Experimental and CFD analysis of dimple tube parabolic trough solar collector (PTSC) with $ TiO_{2} $ nanofluids
Abstract Recently, parabolic trough solar collector (PTSC) efficiency enhancement with nanoparticle concentrations has been identified as a potential research area. In this research, the performance of PTSC with dimple tube with $ TiO_{2} $/DI–$ H_{2} $O (De-Ionized Water) nanofluid has been analyse...
Ausführliche Beschreibung
Autor*in: |
Arun, M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of thermal analysis and calorimetry - Dordrecht [u.a.] : Springer Science + Business Media B.V., 1969, 147(2022), 24 vom: 08. Sept., Seite 14039-14056 |
---|---|
Übergeordnetes Werk: |
volume:147 ; year:2022 ; number:24 ; day:08 ; month:09 ; pages:14039-14056 |
Links: |
---|
DOI / URN: |
10.1007/s10973-022-11572-5 |
---|
Katalog-ID: |
SPR048830356 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR048830356 | ||
003 | DE-627 | ||
005 | 20230509122125.0 | ||
007 | cr uuu---uuuuu | ||
008 | 221208s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10973-022-11572-5 |2 doi | |
035 | |a (DE-627)SPR048830356 | ||
035 | |a (SPR)s10973-022-11572-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Arun, M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Experimental and CFD analysis of dimple tube parabolic trough solar collector (PTSC) with $ TiO_{2} $ nanofluids |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract Recently, parabolic trough solar collector (PTSC) efficiency enhancement with nanoparticle concentrations has been identified as a potential research area. In this research, the performance of PTSC with dimple tube with $ TiO_{2} $/DI–$ H_{2} $O (De-Ionized Water) nanofluid has been analysed using computational fluid dynamics (CFD). The size of the nanoparticle was in the range of 10–15 nm. Different volume concentrations of the nanoparticles in the range of 0.1–0.5%, in steps of 0.1%, were chosen to prepare the nanofluids to carry out the experiments. Experimental and CFD analysis is compared to $ TiO_{2} $ nanofluid with water (base fluid) at varying mass flow rates (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 kg $ min^{−1} $) in a turbulent flow system using Dimples tube. Furthermore, PTSC parametric values were determined from test results such as friction factor, uncertainty analysis, Reynolds number, solar collector efficiency, Nusselt Number, and Convective heat transfer coefficient. In comparison, the convective heat transfer coefficient of the $ TiO_{2} $ nanofluids with the base fluid is increased to 34.25% with the dimples tube. The highest performance increase in PTSC with a mass flow rate of 2.5 kg $ min^{−1} $ and 0.3% volume concentration gives overall optimized results in absolute energy absorption, gradient temperature, and efficiency of the solar water heater. The nanofluid’s output index is 2.42 with a 0.3% mass flow rate and a concentration of 1.5 kg $ min^{−1} $. The PTSC with $ TiO_{2} $ nanofluid has a maximum overall efficiency of 34.25%, which is 11% higher than the overall efficiency of the base fluid. At a mass flow rate of 3.0 kg $ min^{−1} $ and 0.5% volume concentration, the pressure drop was increased by about 5.68% compared to the mass flow rate of 2.5 kg $ min^{−1} $. | ||
650 | 4 | |a Collector efficiency |7 (dpeaa)DE-He213 | |
650 | 4 | |a Dimple tube |7 (dpeaa)DE-He213 | |
650 | 4 | |a Parabolic trough solar collector |7 (dpeaa)DE-He213 | |
650 | 4 | |a Plain tube |7 (dpeaa)DE-He213 | |
650 | 4 | |a TiO |7 (dpeaa)DE-He213 | |
650 | 4 | |a nanofluid |7 (dpeaa)DE-He213 | |
700 | 1 | |a Barik, Debabrata |4 aut | |
700 | 1 | |a Sridhar, K. P. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of thermal analysis and calorimetry |d Dordrecht [u.a.] : Springer Science + Business Media B.V., 1969 |g 147(2022), 24 vom: 08. Sept., Seite 14039-14056 |w (DE-627)315295422 |w (DE-600)2017304-0 |x 1572-8943 |7 nnns |
773 | 1 | 8 | |g volume:147 |g year:2022 |g number:24 |g day:08 |g month:09 |g pages:14039-14056 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10973-022-11572-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 147 |j 2022 |e 24 |b 08 |c 09 |h 14039-14056 |
author_variant |
m a ma d b db k p s kp kps |
---|---|
matchkey_str |
