4 h, 20 h and 40 h) as catalyst, as-synthesized carbon nanotubes were produced using the chemical vapour deposition (CVD) method. Two main phases (carbon and iron carbide) were obtained from the synthesized carbon nanotubes. The samples’ morphology was mostly straight like, spiral, twisted carbon and spring pasta-like structures. The two-dimensional (2D) network structure of as-synthesized CNT loaded into epoxy resin, extends the transmission route of EM wave being absorbed. Moreover, the ratio of $ I_{D} $/$ I_{G} $ is consistent at around 1.0 attributed to defective structure or a lower graphitization degree. In addition, higher electrical resistivity in the sample indicates wider separation between CNTs allowing for better EM wave absorption. The as-synthesized carbon nanotubes that are utilized as filler with lightweight properties, improved the reflection loss approach to − 25 dB (10.5 GHz) for growth CNT catalyzed by mill scale milled for 20 h loaded into polymer matrix (GM20h/P) at thickness of 3 mm. As the thickness of the polymer composites increased from 1 to 3 mm, all composite samples reflected a loss peak closer to a lower frequency range. The results demonstrated that the EM wave absorption ability was improved to 99.9% by using nanometer size mill scale waste as a catalyst to grow carbon nanotubes and further used as an EM wave absorber. | ||
650 | 4 | |a Mill scale |7 (dpeaa)DE-He213 | |
650 | 4 | |a Nanometer |7 (dpeaa)DE-He213 | |
650 | 4 | |a Filler |7 (dpeaa)DE-He213 | |
650 | 4 | |a Carbon nanotubes |7 (dpeaa)DE-He213 | |
650 | 4 | |a Absorbing materials |7 (dpeaa)DE-He213 | |
650 | 4 | |a Nanostructured catalysts |7 (dpeaa)DE-He213 | |
700 | 1 | |a Amin Matori, Khamirul |4 aut | |
700 | 1 | |a Ismail, Ismayadi |4 aut | |
700 | 1 | |a Riati Ibrahim, Idza |4 aut | |
700 | 1 | |a Nazlan, Rodziah |4 aut | |
700 | 1 | |a Nabilah Shafiee, Farah |4 aut | |
700 | 1 | |a Shamsul Ezzad Shafie, Mohd |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of nanoparticle research |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1999 |g 24(2022), 12 vom: 21. Nov. |w (DE-627)320575667 |w (DE-600)2017013-0 |x 1572-896X |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2022 |g number:12 |g day:21 |g month:11 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11051-022-05625-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 24 |j 2022 |e 12 |b 21 |c 11 |
author_variant |
i f m if ifm m k a mk mka i i ii i i r ii iir r n rn s f n sf sfn e s m s esm esms |
---|---|
matchkey_str |
article:1572896X:2022----::aeilcaatrztoadrprisfutwlecronntbsrmnutilat |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s11051-022-05625-x doi (DE-627)SPR048690317 (SPR)s11051-022-05625-x-e DE-627 ger DE-627 rakwb eng Mohd Idris, Fadzidah verfasserin (orcid)0000-0001-6630-7281 aut Materials’ characterization and properties of multiwalled carbon nanotubes from industrial waste as electromagnetic wave absorber 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The development of high-frequency devices has attracted more research interest in electromagnetic wave–absorbing materials having lightweight, low filler content, thin thickness, minimum reflection loss and broad absorption bandwidth. Nevertheless, none of the materials uses steel waste (mill scale) as a potential low-cost catalyst to synthesize carbon nanotubes (CNT) as an electromagnetic (EM) wave absorber. Hence, multiwalled carbon nanotubes loaded in epoxy resin with an increasing polymer composite thickness of 1 mm, 2 mm, and 3 mm were introduced in this study. With varying milling times of mill scale (4 h, 20 h and 40 h) as catalyst, as-synthesized carbon nanotubes were produced using the chemical vapour deposition (CVD) method. Two main phases (carbon and iron carbide) were obtained from the synthesized carbon nanotubes. The samples’ morphology was mostly straight like, spiral, twisted carbon and spring pasta-like structures. The two-dimensional (2D) network structure of as-synthesized CNT loaded into epoxy resin, extends the transmission route of EM wave being absorbed. Moreover, the ratio of $ I_{D} $/$ I_{G} $ is consistent at around 1.0 attributed to defective structure or a lower graphitization degree. In addition, higher electrical resistivity in the sample indicates wider separation between CNTs allowing for better EM wave absorption. The as-synthesized carbon nanotubes that are utilized as filler with lightweight properties, improved the reflection loss approach to − 25 dB (10.5 GHz) for growth CNT catalyzed by mill scale milled for 20 h loaded