Reducing Frequency Scatter in Large Arrays of Superconducting Resonators with Inductor Line Width Control
Abstract Superconducting resonators are now found in a broad range of applications that require high-fidelity measurement of low-energy signals. A common feature across almost all of these applications is the need for an increased number of resonators to further improve sensitivity, combined with th...
Ausführliche Beschreibung
Autor*in: |
Li, J. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of low temperature physics - Dordrecht : Springer Science + Business Media B.V., 1969, 209(2022), 5-6 vom: 09. Nov., Seite 1196-1203 |
---|---|
Übergeordnetes Werk: |
volume:209 ; year:2022 ; number:5-6 ; day:09 ; month:11 ; pages:1196-1203 |
Links: |
---|
DOI / URN: |
10.1007/s10909-022-02893-8 |
---|
Katalog-ID: |
SPR048771538 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR048771538 | ||
003 | DE-627 | ||
005 | 20230509121604.0 | ||
007 | cr uuu---uuuuu | ||
008 | 221201s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10909-022-02893-8 |2 doi | |
035 | |a (DE-627)SPR048771538 | ||
035 | |a (SPR)s10909-022-02893-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Li, J. |e verfasserin |0 (orcid)0000-0002-4480-4620 |4 aut | |
245 | 1 | 0 | |a Reducing Frequency Scatter in Large Arrays of Superconducting Resonators with Inductor Line Width Control |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022 | ||
520 | |a Abstract Superconducting resonators are now found in a broad range of applications that require high-fidelity measurement of low-energy signals. A common feature across almost all of these applications is the need for an increased number of resonators to further improve sensitivity, combined with the desire to limit cryogenic readout channels and complexity. One of the major limitations of current resonator arrays is the observed scatter in the resonator frequencies when compared to the initial design. Here we present recent progress toward identifying one of the dominant underlying causes of resonator scatter - inductor line width fluctuation. We designed and fabricated an array of lumped-element resonators in which the inductor line width changes from 1.8 %$\mu {\hbox {m}}%$ to %$2.2 \,\mu {\hbox {m}}%$ in steps of 0.1 %$\mu {\hbox {m}}%$. The inductor is defined using electron-beam lithography to probe and quantify the systematic variation of resonance frequencies. Paired with two different capacitor geometries the resonators showed a linear frequency spacing of %$\approx {20}\, \hbox {MHz}%$ and 30 MHz, respectively, or %${1.48}\, {\%}%$ and %${1.96}\,\%%$ in fractional frequency shift (%$\varDelta f/f_{o}%$). This linear relationship matches our theoretical prediction. Our result demonstrates significant improvement in resonator array frequency scatter is readily achievable if inductor line width variation is sufficiently controlled. | ||
650 | 4 | |a MKIDS |7 (dpeaa)DE-He213 | |
650 | 4 | |a Frequency scatter |7 (dpeaa)DE-He213 | |
650 | 4 | |a Lumped inductor line width variation |7 (dpeaa)DE-He213 | |
650 | 4 | |a e-beam lithography |7 (dpeaa)DE-He213 | |
700 | 1 | |a Barry, P. S. |4 aut | |
700 | 1 | |a Pan, Z. |4 aut | |
700 | 1 | |a Albert, C. |4 aut | |
700 | 1 | |a Cecil, T. |4 aut | |
700 | 1 | |a Chang, C. L. |4 aut | |
700 | 1 | |a Dibert, K. |4 aut | |
700 | 1 | |a Lisovenko, M. |4 aut | |
700 | 1 | |a Yefremenko, V. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of low temperature physics |d Dordrecht : Springer Science + Business Media B.V., 1969 |g 209(2022), 5-6 vom: 09. Nov., Seite 1196-1203 |w (DE-627)320575411 |w (DE-600)2016984-X |x 1573-7357 |7 nnns |
773 | 1 | 8 | |g volume:209 |g year:2022 |g number:5-6 |g day:09 |g month:11 |g pages:1196-1203 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10909-022-02893-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 209 |j 2022 |e 5-6 |b 09 |c 11 |h 1196-1203 |
author_variant |
j l jl p s b ps psb z p zp c a ca t c tc c l c cl clc k d kd m l ml v y vy |
---|---|
matchkey_str |