article:15728943:2022----::xeietlncdnlssfipeueaaoitogslrolco |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s10973-022-11572-5 doi (DE-627)SPR048830356 (SPR)s10973-022-11572-5-e DE-627 ger DE-627 rakwb eng Arun, M. verfasserin aut Experimental and CFD analysis of dimple tube parabolic trough solar collector (PTSC) with $ TiO_{2} $ nanofluids 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Recently, parabolic trough solar collector (PTSC) efficiency enhancement with nanoparticle concentrations has been identified as a potential research area. In this research, the performance of PTSC with dimple tube with $ TiO_{2} $/DI–$ H_{2} $O (De-Ionized Water) nanofluid has been analysed using computational fluid dynamics (CFD). The size of the nanoparticle was in the range of 10–15 nm. Different volume concentrations of the nanoparticles in the range of 0.1–0.5%, in steps of 0.1%, were chosen to prepare the nanofluids to carry out the experiments. Experimental and CFD analysis is compared to $ TiO_{2} $ nanofluid with water (base fluid) at varying mass flow rates (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 kg $ min^{−1} $) in a turbulent flow system using Dimples tube. Furthermore, PTSC parametric values were determined from test results such as friction factor, uncertainty analysis, Reynolds number, solar collector efficiency, Nusselt Number, and Convective heat transfer coefficient. In comparison, the convective heat transfer coefficient of the $ TiO_{2} $ nanofluids with the base fluid is increased to 34.25% with the dimples tube. The highest performance increase in PTSC with a mass flow rate of 2.5 kg $ min^{−1} $ and 0.3% volume concentration gives overall optimized results in absolute energy absorption, gradient temperature, and efficiency of the solar water heater. The nanofluid’s output index is 2.42 with a 0.3% mass flow rate and a concentration of 1.5 kg $ min^{−1} $. The PTSC with $ TiO_{2} $ nanofluid has a maximum overall efficiency of 34.25%, which is 11% higher than the overall efficiency of the base fluid. At a mass flow rate of 3.0 kg $ min^{−1} $ and 0.5% volume concentration, the pressure drop was increased by about 5.68% compared to the mass flow rate of 2.5 kg $ min^{−1} $. Collector efficiency (dpeaa)DE-He213 Dimple tube (dpeaa)DE-He213 Parabolic trough solar collector (dpeaa)DE-He213 Plain tube (dpeaa)DE-He213 TiO (dpeaa)DE-He213 nanofluid (dpeaa)DE-He213 Barik, Debabrata aut Sridhar, K. P. aut Enthalten in Journal of thermal analysis and calorimetry Dordrecht [u.a.] : Springer Science + Business Media B.V., 1969 147(2022), 24 vom: 08. Sept., Seite 14039-14056 (DE-627)315295422 (DE-600)2017304-0 1572-8943 nnns volume:147 year:2022 number:24 day:08 month:09 pages:14039-14056 https://dx.doi.org/10.1007/s10973-022-11572-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 147 2022 24 08 09 14039-14056 |
spelling |
10.1007/s10973-022-11572-5 doi (DE-627)SPR048830356 (SPR)s10973-022-11572-5-e DE-627 ger DE-627 rakwb eng Arun, M. verfasserin aut Experimental and CFD analysis of dimple tube parabolic trough solar collector (PTSC) with $ TiO_{2} $ nanofluids 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Recently, parabolic trough solar collector (PTSC) efficiency enhancement with nanoparticle concentrations has been identified as a potential research area. In this research, the performance of PTSC with dimple tube with $ TiO_{2} $/DI–$ H_{2} $O (De-Ionized Water) nanofluid has been analysed using computational fluid dynamics (CFD). The size of the nanoparticle was in the range of 10–15 nm. Different volume concentrations of the nanoparticles in the range of 0.1–0.5%, in steps of 0.1%, were chosen to prepare the nanofluids to carry out the experiments. Experimental and CFD analysis is compared to $ TiO_{2} $ nanofluid with water (base fluid) at varying mass flow rates (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 kg $ min^{−1} $) in a turbulent flow system using Dimples tube. Furthermore, PTSC parametric values were determined from test results such as friction factor, uncertainty analysis, Reynolds number, solar collector efficiency, Nusselt Number, and Convective heat transfer coefficient. In comparison, the convective heat transfer coefficient of the $ TiO_{2} $ nanofluids with the base fluid is increased to 34.25% with the dimples tube. The highest performance increase in PTSC with a mass flow rate of 2.5 kg $ min^{−1} $ and 0.3% volume concentration gives overall optimized results in absolute energy absorption, gradient temperature, and efficiency of the solar water heater. The nanofluid’s output index is 2.42 with