into polymer matrix (GM20h/P) at thickness of 3 mm. As the thickness of the polymer composites increased from 1 to 3 mm, all composite samples reflected a loss peak closer to a lower frequency range. The results demonstrated that the EM wave absorption ability was improved to 99.9% by using nanometer size mill scale waste as a catalyst to grow carbon nanotubes and further used as an EM wave absorber. Mill scale (dpeaa)DE-He213 Nanometer (dpeaa)DE-He213 Filler (dpeaa)DE-He213 Carbon nanotubes (dpeaa)DE-He213 Absorbing materials (dpeaa)DE-He213 Nanostructured catalysts (dpeaa)DE-He213 Amin Matori, Khamirul aut Ismail, Ismayadi aut Riati Ibrahim, Idza aut Nazlan, Rodziah aut Nabilah Shafiee, Farah aut Shamsul Ezzad Shafie, Mohd aut Enthalten in Journal of nanoparticle research Dordrecht [u.a.] : Springer Science + Business Media B.V, 1999 24(2022), 12 vom: 21. Nov. (DE-627)320575667 (DE-600)2017013-0 1572-896X nnns volume:24 year:2022 number:12 day:21 month:11 https://dx.doi.org/10.1007/s11051-022-05625-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 24 2022 12 21 11 |
spelling |
10.1007/s11051-022-05625-x doi (DE-627)SPR048690317 (SPR)s11051-022-05625-x-e DE-627 ger DE-627 rakwb eng Mohd Idris, Fadzidah verfasserin (orcid)0000-0001-6630-7281 aut Materials’ characterization and properties of multiwalled carbon nanotubes from industrial waste as electromagnetic wave absorber 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The development of high-frequency devices has attracted more research interest in electromagnetic wave–absorbing materials having lightweight, low filler content, thin thickness, minimum reflection loss and broad absorption bandwidth. Nevertheless, none of the materials uses steel waste (mill scale) as a potential low-cost catalyst to synthesize carbon nanotubes (CNT) as an electromagnetic (EM) wave absorber. Hence, multiwalled carbon nanotubes loaded in epoxy resin with an increasing polymer composite thickness of 1 mm, 2 mm, and 3 mm were introduced in this study. With varying milling times of mill scale (4 h, 20 h and 40 h) as catalyst, as-synthesized carbon nanotubes were produced using the chemical vapour deposition (CVD) method. Two main phases (carbon and iron carbide) were obtained from the synthesized carbon nanotubes. The samples’ morphology was mostly straight like, spiral, twisted carbon and spring pasta-like structures. The two-dimensional (2D) network structure of as-synthesized CNT loaded into epoxy resin, extends the transmission route of EM wave being absorbed. Moreover, the ratio of $ I_{D} $/$ I_{G} $ is consistent at around 1.0 attributed to defective structure or a lower graphitization degree. In addition, higher electrical resistivity in the sample indicates wider separation between CNTs allowing for better EM wave absorption. The as-synthesized carbon nanotubes that are utilized as filler with lightweight properties, improved the reflection loss approach to − 25 dB (10.5 GHz) for growth CNT catalyzed by mill scale milled for 20 h loaded into polymer matrix (GM20h/P) at thickness of 3 mm. As the thickness of the polymer composites increased from 1 to 3 mm, all composite samples reflected a loss peak closer to a lower frequency range. The results demonstrated that the EM wave absorption ability was improved to 99.9% by using nanometer size mill scale waste as a catalyst to grow carbon nanotubes and further used as an EM wave absorber. Mill scale (dpeaa)DE-He213 Nanometer (dpeaa)DE-He213 Filler (dpeaa)DE-He213 Carbon nanotubes (dpeaa)DE-He213 Absorbing materials (dpeaa)DE-He213 Nanostructured catalysts (dpeaa)DE-He213 Amin Matori, Khamirul aut Ismail, Ismayadi aut Riati Ibrahim, Idza aut Nazlan, Rodziah aut Nabilah Shafiee, Farah aut Shamsul Ezzad Shafie, Mohd aut Enthalten in Journal of nanoparticle research Dordrecht [u.a.] : Springer Science + Business Media B.V, 1999 24(2022), 12 vom: 21. Nov. (DE-627)320575667 (DE-600)2017013-0 1572-896X nnns volume:24 year:2022 number:12 day:21 month:11 https://dx.doi.org/10.1007/s11051-022-05625-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 24 2022 12 21 11 |
allfields_unstemmed |