article:15737357:2022----::euigrqecsatrnagaryosprodcigeoaosih |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s10909-022-02893-8 doi (DE-627)SPR048771538 (SPR)s10909-022-02893-8-e DE-627 ger DE-627 rakwb eng Li, J. verfasserin (orcid)0000-0002-4480-4620 aut Reducing Frequency Scatter in Large Arrays of Superconducting Resonators with Inductor Line Width Control 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022 Abstract Superconducting resonators are now found in a broad range of applications that require high-fidelity measurement of low-energy signals. A common feature across almost all of these applications is the need for an increased number of resonators to further improve sensitivity, combined with the desire to limit cryogenic readout channels and complexity. One of the major limitations of current resonator arrays is the observed scatter in the resonator frequencies when compared to the initial design. Here we present recent progress toward identifying one of the dominant underlying causes of resonator scatter - inductor line width fluctuation. We designed and fabricated an array of lumped-element resonators in which the inductor line width changes from 1.8 %$\mu {\hbox {m}}%$ to %$2.2 \,\mu {\hbox {m}}%$ in steps of 0.1 %$\mu {\hbox {m}}%$. The inductor is defined using electron-beam lithography to probe and quantify the systematic variation of resonance frequencies. Paired with two different capacitor geometries the resonators showed a linear frequency spacing of %$\approx {20}\, \hbox {MHz}%$ and 30 MHz, respectively, or %${1.48}\, {\%}%$ and %${1.96}\,\%%$ in fractional frequency shift (%$\varDelta f/f_{o}%$). This linear relationship matches our theoretical prediction. Our result demonstrates significant improvement in resonator array frequency scatter is readily achievable if inductor line width variation is sufficiently controlled. MKIDS (dpeaa)DE-He213 Frequency scatter (dpeaa)DE-He213 Lumped inductor line width variation (dpeaa)DE-He213 e-beam lithography (dpeaa)DE-He213 Barry, P. S. aut Pan, Z. aut Albert, C. aut Cecil, T. aut Chang, C. L. aut Dibert, K. aut Lisovenko, M. aut Yefremenko, V. aut Enthalten in Journal of low temperature physics Dordrecht : Springer Science + Business Media B.V., 1969 209(2022), 5-6 vom: 09. Nov., Seite 1196-1203 (DE-627)320575411 (DE-600)2016984-X 1573-7357 nnns volume:209 year:2022 number:5-6 day:09 month:11 pages:1196-1203 https://dx.doi.org/10.1007/s10909-022-02893-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 209 2022 5-6 09 11 1196-1203 |
spelling |
10.1007/s10909-022-02893-8 doi (DE-627)SPR048771538 (SPR)s10909-022-02893-8-e DE-627 ger DE-627 rakwb eng Li, J. verfasserin (orcid)0000-0002-4480-4620 aut Reducing Frequency Scatter in Large Arrays of Superconducting Resonators with Inductor Line Width Control 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022 Abstract Superconducting resonators are now found in a broad range of applications that require high-fidelity measurement of low-energy signals. A common feature across almost all of these applications is the need for an increased number of resonators to further improve sensitivity, combined with the desire to limit cryogenic readout channels and complexity. One of the major limitations of current resonator arrays is the observed scatter in the resonator frequencies when compared to the initial design. Here we present recent progress toward identifying one of the dominant underlying causes of resonator scatter - inductor line width fluctuation. We designed and fabricated an array of lumped-element resonators in which the inductor line width changes from 1.8 %$\mu {\hbox {m}}%$ to %$2.2 \,\mu {\hbox {m}}%$ in steps of 0.1 %$\mu {\hbox {m}}%$. The inductor is defined using electron-beam lithography to probe and quantify the systematic variation of resonance frequencies. Paired with two different capacitor geometries the resonators showed a linear frequency spacing of %$\approx {20}\, \hbox {MHz}%$ and 30 MHz, respectively, or %${1.48}\, {\%}%$ and %${1.96}\,\%%$ in fractional frequency shift (%$\varDelta f/f_{o}%$). This linear relationship matches our theoretical prediction. Our result demonstrates significant improvement in resonator array frequency scatter is readily achievable if inductor line width variation is sufficiently controlled. MKIDS (dpeaa)DE-He213 Frequency scatter (dpeaa)DE-He213 Lumped inductor line width variation (dpeaa)DE-He213 e-beam lithography (dpeaa)DE-He213 Barry, P. S. aut Pan, Z. aut Albert, C. aut Cecil, T. aut Chang, C. L. aut Dibert, K. aut Lisovenko, M. aut Yefremenko, V. aut Enthalten in Journal of low temperature physics Dordrecht : Springer Science + Business Media B.V., 1969 209(2022), 5-6 vom: 09. Nov., Seite 1196-1203 (DE-627)320575411 (DE-600)2016984-X 1573-7357 nnns volume:209 year:2022 number:5-6 day:09 month:11 pages:1196-1203 https://dx.doi.org/10.1007/s10909-022-02893-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 209 2022 5-6 09 11 1196-1203 |
allfields_unstemmed |