a 0.3% mass flow rate and a concentration of 1.5 kg $ min^{−1} $. The PTSC with $ TiO_{2} $ nanofluid has a maximum overall efficiency of 34.25%, which is 11% higher than the overall efficiency of the base fluid. At a mass flow rate of 3.0 kg $ min^{−1} $ and 0.5% volume concentration, the pressure drop was increased by about 5.68% compared to the mass flow rate of 2.5 kg $ min^{−1} $. Collector efficiency (dpeaa)DE-He213 Dimple tube (dpeaa)DE-He213 Parabolic trough solar collector (dpeaa)DE-He213 Plain tube (dpeaa)DE-He213 TiO (dpeaa)DE-He213 nanofluid (dpeaa)DE-He213 Barik, Debabrata aut Sridhar, K. P. aut Enthalten in Journal of thermal analysis and calorimetry Dordrecht [u.a.] : Springer Science + Business Media B.V., 1969 147(2022), 24 vom: 08. Sept., Seite 14039-14056 (DE-627)315295422 (DE-600)2017304-0 1572-8943 nnns volume:147 year:2022 number:24 day:08 month:09 pages:14039-14056 https://dx.doi.org/10.1007/s10973-022-11572-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 147 2022 24 08 09 14039-14056 |
allfields_unstemmed |
10.1007/s10973-022-11572-5 doi (DE-627)SPR048830356 (SPR)s10973-022-11572-5-e DE-627 ger DE-627 rakwb eng Arun, M. verfasserin aut Experimental and CFD analysis of dimple tube parabolic trough solar collector (PTSC) with $ TiO_{2} $ nanofluids 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Recently, parabolic trough solar collector (PTSC) efficiency enhancement with nanoparticle concentrations has been identified as a potential research area. In this research, the performance of PTSC with dimple tube with $ TiO_{2} $/DI–$ H_{2} $O (De-Ionized Water) nanofluid has been analysed using computational fluid dynamics (CFD). The size of the nanoparticle was in the range of 10–15 nm. Different volume concentrations of the nanoparticles in the range of 0.1–0.5%, in steps of 0.1%, were chosen to prepare the nanofluids to carry out the experiments. Experimental and CFD analysis is compared to $ TiO_{2} $ nanofluid with water (base fluid) at varying mass flow rates (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 kg $ min^{−1} $) in a turbulent flow system using Dimples tube. Furthermore, PTSC parametric values were determined from test results such as friction factor, uncertainty analysis, Reynolds number, solar collector efficiency, Nusselt Number, and Convective heat transfer coefficient. In comparison, the convective heat transfer coefficient of the $ TiO_{2} $ nanofluids with the base fluid is increased to 34.25% with the dimples tube. The highest performance increase in PTSC with a mass flow rate of 2.5 kg $ min^{−1} $ and 0.3% volume concentration gives overall optimized results in absolute energy absorption, gradient temperature, and efficiency of the solar water heater. The nanofluid’s output index is 2.42 with a 0.3% mass flow rate and a concentration of 1.5 kg $ min^{−1} $. The PTSC with $ TiO_{2} $ nanofluid has a maximum overall efficiency of 34.25%, which is 11% higher than the overall efficiency of the base fluid. At a mass flow rate of 3.0 kg $ min^{−1} $ and 0.5% volume concentration, the pressure drop was increased by about 5.68% compared to the mass flow rate of 2.5 kg $ min^{−1} $. Collector efficiency (dpeaa)DE-He213 Dimple tube (dpeaa)DE-He213 Parabolic trough solar collector (dpeaa)DE-He213 Plain tube (dpeaa)DE-He213 TiO (dpeaa)DE-He213 nanofluid (dpeaa)DE-He213 Barik, Debabrata aut Sridhar, K. P. aut Enthalten in Journal of thermal analysis and calorimetry Dordrecht [u.a.] : Springer Science + Business Media B.V., 1969 147(2022), 24 vom: 08. Sept., Seite 14039-14056 (DE-627)315295422 (DE-600)2017304-0 1572-8943 nnns volume:147 year:2022 number:24 day:08 month:09 pages:14039-14056 https://dx.doi.org/10.1007/s10973-022-11572-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 147 2022 24 08 09 14039-14056 |
allfieldsGer |