10.1007/s11051-022-05625-x doi (DE-627)SPR048690317 (SPR)s11051-022-05625-x-e DE-627 ger DE-627 rakwb eng Mohd Idris, Fadzidah verfasserin (orcid)0000-0001-6630-7281 aut Materials’ characterization and properties of multiwalled carbon nanotubes from industrial waste as electromagnetic wave absorber 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The development of high-frequency devices has attracted more research interest in electromagnetic wave–absorbing materials having lightweight, low filler content, thin thickness, minimum reflection loss and broad absorption bandwidth. Nevertheless, none of the materials uses steel waste (mill scale) as a potential low-cost catalyst to synthesize carbon nanotubes (CNT) as an electromagnetic (EM) wave absorber. Hence, multiwalled carbon nanotubes loaded in epoxy resin with an increasing polymer composite thickness of 1 mm, 2 mm, and 3 mm were introduced in this study. With varying milling times of mill scale (4 h, 20 h and 40 h) as catalyst, as-synthesized carbon nanotubes were produced using the chemical vapour deposition (CVD) method. Two main phases (carbon and iron carbide) were obtained from the synthesized carbon nanotubes. The samples’ morphology was mostly straight like, spiral, twisted carbon and spring pasta-like structures. The two-dimensional (2D) network structure of as-synthesized CNT loaded into epoxy resin, extends the transmission route of EM wave being absorbed. Moreover, the ratio of $ I_{D} $/$ I_{G} $ is consistent at around 1.0 attributed to defective structure or a lower graphitization degree. In addition, higher electrical resistivity in the sample indicates wider separation between CNTs allowing for better EM wave absorption. The as-synthesized carbon nanotubes that are utilized as filler with lightweight properties, improved the reflection loss approach to − 25 dB (10.5 GHz) for growth CNT catalyzed by mill scale milled for 20 h loaded into polymer matrix (GM20h/P) at thickness of 3 mm. As the thickness of the polymer composites increased from 1 to 3 mm, all composite samples reflected a loss peak closer to a lower frequency range. The results demonstrated that the EM wave absorption ability was improved to 99.9% by using nanometer size mill scale waste as a catalyst to grow carbon nanotubes and further used as an EM wave absorber. Mill scale (dpeaa)DE-He213 Nanometer (dpeaa)DE-He213 Filler (dpeaa)DE-He213 Carbon nanotubes (dpeaa)DE-He213 Absorbing materials (dpeaa)DE-He213 Nanostructured catalysts (dpeaa)DE-He213 Amin Matori, Khamirul aut Ismail, Ismayadi aut Riati Ibrahim, Idza aut Nazlan, Rodziah aut Nabilah Shafiee, Farah aut Shamsul Ezzad Shafie, Mohd aut Enthalten in Journal of nanoparticle research Dordrecht [u.a.] : Springer Science + Business Media B.V, 1999 24(2022), 12 vom: 21. Nov. (DE-627)320575667 (DE-600)2017013-0 1572-896X nnns volume:24 year:2022 number:12 day:21 month:11 https://dx.doi.org/10.1007/s11051-022-05625-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 24 2022 12 21 11 |
allfieldsGer |
10.1007/s11051-022-05625-x doi (DE-627)SPR048690317 (SPR)s11051-022-05625-x-e DE-627 ger DE-627 rakwb eng Mohd Idris, Fadzidah verfasserin (orcid)0000-0001-6630-7281 aut Materials’ characterization and properties of multiwalled carbon nanotubes from industrial waste as electromagnetic wave absorber 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The development of high-frequency devices has attracted more research interest in electromagnetic wave–absorbing materials having lightweight, low filler content, thin thickness, minimum reflection loss and broad absorption bandwidth. Nevertheless, none of the materials uses steel waste (mill scale) as a potential low-cost catalyst to synthesize carbon nanotubes (CNT) as an electromagnetic (EM) wave absorber. Hence, multiwalled carbon nanotubes loaded in epoxy resin with an increasing polymer composite thickness of 1 mm, 2 mm, and 3 mm were introduced in this study. With varying milling times of mill scale (4 h, 20 h and 40 h) as catalyst, as-synthesized carbon nanotubes were produced using the chemical vapour deposition (CVD) method. Two main phases (carbon and iron carbide) were obtained from the synthesized carbon nanotubes. The samples’ morphology was mostly straight like, spiral, twisted carbon and spring pasta-like structures. The two-dimensional (2D) network structure of as-synthesized CNT loaded into epoxy resin, extends the transmission route of EM wave being absorbed. Moreover, the ratio of $ I_{D} $/$ I_{G} $ is consistent at around 1.0 attributed to defective structure or a lower graphitization degree. In addition, higher electrical resistivity in the sample indicates wider separation between CNTs allowing for better EM wave absorption. The as-synthesized carbon nanotubes that are utilized as filler with lightweight properties, improved the reflection loss approach to − 25 dB (10.5 GHz) for growth CNT catalyzed by mill scale milled for 20 h loaded into polymer matrix (GM20h/P) at thickness of 3 