10.1007/s10909-022-02893-8 doi (DE-627)SPR048771538 (SPR)s10909-022-02893-8-e DE-627 ger DE-627 rakwb eng Li, J. verfasserin (orcid)0000-0002-4480-4620 aut Reducing Frequency Scatter in Large Arrays of Superconducting Resonators with Inductor Line Width Control 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022 Abstract Superconducting resonators are now found in a broad range of applications that require high-fidelity measurement of low-energy signals. A common feature across almost all of these applications is the need for an increased number of resonators to further improve sensitivity, combined with the desire to limit cryogenic readout channels and complexity. One of the major limitations of current resonator arrays is the observed scatter in the resonator frequencies when compared to the initial design. Here we present recent progress toward identifying one of the dominant underlying causes of resonator scatter - inductor line width fluctuation. We designed and fabricated an array of lumped-element resonators in which the inductor line width changes from 1.8 %$\mu {\hbox {m}}%$ to %$2.2 \,\mu {\hbox {m}}%$ in steps of 0.1 %$\mu {\hbox {m}}%$. The inductor is defined using electron-beam lithography to probe and quantify the systematic variation of resonance frequencies. Paired with two different capacitor geometries the resonators showed a linear frequency spacing of %$\approx {20}\, \hbox {MHz}%$ and 30 MHz, respectively, or %${1.48}\, {\%}%$ and %${1.96}\,\%%$ in fractional frequency shift (%$\varDelta f/f_{o}%$). This linear relationship matches our theoretical prediction. Our result demonstrates significant improvement in resonator array frequency scatter is readily achievable if inductor line width variation is sufficiently controlled. MKIDS (dpeaa)DE-He213 Frequency scatter (dpeaa)DE-He213 Lumped inductor line width variation (dpeaa)DE-He213 e-beam lithography (dpeaa)DE-He213 Barry, P. S. aut Pan, Z. aut Albert, C. aut Cecil, T. aut Chang, C. L. aut Dibert, K. aut Lisovenko, M. aut Yefremenko, V. aut Enthalten in Journal of low temperature physics Dordrecht : Springer Science + Business Media B.V., 1969 209(2022), 5-6 vom: 09. Nov., Seite 1196-1203 (DE-627)320575411 (DE-600)2016984-X 1573-7357 nnns volume:209 year:2022 number:5-6 day:09 month:11 pages:1196-1203 https://dx.doi.org/10.1007/s10909-022-02893-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 209 2022 5-6 09 11 1196-1203 |
allfieldsGer |
10.1007/s10909-022-02893-8 doi (DE-627)SPR048771538 (SPR)s10909-022-02893-8-e DE-627 ger DE-627 rakwb eng Li, J. verfasserin (orcid)0000-0002-4480-4620 aut Reducing Frequency Scatter in Large Arrays of Superconducting Resonators with Inductor Line Width Control 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022 Abstract Superconducting resonators are now found in a broad range of applications that require high-fidelity measurement of low-energy signals. A common feature across almost all of these applications is the need for an increased number of resonators to further improve sensitivity, combined with the desire to limit cryogenic readout channels and complexity. One of the major limitations of current resonator arrays is the observed scatter in the resonator frequencies when compared to the initial design. Here we present recent progress toward identifying one of the dominant underlying causes of resonator scatter - inductor line width fluctuation. We designed and fabricated an array of lumped-element resonators in which the inductor line width changes from 1.8 %$\mu {\hbox {m}}%$ to %$2.2 \,\mu {\hbox {m}}%$ in steps of 0.1 %$\mu {\hbox {m}}%$. The inductor is defined using electron-beam lithography to probe and quantify the systematic variation of resonance frequencies. Paired with two different capacitor geometries the resonators showed a linear frequency spacing of %$\approx {20}\, \hbox {MHz}%$ and 30 MHz, respectively, or %${1.48}\, {\%}%$ and %${1.96}\,\%%$ in fractional frequency shift (%$\varDelta f/f_{o}%$). This linear relationship matches our theoretical prediction. Our result demonstrates significant improvement in resonator array frequency scatter is readily achievable if inductor line width variation is sufficiently controlled. MKIDS (dpeaa)DE-He213 Frequency scatter (dpeaa)DE-He213 Lumped inductor line width variation (dpeaa)DE-He213 e-beam lithography (dpeaa)DE-He213 Barry, P. S. aut Pan, Z. aut Albert, C. aut Cecil, T. aut Chang, C. L. aut Dibert, K. aut Lisovenko, M. aut Yefremenko, V. aut Enthalten in Journal of low temperature physics Dordrecht : Springer Science + Business Media B.V., 1969 209(2022), 5-6 vom: 09. Nov., Seite 1196-1203 (DE-627)320575411 (DE-600)2016984-X 1573-7357 nnns volume:209 year:2022 number:5-6 day:09 month:11 pages:1196-1203 https://dx.doi.org/10.1007/s10909-022-02893-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 209 2022 5-6 09 11 1196-1203 |
