Dynamic edge computing empowered by reconfigurable intelligent surfaces
Abstract In this paper, we propose a novel algorithm for energy-efficient low-latency dynamic mobile edge computing (MEC), in the context of beyond 5G networks endowed with reconfigurable intelligent surfaces (RISs). We consider a scenario where new computing requests are continuously generated by a...
Ausführliche Beschreibung
Autor*in: |
Di Lorenzo, Paolo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
Reconfigurable intelligent surfaces |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: EURASIP journal on wireless communications and networking - Heidelberg : Springer, 2004, 2022(2022), 1 vom: 13. Dez. |
---|---|
Übergeordnetes Werk: |
volume:2022 ; year:2022 ; number:1 ; day:13 ; month:12 |
Links: |
---|
DOI / URN: |
10.1186/s13638-022-02203-6 |
---|
Katalog-ID: |
SPR048871613 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR048871613 | ||
003 | DE-627 | ||
005 | 20230509122603.0 | ||
007 | cr uuu---uuuuu | ||
008 | 221214s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13638-022-02203-6 |2 doi | |
035 | |a (DE-627)SPR048871613 | ||
035 | |a (SPR)s13638-022-02203-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Di Lorenzo, Paolo |e verfasserin |0 (orcid)0000-0002-4130-3177 |4 aut | |
245 | 1 | 0 | |a Dynamic edge computing empowered by reconfigurable intelligent surfaces |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Abstract In this paper, we propose a novel algorithm for energy-efficient low-latency dynamic mobile edge computing (MEC), in the context of beyond 5G networks endowed with reconfigurable intelligent surfaces (RISs). We consider a scenario where new computing requests are continuously generated by a set of devices and are handled through a dynamic queueing system. Building on stochastic optimization tools, we devise a dynamic learning algorithm that jointly optimizes the allocation of radio resources (i.e., power, transmission rates, sleep mode and duty cycle), computation resources (i.e., CPU cycles), and RIS reflectivity parameters (i.e., phase shifts), while guaranteeing a target performance in terms of average end-to-end delay. The proposed strategy enables dynamic control of the system, performing a low-complexity optimization on a per-slot basis while dealing with time-varying radio channels and task arrivals, whose statistics are unknown. The presence and optimization of RISs helps boosting the performance of dynamic MEC, thanks to the capability to shape and adapt the wireless propagation environment. Numerical results assess the performance in terms of service delay, learning, and adaptation capabilities of the proposed strategy for RIS-empowered MEC. | ||
650 | 4 | |a Mobile edge computing |7 (dpeaa)DE-He213 | |
650 | 4 | |a Reconfigurable intelligent surfaces |7 (dpeaa)DE-He213 | |
650 | 4 | |a Lyapunov stochastic optimization |7 (dpeaa)DE-He213 | |
650 | 4 | |a Dynamic resource allocation |7 (dpeaa)DE-He213 | |
700 | 1 | |a Merluzzi, Mattia |4 aut | |
700 | 1 | |a Calvanese Strinati, Emilio |4 aut | |
700 | 1 | |a Barbarossa, Sergio |4 aut | |
773 | 0 | 8 | |i Enthalten in |t EURASIP journal on wireless communications and networking |d Heidelberg : Springer, 2004 |g 2022(2022), 1 vom: 13. Dez. |w (DE-627)47265151X |w (DE-600)2168613-0 |x 1687-1499 |7 nnns |
773 | 1 | 8 | |g volume:2022 |g year:2022 |g number:1 |g day:13 |g month:12 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13638-022-02203-6 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 2022 |j 2022 |e 1 |b 13 |c 12 |
author_variant |
l p d lp lpd m m mm s e c se sec s b sb |
---|---|
matchkey_str |
article:16871499:2022----::yaiegcmuigmoeebrcniualit |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s13638-022-02203-6 doi (DE-627)SPR048871613 (SPR)s13638-022-02203-6-e DE-627 ger DE-627 rakwb eng Di Lorenzo, Paolo verfasserin (orcid)0000-0002-4130-3177 aut Dynamic edge computing empowered by reconfigurable intelligent surfaces 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract In this paper, we propose a novel algorithm for energy-efficient low-latency dynamic mobile edge computing (MEC), in the context of beyond 5G networks endowed with reconfigurable intelligent surfaces (RISs). We consider a scenario where new computing requests are continuously generated by a set of devices and are handled through a dynamic queueing system. Building on stochastic optimization tools, we devise a dynamic learning algorithm that jointly optimizes the allocation of radio resources (i.e., power, transmission rates, sleep mode and duty cycle), computation resources (i.e., CPU cycles), and RIS reflectivity parameters (i.e., phase shifts), while guaranteeing a target performance in terms