mm. As the thickness of the polymer composites increased from 1 to 3 mm, all composite samples reflected a loss peak closer to a lower frequency range. The results demonstrated that the EM wave absorption ability was improved to 99.9% by using nanometer size mill scale waste as a catalyst to grow carbon nanotubes and further used as an EM wave absorber. Mill scale (dpeaa)DE-He213 Nanometer (dpeaa)DE-He213 Filler (dpeaa)DE-He213 Carbon nanotubes (dpeaa)DE-He213 Absorbing materials (dpeaa)DE-He213 Nanostructured catalysts (dpeaa)DE-He213 Amin Matori, Khamirul aut Ismail, Ismayadi aut Riati Ibrahim, Idza aut Nazlan, Rodziah aut Nabilah Shafiee, Farah aut Shamsul Ezzad Shafie, Mohd aut Enthalten in Journal of nanoparticle research Dordrecht [u.a.] : Springer Science + Business Media B.V, 1999 24(2022), 12 vom: 21. Nov. (DE-627)320575667 (DE-600)2017013-0 1572-896X nnns volume:24 year:2022 number:12 day:21 month:11 https://dx.doi.org/10.1007/s11051-022-05625-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 24 2022 12 21 11 |
allfieldsSound |
10.1007/s11051-022-05625-x doi (DE-627)SPR048690317 (SPR)s11051-022-05625-x-e DE-627 ger DE-627 rakwb eng Mohd Idris, Fadzidah verfasserin (orcid)0000-0001-6630-7281 aut Materials’ characterization and properties of multiwalled carbon nanotubes from industrial waste as electromagnetic wave absorber 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The development of high-frequency devices has attracted more research interest in electromagnetic wave–absorbing materials having lightweight, low filler content, thin thickness, minimum reflection loss and broad absorption bandwidth. Nevertheless, none of the materials uses steel waste (mill scale) as a potential low-cost catalyst to synthesize carbon nanotubes (CNT) as an electromagnetic (EM) wave absorber. Hence, multiwalled carbon nanotubes loaded in epoxy resin with an increasing polymer composite thickness of 1 mm, 2 mm, and 3 mm were introduced in this study. With varying milling times of mill scale (4 h, 20 h and 40 h) as catalyst, as-synthesized carbon nanotubes were produced using the chemical vapour deposition (CVD) method. Two main phases (carbon and iron carbide) were obtained from the synthesized carbon nanotubes. The samples’ morphology was mostly straight like, spiral, twisted carbon and spring pasta-like structures. The two-dimensional (2D) network structure of as-synthesized CNT loaded into epoxy resin, extends the transmission route of EM wave being absorbed. Moreover, the ratio of $ I_{D} $/$ I_{G} $ is consistent at around 1.0 attributed to defective structure or a lower graphitization degree. In addition, higher electrical resistivity in the sample indicates wider separation between CNTs allowing for better EM wave absorption. The as-synthesized carbon nanotubes that are utilized as filler with lightweight properties, improved the reflection loss approach to − 25 dB (10.5 GHz) for growth CNT catalyzed by mill scale milled for 20 h loaded into polymer matrix (GM20h/P) at thickness of 3 mm. As the thickness of the polymer composites increased from 1 to 3 mm, all composite samples reflected a loss peak closer to a lower frequency range. The results demonstrated that the EM wave absorption ability was improved to 99.9% by using nanometer size mill scale waste as a catalyst to grow carbon nanotubes and further used as an EM wave absorber. Mill scale (dpeaa)DE-He213 Nanometer (dpeaa)DE-He213 Filler (dpeaa)DE-He213 Carbon nanotubes (dpeaa)DE-He213 Absorbing materials (dpeaa)DE-He213 Nanostructured catalysts (dpeaa)DE-He213 Amin Matori, Khamirul aut Ismail, Ismayadi aut Riati Ibrahim, Idza aut Nazlan, Rodziah aut Nabilah Shafiee, Farah aut Shamsul Ezzad Shafie, Mohd aut Enthalten in Journal of nanoparticle research Dordrecht [u.a.] : Springer Science + Business Media B.V, 1999 24(2022), 12 vom: 21. Nov. (DE-627)320575667 (DE-600)2017013-0 1572-896X nnns volume:24 year:2022 number:12 day:21 month:11 https://dx.doi.org/10.1007/s11051-022-05625-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 24 2022 12 21 11 |
language |
English |
source |
Enthalten in Journal of nanoparticle research 24(2022), 12 vom: 21. Nov. volume:24 year:2022 number:12 day:21 month:11 |
sourceStr |
Enthalten in Journal of nanoparticle research 24(2022), 12 vom: 21. Nov. volume:24 year:2022 number:12 day:21 month:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Mill scale Nanometer Filler Carbon nanotubes Absorbing materials Nanostructured catalysts |
isfreeaccess_bool |
false |
container_title |
Journal of nanoparticle research |