allfieldsSound |
10.1007/s10909-022-02893-8 doi (DE-627)SPR048771538 (SPR)s10909-022-02893-8-e DE-627 ger DE-627 rakwb eng Li, J. verfasserin (orcid)0000-0002-4480-4620 aut Reducing Frequency Scatter in Large Arrays of Superconducting Resonators with Inductor Line Width Control 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022 Abstract Superconducting resonators are now found in a broad range of applications that require high-fidelity measurement of low-energy signals. A common feature across almost all of these applications is the need for an increased number of resonators to further improve sensitivity, combined with the desire to limit cryogenic readout channels and complexity. One of the major limitations of current resonator arrays is the observed scatter in the resonator frequencies when compared to the initial design. Here we present recent progress toward identifying one of the dominant underlying causes of resonator scatter - inductor line width fluctuation. We designed and fabricated an array of lumped-element resonators in which the inductor line width changes from 1.8 %$\mu {\hbox {m}}%$ to %$2.2 \,\mu {\hbox {m}}%$ in steps of 0.1 %$\mu {\hbox {m}}%$. The inductor is defined using electron-beam lithography to probe and quantify the systematic variation of resonance frequencies. Paired with two different capacitor geometries the resonators showed a linear frequency spacing of %$\approx {20}\, \hbox {MHz}%$ and 30 MHz, respectively, or %${1.48}\, {\%}%$ and %${1.96}\,\%%$ in fractional frequency shift (%$\varDelta f/f_{o}%$). This linear relationship matches our theoretical prediction. Our result demonstrates significant improvement in resonator array frequency scatter is readily achievable if inductor line width variation is sufficiently controlled. MKIDS (dpeaa)DE-He213 Frequency scatter (dpeaa)DE-He213 Lumped inductor line width variation (dpeaa)DE-He213 e-beam lithography (dpeaa)DE-He213 Barry, P. S. aut Pan, Z. aut Albert, C. aut Cecil, T. aut Chang, C. L. aut Dibert, K. aut Lisovenko, M. aut Yefremenko, V. aut Enthalten in Journal of low temperature physics Dordrecht : Springer Science + Business Media B.V., 1969 209(2022), 5-6 vom: 09. Nov., Seite 1196-1203 (DE-627)320575411 (DE-600)2016984-X 1573-7357 nnns volume:209 year:2022 number:5-6 day:09 month:11 pages:1196-1203 https://dx.doi.org/10.1007/s10909-022-02893-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 209 2022 5-6 09 11 1196-1203 |
language |
English |
source |
Enthalten in Journal of low temperature physics 209(2022), 5-6 vom: 09. Nov., Seite 1196-1203 volume:209 year:2022 number:5-6 day:09 month:11 pages:1196-1203 |
sourceStr |
Enthalten in Journal of low temperature physics 209(2022), 5-6 vom: 09. Nov., Seite 1196-1203 volume:209 year:2022 number:5-6 day:09 month:11 pages:1196-1203 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
MKIDS Frequency scatter Lumped inductor line width variation e-beam lithography |
isfreeaccess_bool |
false |
container_title |
Journal of low temperature physics |
authorswithroles_txt_mv |
Li, J. @@aut@@ Barry, P. S. @@aut@@ Pan, Z. @@aut@@ Albert, C. @@aut@@ Cecil, T. @@aut@@ Chang, C. L. @@aut@@ Dibert, K. @@aut@@ Lisovenko, M. @@aut@@ Yefremenko, V. @@aut@@ |
publishDateDaySort_date |
2022-11-09T00:00:00Z |
hierarchy_top_id |
320575411 |
id |
SPR048771538 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048771538</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509121604.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221201s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10909-022-02893-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048771538</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10909-022-02893-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-4480-4620</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reducing Frequency Scatter in Large Arrays of Superconducting Resonators with Inductor Line Width Control</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Superconducting resonators are now found in a broad range of applications that require high-fidelity measurement of low-energy signals. A common feature across almost all of these applications is the need for an increased number of resonators to further improve sensitivity, combined with the desire to limit cryogenic readout channels and complexity. One of the major limitations of current resonator arrays is the observed scatter in the resonator frequencies when compared to the initial design. Here we present recent progress toward identifying one of the dominant underlying causes of