10.1007/s10973-022-11572-5 doi (DE-627)SPR048830356 (SPR)s10973-022-11572-5-e DE-627 ger DE-627 rakwb eng Arun, M. verfasserin aut Experimental and CFD analysis of dimple tube parabolic trough solar collector (PTSC) with $ TiO_{2} $ nanofluids 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Recently, parabolic trough solar collector (PTSC) efficiency enhancement with nanoparticle concentrations has been identified as a potential research area. In this research, the performance of PTSC with dimple tube with $ TiO_{2} $/DI–$ H_{2} $O (De-Ionized Water) nanofluid has been analysed using computational fluid dynamics (CFD). The size of the nanoparticle was in the range of 10–15 nm. Different volume concentrations of the nanoparticles in the range of 0.1–0.5%, in steps of 0.1%, were chosen to prepare the nanofluids to carry out the experiments. Experimental and CFD analysis is compared to $ TiO_{2} $ nanofluid with water (base fluid) at varying mass flow rates (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 kg $ min^{−1} $) in a turbulent flow system using Dimples tube. Furthermore, PTSC parametric values were determined from test results such as friction factor, uncertainty analysis, Reynolds number, solar collector efficiency, Nusselt Number, and Convective heat transfer coefficient. In comparison, the convective heat transfer coefficient of the $ TiO_{2} $ nanofluids with the base fluid is increased to 34.25% with the dimples tube. The highest performance increase in PTSC with a mass flow rate of 2.5 kg $ min^{−1} $ and 0.3% volume concentration gives overall optimized results in absolute energy absorption, gradient temperature, and efficiency of the solar water heater. The nanofluid’s output index is 2.42 with a 0.3% mass flow rate and a concentration of 1.5 kg $ min^{−1} $. The PTSC with $ TiO_{2} $ nanofluid has a maximum overall efficiency of 34.25%, which is 11% higher than the overall efficiency of the base fluid. At a mass flow rate of 3.0 kg $ min^{−1} $ and 0.5% volume concentration, the pressure drop was increased by about 5.68% compared to the mass flow rate of 2.5 kg $ min^{−1} $. Collector efficiency (dpeaa)DE-He213 Dimple tube (dpeaa)DE-He213 Parabolic trough solar collector (dpeaa)DE-He213 Plain tube (dpeaa)DE-He213 TiO (dpeaa)DE-He213 nanofluid (dpeaa)DE-He213 Barik, Debabrata aut Sridhar, K. P. aut Enthalten in Journal of thermal analysis and calorimetry Dordrecht [u.a.] : Springer Science + Business Media B.V., 1969 147(2022), 24 vom: 08. Sept., Seite 14039-14056 (DE-627)315295422 (DE-600)2017304-0 1572-8943 nnns volume:147 year:2022 number:24 day:08 month:09 pages:14039-14056 https://dx.doi.org/10.1007/s10973-022-11572-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 147 2022 24 08 09 14039-14056 |
allfieldsSound |
10.1007/s10973-022-11572-5 doi (DE-627)SPR048830356 (SPR)s10973-022-11572-5-e DE-627 ger DE-627 rakwb eng Arun, M. verfasserin aut Experimental and CFD analysis of dimple tube parabolic trough solar collector (PTSC) with $ TiO_{2} $ nanofluids 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Recently, parabolic trough solar collector (PTSC) efficiency enhancement with nanoparticle concentrations has been identified as a potential research area. In this research, the performance of PTSC with dimple tube with $ TiO_{2} $/DI–$ H_{2} $O (De-Ionized Water) nanofluid has been analysed using computational fluid dynamics (CFD). The size of the nanoparticle was in the range of 10–15 nm. Different volume concentrations of the nanoparticles in the range of 0.1–0.5%, in steps of 0.1%, were chosen to prepare the nanofluids to carry out the experiments. Experimental and CFD analysis is compared to $ TiO_{2} $ nanofluid with water (base fluid) at varying mass flow rates (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 kg $ min^{−1} $) in a turbulent flow system using Dimples tube. Furthermore, PTSC parametric values were determined from test results such as friction factor, uncertainty analysis, Reynolds number, solar collector efficiency, Nusselt Number, and Convective heat transfer coefficient. In comparison, the convective heat transfer coefficient of the $ TiO_{2} $ nanofluids with the base fluid is increased to 34.25% with the dimples tube. The highest performance increase in PTSC with a mass flow rate of 2.5 kg $ min^{−1} $ and 0.3% volume concentration gives overall optimized results in absolute energy absorption, gradient temperature, and efficiency of the solar water heater. The nanofluid’s output index is 2.42 with a 0.3% mass flow rate and a concentration of 1.5 kg $ min^{−1} $. The PTSC with $ TiO_{2} $ nanofluid has a maximum overall efficiency of 34.25%, which is 11% higher than the overall efficiency of the base fluid. At a mass flow rate of 3.0 kg $ min^{−1} $ and 0.5% volume concentration, the pressure drop was increased by about 5.68% compared to the mass flow rate of 2.5 kg $ min^{−1} $. Collector efficiency (dpeaa)DE-He213 Dimple tube (dpeaa)DE-He213 Parabolic trough solar collector (dpeaa)DE-He213 Plain tube (dpeaa)DE-He213 TiO (dpeaa)DE-He213 nanofluid (dpeaa)DE-He213 Barik, Debabrata aut Sridhar, K. P. aut Enthalten in Journal of thermal analysis and calorimetry Dordrecht [u.a.] : Springer Science + Business Media B.V., 1969 147(2022), 24 vom: 08. Sept., Seite 14039-14056 (DE-627)315295422 (DE-600)2017304-0 1572-8943 nnns volume:147 year:2022 number:24 day:08 month:09 pages:14039-14056 https://dx.doi.org/10.1007/s10973-022-11572-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 147 2022 24 08 09 14039-14056 |