authorswithroles_txt_mv |
Mohd Idris, Fadzidah @@aut@@ Amin Matori, Khamirul @@aut@@ Ismail, Ismayadi @@aut@@ Riati Ibrahim, Idza @@aut@@ Nazlan, Rodziah @@aut@@ Nabilah Shafiee, Farah @@aut@@ Shamsul Ezzad Shafie, Mohd @@aut@@ |
publishDateDaySort_date |
2022-11-21T00:00:00Z |
hierarchy_top_id |
320575667 |
id |
SPR048690317 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048690317</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509123353.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221123s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11051-022-05625-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048690317</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11051-022-05625-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mohd Idris, Fadzidah</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6630-7281</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Materials’ characterization and properties of multiwalled carbon nanotubes from industrial waste as electromagnetic wave absorber</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The development of high-frequency devices has attracted more research interest in electromagnetic wave–absorbing materials having lightweight, low filler content, thin thickness, minimum reflection loss and broad absorption bandwidth. Nevertheless, none of the materials uses steel waste (mill scale) as a potential low-cost catalyst to synthesize carbon nanotubes (CNT) as an electromagnetic (EM) wave absorber. Hence, multiwalled carbon nanotubes loaded in epoxy resin with an increasing polymer composite thickness of 1 mm, 2 mm, and 3 mm were introduced in this study. With varying milling times of mill scale (4 h, 20 h and 40 h) as catalyst, as-synthesized carbon nanotubes were produced using the chemical vapour deposition (CVD) method. Two main phases (carbon and iron carbide) were obtained from the synthesized carbon nanotubes. The samples’ morphology was mostly straight like, spiral, twisted carbon and spring pasta-like structures. The two-dimensional (2D) network structure of as-synthesized CNT loaded into epoxy resin, extends the transmission route of EM wave being absorbed. Moreover, the ratio of $ I_{D} $/$ I_{G} $ is consistent at around 1.0 attributed to defective structure or a lower graphitization degree. In addition, higher electrical resistivity in the sample indicates wider separation between CNTs allowing for better EM wave absorption. The as-synthesized carbon nanotubes that are utilized as filler with lightweight properties, improved the reflection loss approach to − 25 dB (10.5 GHz) for growth CNT catalyzed by mill scale milled for 20 h loaded into polymer matrix (GM20h/P) at thickness of 3 mm. As the thickness of the polymer composites increased from 1 to 3 mm, all composite samples reflected a loss peak closer to a lower frequency range. The results demonstrated that the EM wave absorption ability was improved to 99.9% by using nanometer size mill scale waste as a catalyst to grow carbon nanotubes and further used as an EM wave absorber.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mill scale</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanometer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Filler</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon nanotubes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Absorbing materials</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructured catalysts</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Amin Matori, Khamirul</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ismail, Ismayadi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Riati Ibrahim, Idza</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nazlan, Rodziah</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nabilah Shafiee, Farah</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shamsul Ezzad Shafie, Mohd</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of nanoparticle research</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1999</subfield><subfield code="g">24(2022), 12 vom: 21. Nov.</subfield><subfield code="w">(DE-627)320575667</subfield><subfield code="w">(DE-600)2017013-0</subfield><subfield code="x">1572-896X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:12</subfield><subfield code="g">day:21</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11051-022-05625-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2022</subfield><subfield code="e">12</subfield><subfield code="b">21</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
author |