of average end-to-end delay. The proposed strategy enables dynamic control of the system, performing a low-complexity optimization on a per-slot basis while dealing with time-varying radio channels and task arrivals, whose statistics are unknown. The presence and optimization of RISs helps boosting the performance of dynamic MEC, thanks to the capability to shape and adapt the wireless propagation environment. Numerical results assess the performance in terms of service delay, learning, and adaptation capabilities of the proposed strategy for RIS-empowered MEC. Mobile edge computing (dpeaa)DE-He213 Reconfigurable intelligent surfaces (dpeaa)DE-He213 Lyapunov stochastic optimization (dpeaa)DE-He213 Dynamic resource allocation (dpeaa)DE-He213 Merluzzi, Mattia aut Calvanese Strinati, Emilio aut Barbarossa, Sergio aut Enthalten in EURASIP journal on wireless communications and networking Heidelberg : Springer, 2004 2022(2022), 1 vom: 13. Dez. (DE-627)47265151X (DE-600)2168613-0 1687-1499 nnns volume:2022 year:2022 number:1 day:13 month:12 https://dx.doi.org/10.1186/s13638-022-02203-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 2022 1 13 12 |
spelling |
10.1186/s13638-022-02203-6 doi (DE-627)SPR048871613 (SPR)s13638-022-02203-6-e DE-627 ger DE-627 rakwb eng Di Lorenzo, Paolo verfasserin (orcid)0000-0002-4130-3177 aut Dynamic edge computing empowered by reconfigurable intelligent surfaces 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract In this paper, we propose a novel algorithm for energy-efficient low-latency dynamic mobile edge computing (MEC), in the context of beyond 5G networks endowed with reconfigurable intelligent surfaces (RISs). We consider a scenario where new computing requests are continuously generated by a set of devices and are handled through a dynamic queueing system. Building on stochastic optimization tools, we devise a dynamic learning algorithm that jointly optimizes the allocation of radio resources (i.e., power, transmission rates, sleep mode and duty cycle), computation resources (i.e., CPU cycles), and RIS reflectivity parameters (i.e., phase shifts), while guaranteeing a target performance in terms of average end-to-end delay. The proposed strategy enables dynamic control of the system, performing a low-complexity optimization on a per-slot basis while dealing with time-varying radio channels and task arrivals, whose statistics are unknown. The presence and optimization of RISs helps boosting the performance of dynamic MEC, thanks to the capability to shape and adapt the wireless propagation environment. Numerical results assess the performance in terms of service delay, learning, and adaptation capabilities of the proposed strategy for RIS-empowered MEC. Mobile edge computing (dpeaa)DE-He213 Reconfigurable intelligent surfaces (dpeaa)DE-He213 Lyapunov stochastic optimization (dpeaa)DE-He213 Dynamic resource allocation (dpeaa)DE-He213 Merluzzi, Mattia aut Calvanese Strinati, Emilio aut Barbarossa, Sergio aut Enthalten in EURASIP journal on wireless communications and networking Heidelberg : Springer, 2004 2022(2022), 1 vom: 13. Dez. (DE-627)47265151X (DE-600)2168613-0 1687-1499 nnns volume:2022 year:2022 number:1 day:13 month:12 https://dx.doi.org/10.1186/s13638-022-02203-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 2022 1 13 12 |
allfields_unstemmed |
10.1186/s13638-022-02203-6 doi (DE-627)SPR048871613 (SPR)s13638-022-02203-6-e DE-627 ger DE-627 rakwb eng Di Lorenzo, Paolo verfasserin (orcid)0000-0002-4130-3177 aut Dynamic edge computing empowered by reconfigurable intelligent surfaces 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract In this paper, we propose a novel algorithm for energy-efficient low-latency dynamic mobile edge computing (MEC), in the context of beyond 5G networks endowed with reconfigurable intelligent surfaces (RISs). We consider a scenario where new computing requests are continuously generated by a set of devices and are handled through a dynamic queueing system. Building on stochastic optimization tools, we devise a dynamic learning algorithm that jointly optimizes the allocation of radio resources (i.e., power, transmission rates, sleep mode and duty cycle), computation resources (i.e., CPU cycles), and RIS reflectivity parameters (i.e., phase shifts), while guaranteeing a target performance in terms of average end-to-end delay. The proposed strategy enables dynamic control of the system, performing a low-complexity optimization on a per-slot basis while dealing with time-varying radio channels and task arrivals, whose statistics are unknown. The presence and optimization of RISs helps boosting the performance of dynamic MEC, thanks to the capability to shape and adapt the wireless