resonator scatter - inductor line width fluctuation. We designed and fabricated an array of lumped-element resonators in which the inductor line width changes from 1.8 %$\mu {\hbox {m}}%$ to %$2.2 \,\mu {\hbox {m}}%$ in steps of 0.1 %$\mu {\hbox {m}}%$. The inductor is defined using electron-beam lithography to probe and quantify the systematic variation of resonance frequencies. Paired with two different capacitor geometries the resonators showed a linear frequency spacing of %$\approx {20}\, \hbox {MHz}%$ and 30 MHz, respectively, or %${1.48}\, {\%}%$ and %${1.96}\,\%%$ in fractional frequency shift (%$\varDelta f/f_{o}%$). This linear relationship matches our theoretical prediction. Our result demonstrates significant improvement in resonator array frequency scatter is readily achievable if inductor line width variation is sufficiently controlled.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MKIDS</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency scatter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lumped inductor line width variation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">e-beam lithography</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barry, P. S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pan, Z.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Albert, C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cecil, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chang, C. L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dibert, K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lisovenko, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yefremenko, V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of low temperature physics</subfield><subfield code="d">Dordrecht : Springer Science + Business Media B.V., 1969</subfield><subfield code="g">209(2022), 5-6 vom: 09. Nov., Seite 1196-1203</subfield><subfield code="w">(DE-627)320575411</subfield><subfield code="w">(DE-600)2016984-X</subfield><subfield code="x">1573-7357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:209</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:5-6</subfield><subfield code="g">day:09</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:1196-1203</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10909-022-02893-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">209</subfield><subfield code="j">2022</subfield><subfield code="e">5-6</subfield><subfield code="b">09</subfield><subfield code="c">11</subfield><subfield code="h">1196-1203</subfield></datafield></record></collection>
|
author |
Li, J. |
spellingShingle |
Li, J. misc MKIDS misc Frequency scatter misc Lumped inductor line width variation misc e-beam lithography Reducing Frequency Scatter in Large Arrays of Superconducting Resonators with Inductor Line Width Control |
authorStr |
Li, J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320575411 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-7357 |
topic_title |
Reducing Frequency Scatter in Large Arrays of Superconducting Resonators with Inductor Line Width Control MKIDS (dpeaa)DE-He213 Frequency scatter (dpeaa)DE-He213 Lumped inductor line width variation (dpeaa)DE-He213 e-beam lithography (dpeaa)DE-He213 |
topic |
misc MKIDS misc Frequency scatter misc Lumped inductor line width variation misc e-beam lithography |
topic_unstemmed |
misc MKIDS misc Frequency scatter misc Lumped inductor line width variation misc e-beam lithography |
topic_browse |
misc MKIDS misc Frequency scatter misc Lumped inductor line width variation misc e-beam lithography |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of low temperature physics |
hierarchy_parent_id |
320575411 |
hierarchy_top_title |
Journal of low temperature physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320575411 (DE-600)2016984-X |
title |
Reducing Frequency Scatter in Large Arrays of Superconducting Resonators with Inductor Line Width Control |
ctrlnum |
(DE-627)SPR048771538 (SPR)s10909-022-02893-8-e |
title_full |
Reducing Frequency Scatter in Large Arrays of Superconducting Resonators with Inductor Line Width Control |
author_sort |
Li, J. |
journal |
Journal of low temperature physics |
journalStr |
Journal of low temperature physics |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
1196 |
author_browse |
Li, J. Barry, P. S. Pan, Z. Albert, C. Cecil, T. Chang, C. L. Dibert, K. Lisovenko, M. Yefremenko, V. |
container_volume |
209 |
format_se |
Elektronische Aufsätze |
author-letter |
Li, J. |
doi_str_mv |
10.1007/s10909-022-02893-8 |
normlink |
(ORCID)0000-0002-4480-4620 |
normlink_prefix_str_mv |
(orcid)0000-0002-4480-4620 |