Mohd Idris, Fadzidah |
spellingShingle |
Mohd Idris, Fadzidah misc Mill scale misc Nanometer misc Filler misc Carbon nanotubes misc Absorbing materials misc Nanostructured catalysts Materials’ characterization and properties of multiwalled carbon nanotubes from industrial waste as electromagnetic wave absorber |
authorStr |
Mohd Idris, Fadzidah |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320575667 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1572-896X |
topic_title |
Materials’ characterization and properties of multiwalled carbon nanotubes from industrial waste as electromagnetic wave absorber Mill scale (dpeaa)DE-He213 Nanometer (dpeaa)DE-He213 Filler (dpeaa)DE-He213 Carbon nanotubes (dpeaa)DE-He213 Absorbing materials (dpeaa)DE-He213 Nanostructured catalysts (dpeaa)DE-He213 |
topic |
misc Mill scale misc Nanometer misc Filler misc Carbon nanotubes misc Absorbing materials misc Nanostructured catalysts |
topic_unstemmed |
misc Mill scale misc Nanometer misc Filler misc Carbon nanotubes misc Absorbing materials misc Nanostructured catalysts |
topic_browse |
misc Mill scale misc Nanometer misc Filler misc Carbon nanotubes misc Absorbing materials misc Nanostructured catalysts |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of nanoparticle research |
hierarchy_parent_id |
320575667 |
hierarchy_top_title |
Journal of nanoparticle research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320575667 (DE-600)2017013-0 |
title |
Materials’ characterization and properties of multiwalled carbon nanotubes from industrial waste as electromagnetic wave absorber |
ctrlnum |
(DE-627)SPR048690317 (SPR)s11051-022-05625-x-e |
title_full |
Materials’ characterization and properties of multiwalled carbon nanotubes from industrial waste as electromagnetic wave absorber |
author_sort |
Mohd Idris, Fadzidah |
journal |
Journal of nanoparticle research |
journalStr |
Journal of nanoparticle research |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Mohd Idris, Fadzidah Amin Matori, Khamirul Ismail, Ismayadi Riati Ibrahim, Idza Nazlan, Rodziah Nabilah Shafiee, Farah Shamsul Ezzad Shafie, Mohd |
container_volume |
24 |
format_se |
Elektronische Aufsätze |
author-letter |
Mohd Idris, Fadzidah |
doi_str_mv |
10.1007/s11051-022-05625-x |
normlink |
(ORCID)0000-0001-6630-7281 |
normlink_prefix_str_mv |
(orcid)0000-0001-6630-7281 |
title_sort |
materials’ characterization and properties of multiwalled carbon nanotubes from industrial waste as electromagnetic wave absorber |
title_auth |
Materials’ characterization and properties of multiwalled carbon nanotubes from industrial waste as electromagnetic wave absorber |
abstract |
Abstract The development of high-frequency devices has attracted more research interest in electromagnetic wave–absorbing materials having lightweight, low filler content, thin thickness, minimum reflection loss and broad absorption bandwidth. Nevertheless, none of the materials uses steel waste (mill scale) as a potential low-cost catalyst to synthesize carbon nanotubes (CNT) as an electromagnetic (EM) wave absorber. Hence, multiwalled carbon nanotubes loaded in epoxy resin with an increasing polymer composite thickness of 1 mm, 2 mm, and 3 mm were introduced in this study. With varying milling times of mill scale (4 h, 20 h and 40 h) as catalyst, as-synthesized carbon nanotubes were produced using the chemical vapour deposition (CVD) method. Two main phases (carbon and iron carbide) were obtained from the synthesized carbon nanotubes. The samples’ morphology was mostly straight like, spiral, twisted carbon and spring pasta-like structures. The two-dimensional (2D) network structure of as-synthesized CNT loaded into epoxy resin, extends the transmission route of EM wave being absorbed. Moreover, the ratio of $ I_{D} $/$ I_{G} $ is consistent at around 1.0 attributed to defective structure or a lower graphitization degree. In addition, higher electrical resistivity in the sample indicates wider separation between CNTs allowing for better EM wave absorption. The as-synthesized carbon nanotubes that are utilized as filler with lightweight properties, improved the reflection loss approach to − 25 dB (10.5 GHz) for growth CNT catalyzed by mill scale milled for 20 h loaded into polymer matrix (GM20h/P) at thickness of 3 mm. As the thickness of the polymer composites increased from 1 to 3 mm, all composite samples reflected a loss peak closer to a lower frequency range. The results demonstrated that the EM wave absorption ability was improved to 99.9% by using nanometer size mill scale