propagation environment. Numerical results assess the performance in terms of service delay, learning, and adaptation capabilities of the proposed strategy for RIS-empowered MEC. Mobile edge computing (dpeaa)DE-He213 Reconfigurable intelligent surfaces (dpeaa)DE-He213 Lyapunov stochastic optimization (dpeaa)DE-He213 Dynamic resource allocation (dpeaa)DE-He213 Merluzzi, Mattia aut Calvanese Strinati, Emilio aut Barbarossa, Sergio aut Enthalten in EURASIP journal on wireless communications and networking Heidelberg : Springer, 2004 2022(2022), 1 vom: 13. Dez. (DE-627)47265151X (DE-600)2168613-0 1687-1499 nnns volume:2022 year:2022 number:1 day:13 month:12 https://dx.doi.org/10.1186/s13638-022-02203-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 2022 1 13 12 |
allfieldsGer |
10.1186/s13638-022-02203-6 doi (DE-627)SPR048871613 (SPR)s13638-022-02203-6-e DE-627 ger DE-627 rakwb eng Di Lorenzo, Paolo verfasserin (orcid)0000-0002-4130-3177 aut Dynamic edge computing empowered by reconfigurable intelligent surfaces 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract In this paper, we propose a novel algorithm for energy-efficient low-latency dynamic mobile edge computing (MEC), in the context of beyond 5G networks endowed with reconfigurable intelligent surfaces (RISs). We consider a scenario where new computing requests are continuously generated by a set of devices and are handled through a dynamic queueing system. Building on stochastic optimization tools, we devise a dynamic learning algorithm that jointly optimizes the allocation of radio resources (i.e., power, transmission rates, sleep mode and duty cycle), computation resources (i.e., CPU cycles), and RIS reflectivity parameters (i.e., phase shifts), while guaranteeing a target performance in terms of average end-to-end delay. The proposed strategy enables dynamic control of the system, performing a low-complexity optimization on a per-slot basis while dealing with time-varying radio channels and task arrivals, whose statistics are unknown. The presence and optimization of RISs helps boosting the performance of dynamic MEC, thanks to the capability to shape and adapt the wireless propagation environment. Numerical results assess the performance in terms of service delay, learning, and adaptation capabilities of the proposed strategy for RIS-empowered MEC. Mobile edge computing (dpeaa)DE-He213 Reconfigurable intelligent surfaces (dpeaa)DE-He213 Lyapunov stochastic optimization (dpeaa)DE-He213 Dynamic resource allocation (dpeaa)DE-He213 Merluzzi, Mattia aut Calvanese Strinati, Emilio aut Barbarossa, Sergio aut Enthalten in EURASIP journal on wireless communications and networking Heidelberg : Springer, 2004 2022(2022), 1 vom: 13. Dez. (DE-627)47265151X (DE-600)2168613-0 1687-1499 nnns volume:2022 year:2022 number:1 day:13 month:12 https://dx.doi.org/10.1186/s13638-022-02203-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 2022 1 13 12 |
allfieldsSound |
10.1186/s13638-022-02203-6 doi (DE-627)SPR048871613 (SPR)s13638-022-02203-6-e DE-627 ger DE-627 rakwb eng Di Lorenzo, Paolo verfasserin (orcid)0000-0002-4130-3177 aut Dynamic edge computing empowered by reconfigurable intelligent surfaces 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract In this paper, we propose a novel algorithm for energy-efficient low-latency dynamic mobile edge computing (MEC), in the context of beyond 5G networks endowed with reconfigurable intelligent surfaces (RISs). We consider a scenario where new computing requests are continuously generated by a set of devices and are handled through a dynamic queueing system. Building on stochastic optimization tools, we devise a dynamic learning algorithm that jointly optimizes the allocation of radio resources (i.e., power, transmission rates, sleep mode and duty cycle), computation resources (i.e., CPU cycles), and RIS reflectivity parameters (i.e., phase shifts), while guaranteeing a target performance in terms of average end-to-end delay. The proposed strategy enables dynamic control of the system, performing a low-complexity optimization on a per-slot basis while dealing with time-varying radio channels and task arrivals, whose statistics are unknown. The presence and optimization of RISs helps boosting the performance of dynamic MEC, thanks to the capability to shape and adapt the wireless propagation environment. Numerical results assess the performance in terms of service delay, learning, and adaptation capabilities of the proposed strategy for RIS-empowered MEC. Mobile edge computing (dpeaa)DE-He213 Reconfigurable intelligent surfaces (dpeaa)DE-He213 Lyapunov stochastic optimization (dpeaa)DE-He213 Dynamic resource allocation (dpeaa)DE-He213 Merluzzi, Mattia aut Calvanese Strinati, