Phantom and clinical evaluation of the effect of a new Bayesian penalized likelihood reconstruction algorithm (HYPER Iterative) on 68Ga-DOTA-NOC PET/CT image quality

Background Bayesian penalized likelihood (BPL) algorithm is an effective way to suppress noise in the process of positron emission tomography (PET) image reconstruction by incorporating a smooth penalty. The strength of the smooth penalty is controlled by the penalization factor. The aim was to inve...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Xu, Lei [verfasserIn]

Cui, Can

Li, Rushuai

Yang, Rui

Liu, Rencong

Meng, Qingle

Wang, Feng

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

PET

Ga-DOTA-NOC

Neuroendocrine neoplasm

Image reconstruction

Bayesian penalized likelihood

Penalization factor

Anmerkung:

© The Author(s) 2022

Übergeordnetes Werk:

Enthalten in: EJNMMI Research - Berlin : Springer, 2011, 12(2022), 1 vom: 12. Dez.

Übergeordnetes Werk:

volume:12 ; year:2022 ; number:1 ; day:12 ; month:12

Links:

Volltext

DOI / URN:

10.1186/s13550-022-00945-4

Katalog-ID:

SPR048859435

Nicht das Richtige dabei?

Schreiben Sie uns!