waste as a catalyst to grow carbon nanotubes and further used as an EM wave absorber. © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract The development of high-frequency devices has attracted more research interest in electromagnetic wave–absorbing materials having lightweight, low filler content, thin thickness, minimum reflection loss and broad absorption bandwidth. Nevertheless, none of the materials uses steel waste (mill scale) as a potential low-cost catalyst to synthesize carbon nanotubes (CNT) as an electromagnetic (EM) wave absorber. Hence, multiwalled carbon nanotubes loaded in epoxy resin with an increasing polymer composite thickness of 1 mm, 2 mm, and 3 mm were introduced in this study. With varying milling times of mill scale (4 h, 20 h and 40 h) as catalyst, as-synthesized carbon nanotubes were produced using the chemical vapour deposition (CVD) method. Two main phases (carbon and iron carbide) were obtained from the synthesized carbon nanotubes. The samples’ morphology was mostly straight like, spiral, twisted carbon and spring pasta-like structures. The two-dimensional (2D) network structure of as-synthesized CNT loaded into epoxy resin, extends the transmission route of EM wave being absorbed. Moreover, the ratio of $ I_{D} $/$ I_{G} $ is consistent at around 1.0 attributed to defective structure or a lower graphitization degree. In addition, higher electrical resistivity in the sample indicates wider separation between CNTs allowing for better EM wave absorption. The as-synthesized carbon nanotubes that are utilized as filler with lightweight properties, improved the reflection loss approach to − 25 dB (10.5 GHz) for growth CNT catalyzed by mill scale milled for 20 h loaded into polymer matrix (GM20h/P) at thickness of 3 mm. As the thickness of the polymer composites increased from 1 to 3 mm, all composite samples reflected a loss peak closer to a lower frequency range. The results demonstrated that the EM wave absorption ability was improved to 99.9% by using nanometer size mill scale waste as a catalyst to grow carbon nanotubes and further used as an EM wave absorber. © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract The development of high-frequency devices has attracted more research interest in electromagnetic wave–absorbing materials having lightweight, low filler content, thin thickness, minimum reflection loss and broad absorption bandwidth. Nevertheless, none of the materials uses steel waste (mill scale) as a potential low-cost catalyst to synthesize carbon nanotubes (CNT) as an electromagnetic (EM) wave absorber. Hence, multiwalled carbon nanotubes loaded in epoxy resin with an increasing polymer composite thickness of 1 mm, 2 mm, and 3 mm were introduced in this study. With varying milling times of mill scale (4 h, 20 h and 40 h) as catalyst, as-synthesized carbon nanotubes were produced using the chemical vapour deposition (CVD) method. Two main phases (carbon and iron carbide) were obtained from the synthesized carbon nanotubes. The samples’ morphology was mostly straight like, spiral, twisted carbon and spring pasta-like structures. The two-dimensional (2D) network structure of as-synthesized CNT loaded into epoxy resin, extends the transmission route of EM wave being absorbed. Moreover, the ratio of $ I_{D} $/$ I_{G} $ is consistent at around 1.0 attributed to defective structure or a lower graphitization degree. In addition, higher electrical resistivity in the sample indicates wider separation between CNTs allowing for better EM wave absorption. The as-synthesized carbon nanotubes that are utilized as filler with lightweight properties, improved the reflection loss approach to − 25 dB (10.5 GHz) for growth CNT catalyzed by mill scale milled for 20 h loaded into polymer matrix (GM20h/P) at thickness of 3 mm. As the thickness of the polymer composites increased from 1 to 3 mm, all composite samples reflected a loss peak closer to a lower frequency range. The results demonstrated that the EM wave absorption ability was improved to 99.9% by using nanometer size mill scale waste as a catalyst to grow carbon nanotubes and further used as an EM wave absorber. © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
12 |
title_short |
Materials’ characterization and properties of multiwalled carbon nanotubes from industrial waste as electromagnetic wave absorber |
url |
https://dx.doi.org/10.1007/s11051-022-05625-x |
remote_bool |
true |
author2 |
Amin Matori, Khamirul Ismail, Ismayadi Riati Ibrahim, Idza Nazlan, Rodziah Nabilah Shafiee, Farah Shamsul Ezzad Shafie, Mohd |