language |
English |
source |
Enthalten in Journal of thermal analysis and calorimetry 147(2022), 24 vom: 08. Sept., Seite 14039-14056 volume:147 year:2022 number:24 day:08 month:09 pages:14039-14056 |
sourceStr |
Enthalten in Journal of thermal analysis and calorimetry 147(2022), 24 vom: 08. Sept., Seite 14039-14056 volume:147 year:2022 number:24 day:08 month:09 pages:14039-14056 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Collector efficiency Dimple tube Parabolic trough solar collector Plain tube TiO nanofluid |
isfreeaccess_bool |
false |
container_title |
Journal of thermal analysis and calorimetry |
authorswithroles_txt_mv |
Arun, M. @@aut@@ Barik, Debabrata @@aut@@ Sridhar, K. P. @@aut@@ |
publishDateDaySort_date |
2022-09-08T00:00:00Z |
hierarchy_top_id |
315295422 |
id |
SPR048830356 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048830356</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509122125.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221208s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10973-022-11572-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048830356</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10973-022-11572-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Arun, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimental and CFD analysis of dimple tube parabolic trough solar collector (PTSC) with $ TiO_{2} $ nanofluids</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Recently, parabolic trough solar collector (PTSC) efficiency enhancement with nanoparticle concentrations has been identified as a potential research area. In this research, the performance of PTSC with dimple tube with $ TiO_{2} $/DI–$ H_{2} $O (De-Ionized Water) nanofluid has been analysed using computational fluid dynamics (CFD). The size of the nanoparticle was in the range of 10–15 nm. Different volume concentrations of the nanoparticles in the range of 0.1–0.5%, in steps of 0.1%, were chosen to prepare the nanofluids to carry out the experiments. Experimental and CFD analysis is compared to $ TiO_{2} $ nanofluid with water (base fluid) at varying mass flow rates (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 kg $ min^{−1} $) in a turbulent flow system using Dimples tube. Furthermore, PTSC parametric values were determined from test results such as friction factor, uncertainty analysis, Reynolds number, solar collector efficiency, Nusselt Number, and Convective heat transfer coefficient. In comparison, the convective heat transfer coefficient of the $ TiO_{2} $ nanofluids with the base fluid is increased to 34.25% with the dimples tube. The highest performance increase in PTSC with a mass flow rate of 2.5 kg $ min^{−1} $ and 0.3% volume concentration gives overall optimized results in absolute energy absorption, gradient temperature, and efficiency of the solar water heater. The nanofluid’s output index is 2.42 with a 0.3% mass flow rate and a concentration of 1.5 kg $ min^{−1} $. The PTSC with $ TiO_{2} $ nanofluid has a maximum overall efficiency of 34.25%, which is 11% higher than the overall efficiency of the base fluid. At a mass flow rate of 3.0 kg $ min^{−1} $ and 0.5% volume concentration, the pressure drop was increased by about 5.68% compared to the mass flow rate of 2.5 kg $ min^{−1} $.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Collector efficiency</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dimple tube</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parabolic trough solar collector</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plain tube</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TiO</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanofluid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barik, Debabrata</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sridhar, K. P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of thermal analysis and calorimetry</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V., 1969</subfield><subfield code="g">147(2022), 24 vom: 08. Sept., Seite 14039-14056</subfield><subfield code="w">(DE-627)315295422</subfield><subfield code="w">(DE-600)2017304-0</subfield><subfield code="x">1572-8943</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:147</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:24</subfield><subfield code="g">day:08</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:14039-14056</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10973-022-11572-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">147</subfield><subfield code="j">2022</subfield><subfield code="e">24</subfield><subfield code="b">08</subfield><subfield code="c">09</subfield><subfield code="h">14039-14056</subfield></datafield></record></collection>
|
author |
Arun, M. |
spellingShingle |
Arun, M. misc Collector efficiency misc Dimple tube misc Parabolic trough solar collector misc Plain tube misc TiO misc nanofluid Experimental and CFD analysis of dimple tube parabolic trough solar collector (PTSC) with $ TiO_{2} $ nanofluids |
authorStr |
Arun, M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)315295422 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1572-8943 |
topic_title |
Experimental and CFD analysis of dimple tube parabolic trough solar collector (PTSC) with $ TiO_{2} $ nanofluids Collector efficiency (dpeaa)DE-He213 Dimple tube (dpeaa)DE-He213 Parabolic trough solar collector (dpeaa)DE-He213 Plain tube (dpeaa)DE-He213 TiO (dpeaa)DE-He213 nanofluid (dpeaa)DE-He213 |
topic |
misc Collector efficiency misc Dimple tube misc Parabolic trough solar collector misc Plain tube misc TiO misc nanofluid |
topic_unstemmed |
misc Collector efficiency misc Dimple tube misc Parabolic trough solar collector misc Plain tube misc TiO misc nanofluid |
topic_browse |
misc Collector efficiency misc Dimple tube misc Parabolic trough solar collector misc Plain tube misc TiO misc nanofluid |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of thermal analysis and calorimetry |
hierarchy_parent_id |
315295422 |
hierarchy_top_title |
Journal of thermal analysis and calorimetry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)315295422 (DE-600)2017304-0 |
title |
Experimental and CFD analysis of dimple tube parabolic trough solar collector (PTSC) with $ TiO_{2} $ nanofluids |
ctrlnum |
(DE-627)SPR048830356 (SPR)s10973-022-11572-5-e |
title_full |
Experimental and CFD analysis of dimple tube parabolic trough solar collector (PTSC) with $ TiO_{2} $ nanofluids |
author_sort |
Arun, M. |
journal |
Journal of thermal analysis and calorimetry |
journalStr |
Journal of thermal analysis and calorimetry |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
14039 |
author_browse |
Arun, M. Barik, Debabrata Sridhar, K. P. |
container_volume |
147 |
format_se |
Elektronische Aufsätze |
author-letter |
Arun, M. |
doi_str_mv |
10.1007/s10973-022-11572-5 |
title_sort |
experimental and cfd analysis of dimple tube parabolic trough solar collector (ptsc) with $ tio_{2} $ nanofluids |
title_auth |
Experimental and CFD analysis of dimple tube parabolic trough solar collector (PTSC) with $ TiO_{2} $ nanofluids |
abstract |
Abstract Recently, parabolic trough solar collector (PTSC) efficiency enhancement with nanoparticle concentrations has been identified as a potential research area. In this research, the performance of PTSC with dimple tube with $ TiO_{2} $/DI–$ H_{2} $O (De-Ionized Water) nanofluid has been analysed using computational fluid dynamics (CFD). The size of the nanoparticle was in the range of 10–15 nm. Different volume concentrations of the nanoparticles in the range of 0.1–0.5%, in steps of 0.1%, were chosen to prepare the nanofluids to carry out the experiments. Experimental and CFD analysis is compared to $ TiO_{2} $ nanofluid with water (base fluid) at varying mass flow rates (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 kg $ min^{−1} $) in a turbulent flow system using Dimples tube. Furthermore, PTSC parametric values were determined from test results such as friction factor, uncertainty analysis, Reynolds number, solar collector efficiency, Nusselt Number, and Convective heat transfer coefficient. In comparison, the convective heat transfer coefficient of the $ TiO_{2} $ nanofluids with the base fluid is increased to 34.25% with the dimples tube. The highest performance increase in PTSC with a mass flow rate of 2.5 kg $ min^{−1} $ and 0.3% volume concentration gives overall optimized results in absolute energy absorption, gradient temperature, and efficiency of the solar water heater. The nanofluid’s output index is 2.42 with a 0.3% mass flow rate and a concentration of 1.5 kg $ min^{−1} $. The PTSC with $ TiO_{2} $ nanofluid has a maximum overall efficiency of 34.25%, which is 11% higher than the overall efficiency of the base fluid. At a mass flow rate of 3.0 kg $ min^{−1} $ and 0.5% volume concentration, the pressure drop was increased by about 5.68% compared to the mass flow rate of 2.5 kg $ min^{−1} $. © Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract Recently, parabolic trough solar collector (PTSC) efficiency enhancement with nanoparticle concentrations has been identified as a potential research area. In this research, the performance of PTSC with dimple tube with $ TiO_{2} $/DI–$ H_{2} $O (De-Ionized Water) nanofluid has been analysed using computational fluid dynamics (CFD). The size of the nanoparticle was in the range of 10–15 nm. Different volume concentrations of the nanoparticles in the range of 0.1–0.5%, in steps of 0.1%, were chosen to prepare the nanofluids to carry out the experiments. Experimental and CFD analysis is compared to $ TiO_{2} $ nanofluid with water (base fluid) at varying mass flow rates (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 kg $ min^{−1} $) in a turbulent flow system using Dimples tube. Furthermore, PTSC parametric values were determined from test results such as friction factor, uncertainty analysis, Reynolds number, solar collector efficiency, Nusselt Number, and Convective heat transfer coefficient. In comparison, the convective heat transfer coefficient of the $ TiO_{2} $ nanofluids with the base fluid is increased to 34.25% with the dimples tube. The highest performance increase in PTSC with a mass flow rate of 2.5 kg $ min^{−1} $ and 0.3% volume concentration gives overall optimized results in absolute energy absorption, gradient temperature, and efficiency of the solar water heater. The nanofluid’s output index is 2.42 with a 0.3% mass flow rate and a concentration of 1.5 kg $ min^{−1} $. The PTSC with $ TiO_{2} $ nanofluid has a maximum overall efficiency of 34.25%, which is 11% higher than the overall efficiency of the base fluid. At a mass flow rate of 3.0 kg $ min^{−1} $ and 0.5% volume concentration, the pressure drop was increased by about 5.68% compared to the mass flow rate of 2.5 kg $ min^{−1} $. © Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract Recently, parabolic trough solar collector (PTSC) efficiency enhancement with nanoparticle concentrations has been identified as a potential research area. In this research, the performance of PTSC with dimple tube with $ TiO_{2} $/DI–$ H_{2} $O (De-Ionized Water) nanofluid has been analysed using computational fluid dynamics (CFD). The size of the nanoparticle was in the range of 10–15 nm. Different volume concentrations of the nanoparticles in the range of 0.1–0.5%, in steps of 0.1%, were chosen to prepare the nanofluids to carry out the experiments. Experimental and CFD analysis is compared to $ TiO_{2} $ nanofluid with water (base fluid) at varying mass flow rates (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 kg $ min^{−1} $) in a turbulent flow system using Dimples tube. Furthermore, PTSC parametric values were determined from test results such as friction factor, uncertainty analysis, Reynolds number, solar collector efficiency, Nusselt Number, and Convective heat transfer coefficient. In comparison, the convective heat transfer coefficient of the $ TiO_{2} $ nanofluids with the base fluid is increased to 34.25% with the dimples tube. The highest performance increase in PTSC with a mass flow rate of 2.5 kg $ min^{−1} $ and 0.3% volume concentration gives overall optimized results in absolute energy absorption, gradient temperature, and efficiency of the solar water heater. The nanofluid’s output index is 2.42 with a 0.3% mass flow rate and a concentration of 1.5 kg $ min^{−1} $. The PTSC with $ TiO_{2} $ nanofluid has a maximum overall efficiency of 34.25%, which is 11% higher than the overall efficiency of the base fluid. At a mass flow rate of 3.0 kg $ min^{−1} $ and 0.5% volume concentration, the pressure drop was increased by about 5.68% compared to the mass flow rate of 2.5 kg $ min^{−1} $. © Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