title_sort |
reducing frequency scatter in large arrays of superconducting resonators with inductor line width control |
title_auth |
Reducing Frequency Scatter in Large Arrays of Superconducting Resonators with Inductor Line Width Control |
abstract |
Abstract Superconducting resonators are now found in a broad range of applications that require high-fidelity measurement of low-energy signals. A common feature across almost all of these applications is the need for an increased number of resonators to further improve sensitivity, combined with the desire to limit cryogenic readout channels and complexity. One of the major limitations of current resonator arrays is the observed scatter in the resonator frequencies when compared to the initial design. Here we present recent progress toward identifying one of the dominant underlying causes of resonator scatter - inductor line width fluctuation. We designed and fabricated an array of lumped-element resonators in which the inductor line width changes from 1.8 %$\mu {\hbox {m}}%$ to %$2.2 \,\mu {\hbox {m}}%$ in steps of 0.1 %$\mu {\hbox {m}}%$. The inductor is defined using electron-beam lithography to probe and quantify the systematic variation of resonance frequencies. Paired with two different capacitor geometries the resonators showed a linear frequency spacing of %$\approx {20}\, \hbox {MHz}%$ and 30 MHz, respectively, or %${1.48}\, {\%}%$ and %${1.96}\,\%%$ in fractional frequency shift (%$\varDelta f/f_{o}%$). This linear relationship matches our theoretical prediction. Our result demonstrates significant improvement in resonator array frequency scatter is readily achievable if inductor line width variation is sufficiently controlled. © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022 |
abstractGer |
Abstract Superconducting resonators are now found in a broad range of applications that require high-fidelity measurement of low-energy signals. A common feature across almost all of these applications is the need for an increased number of resonators to further improve sensitivity, combined with the desire to limit cryogenic readout channels and complexity. One of the major limitations of current resonator arrays is the observed scatter in the resonator frequencies when compared to the initial design. Here we present recent progress toward identifying one of the dominant underlying causes of resonator scatter - inductor line width fluctuation. We designed and fabricated an array of lumped-element resonators in which the inductor line width changes from 1.8 %$\mu {\hbox {m}}%$ to %$2.2 \,\mu {\hbox {m}}%$ in steps of 0.1 %$\mu {\hbox {m}}%$. The inductor is defined using electron-beam lithography to probe and quantify the systematic variation of resonance frequencies. Paired with two different capacitor geometries the resonators showed a linear frequency spacing of %$\approx {20}\, \hbox {MHz}%$ and 30 MHz, respectively, or %${1.48}\, {\%}%$ and %${1.96}\,\%%$ in fractional frequency shift (%$\varDelta f/f_{o}%$). This linear relationship matches our theoretical prediction. Our result demonstrates significant improvement in resonator array frequency scatter is readily achievable if inductor line width variation is sufficiently controlled. © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022 |
abstract_unstemmed |
Abstract Superconducting resonators are now found in a broad range of applications that require high-fidelity measurement of low-energy signals. A common feature across almost all of these applications is the need for an increased number of resonators to further improve sensitivity, combined with the desire to limit cryogenic readout channels and complexity. One of the major limitations of current resonator arrays is the observed scatter in the resonator frequencies when compared to the initial design. Here we present recent progress toward identifying one of the dominant underlying causes of resonator scatter - inductor line width fluctuation. We designed and fabricated an array of lumped-element resonators in which the inductor line width changes from 1.8 %$\mu {\hbox {m}}%$ to %$2.2 \,\mu {\hbox {m}}%$ in steps of 0.1 %$\mu {\hbox {m}}%$. The inductor is defined using electron-beam lithography to probe and quantify the systematic variation of resonance frequencies. Paired with two different capacitor geometries the resonators showed a linear frequency spacing of %$\approx {20}\, \hbox {MHz}%$ and 30 MHz, respectively, or %${1.48}\, {\%}%$ and %${1.96}\,\%%$ in fractional frequency shift (%$\varDelta f/f_{o}%$). This linear relationship matches our theoretical prediction. Our result demonstrates significant improvement in resonator array frequency scatter is readily achievable if inductor line width variation is sufficiently controlled. © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