author2Str |
Amin Matori, Khamirul Ismail, Ismayadi Riati Ibrahim, Idza Nazlan, Rodziah Nabilah Shafiee, Farah Shamsul Ezzad Shafie, Mohd |
ppnlink |
320575667 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11051-022-05625-x |
up_date |
2024-07-03T20:50:58.447Z |
_version_ |
1803592514624552960 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048690317</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509123353.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221123s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11051-022-05625-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048690317</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11051-022-05625-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mohd Idris, Fadzidah</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6630-7281</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Materials’ characterization and properties of multiwalled carbon nanotubes from industrial waste as electromagnetic wave absorber</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The development of high-frequency devices has attracted more research interest in electromagnetic wave–absorbing materials having lightweight, low filler content, thin thickness, minimum reflection loss and broad absorption bandwidth. Nevertheless, none of the materials uses steel waste (mill scale) as a potential low-cost catalyst to synthesize carbon nanotubes (CNT) as an electromagnetic (EM) wave absorber. Hence, multiwalled carbon nanotubes loaded in epoxy resin with an increasing polymer composite thickness of 1 mm, 2 mm, and 3 mm were introduced in this study. With varying milling times of mill scale (4 h, 20 h and 40 h) as catalyst, as-synthesized carbon nanotubes were produced using the chemical vapour deposition (CVD) method. Two main phases (carbon and iron carbide) were obtained from the synthesized carbon nanotubes. The samples’ morphology was mostly straight like, spiral, twisted carbon and spring pasta-like structures. The two-dimensional (2D) network structure of as-synthesized CNT loaded into epoxy resin, extends the transmission route of EM wave being absorbed. Moreover, the ratio of $ I_{D} $/$ I_{G} $ is consistent at around 1.0 attributed to defective structure or a lower graphitization degree. In addition, higher electrical resistivity in the sample indicates wider separation between CNTs allowing for better EM wave absorption. The as-synthesized carbon nanotubes that are utilized as filler with lightweight properties, improved the reflection loss approach to − 25 dB (10.5 GHz) for growth CNT catalyzed by mill scale milled for 20 h loaded into polymer matrix (GM20h/P) at thickness of 3 mm. As the thickness of the polymer composites increased from 1 to 3 mm, all composite samples reflected a loss peak closer to a lower frequency range. The results demonstrated that the EM wave absorption ability was improved to 99.9% by using nanometer size mill scale waste as a catalyst to grow carbon nanotubes and further used as an EM wave absorber.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mill scale</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanometer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Filler</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon nanotubes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Absorbing materials</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructured catalysts</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Amin Matori, Khamirul</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ismail, Ismayadi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Riati Ibrahim, Idza</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nazlan, Rodziah</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nabilah Shafiee, Farah</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shamsul Ezzad Shafie, Mohd</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of nanoparticle research</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1999</subfield><subfield code="g">24(2022), 12 vom: 21. Nov.</subfield><subfield code="w">(DE-627)320575667</subfield><subfield code="w">(DE-600)2017013-0</subfield><subfield code="x">1572-896X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:12</subfield><subfield code="g">day:21</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11051-022-05625-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2022</subfield><subfield code="e">12</subfield><subfield code="b">21</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
score |
7.401636 |