24 |
title_short |
Experimental and CFD analysis of dimple tube parabolic trough solar collector (PTSC) with $ TiO_{2} $ nanofluids |
url |
https://dx.doi.org/10.1007/s10973-022-11572-5 |
remote_bool |
true |
author2 |
Barik, Debabrata Sridhar, K. P. |
author2Str |
Barik, Debabrata Sridhar, K. P. |
ppnlink |
315295422 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10973-022-11572-5 |
up_date |
2024-07-03T21:44:38.350Z |
_version_ |
1803595890928123904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048830356</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509122125.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221208s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10973-022-11572-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048830356</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10973-022-11572-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Arun, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimental and CFD analysis of dimple tube parabolic trough solar collector (PTSC) with $ TiO_{2} $ nanofluids</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Recently, parabolic trough solar collector (PTSC) efficiency enhancement with nanoparticle concentrations has been identified as a potential research area. In this research, the performance of PTSC with dimple tube with $ TiO_{2} $/DI–$ H_{2} $O (De-Ionized Water) nanofluid has been analysed using computational fluid dynamics (CFD). The size of the nanoparticle was in the range of 10–15 nm. Different volume concentrations of the nanoparticles in the range of 0.1–0.5%, in steps of 0.1%, were chosen to prepare the nanofluids to carry out the experiments. Experimental and CFD analysis is compared to $ TiO_{2} $ nanofluid with water (base fluid) at varying mass flow rates (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 kg $ min^{−1} $) in a turbulent flow system using Dimples tube. Furthermore, PTSC parametric values were determined from test results such as friction factor, uncertainty analysis, Reynolds number, solar collector efficiency, Nusselt Number, and Convective heat transfer coefficient. In comparison, the convective heat transfer coefficient of the $ TiO_{2} $ nanofluids with the base fluid is increased to 34.25% with the dimples tube. The highest performance increase in PTSC with a mass flow rate of 2.5 kg $ min^{−1} $ and 0.3% volume concentration gives overall optimized results in absolute energy absorption, gradient temperature, and efficiency of the solar water heater. The nanofluid’s output index is 2.42 with a 0.3% mass flow rate and a concentration of 1.5 kg $ min^{−1} $. The PTSC with $ TiO_{2} $ nanofluid has a maximum overall efficiency of 34.25%, which is 11% higher than the overall efficiency of the base fluid. At a mass flow rate of 3.0 kg $ min^{−1} $ and 0.5% volume concentration, the pressure drop was increased by about 5.68% compared to the mass flow rate of 2.5 kg $ min^{−1} $.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Collector efficiency</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dimple tube</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parabolic trough solar collector</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plain tube</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TiO</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanofluid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barik, Debabrata</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sridhar, K. P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of thermal analysis and calorimetry</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V., 1969</subfield><subfield code="g">147(2022), 24 vom: 08. Sept., Seite 14039-14056</subfield><subfield code="w">(DE-627)315295422</subfield><subfield code="w">(DE-600)2017304-0</subfield><subfield code="x">1572-8943</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:147</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:24</subfield><subfield code="g">day:08</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:14039-14056</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10973-022-11572-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">147</subfield><subfield code="j">2022</subfield><subfield code="e">24</subfield><subfield code="b">08</subfield><subfield code="c">09</subfield><subfield code="h">14039-14056</subfield></datafield></record></collection>
|
score |
7.4019556 |