5-6 |
title_short |
Reducing Frequency Scatter in Large Arrays of Superconducting Resonators with Inductor Line Width Control |
url |
https://dx.doi.org/10.1007/s10909-022-02893-8 |
remote_bool |
true |
author2 |
Barry, P. S. Pan, Z. Albert, C. Cecil, T. Chang, C. L. Dibert, K. Lisovenko, M. Yefremenko, V. |
author2Str |
Barry, P. S. Pan, Z. Albert, C. Cecil, T. Chang, C. L. Dibert, K. Lisovenko, M. Yefremenko, V. |
ppnlink |
320575411 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10909-022-02893-8 |
up_date |
2024-07-03T21:22:32.957Z |
_version_ |
1803594501181145088 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048771538</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509121604.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221201s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10909-022-02893-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048771538</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10909-022-02893-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-4480-4620</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reducing Frequency Scatter in Large Arrays of Superconducting Resonators with Inductor Line Width Control</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Superconducting resonators are now found in a broad range of applications that require high-fidelity measurement of low-energy signals. A common feature across almost all of these applications is the need for an increased number of resonators to further improve sensitivity, combined with the desire to limit cryogenic readout channels and complexity. One of the major limitations of current resonator arrays is the observed scatter in the resonator frequencies when compared to the initial design. Here we present recent progress toward identifying one of the dominant underlying causes of resonator scatter - inductor line width fluctuation. We designed and fabricated an array of lumped-element resonators in which the inductor line width changes from 1.8 %$\mu {\hbox {m}}%$ to %$2.2 \,\mu {\hbox {m}}%$ in steps of 0.1 %$\mu {\hbox {m}}%$. The inductor is defined using electron-beam lithography to probe and quantify the systematic variation of resonance frequencies. Paired with two different capacitor geometries the resonators showed a linear frequency spacing of %$\approx {20}\, \hbox {MHz}%$ and 30 MHz, respectively, or %${1.48}\, {\%}%$ and %${1.96}\,\%%$ in fractional frequency shift (%$\varDelta f/f_{o}%$). This linear relationship matches our theoretical prediction. Our result demonstrates significant improvement in resonator array frequency scatter is readily achievable if inductor line width variation is sufficiently controlled.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MKIDS</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency scatter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lumped inductor line width variation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">e-beam lithography</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barry, P. S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pan, Z.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Albert, C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cecil, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chang, C. L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dibert, K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lisovenko, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yefremenko, V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of low temperature physics</subfield><subfield code="d">Dordrecht : Springer Science + Business Media B.V., 1969</subfield><subfield code="g">209(2022), 5-6 vom: 09. Nov., Seite 1196-1203</subfield><subfield code="w">(DE-627)320575411</subfield><subfield code="w">(DE-600)2016984-X</subfield><subfield code="x">1573-7357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:209</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:5-6</subfield><subfield code="g">day:09</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:1196-1203</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10909-022-02893-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">209</subfield><subfield code="j">2022</subfield><subfield code="e">5-6</subfield><subfield code="b">09</subfield><subfield code="c">11</subfield><subfield code="h">1196-1203</subfield></datafield></record></collection>
|
score |
7.3990602 |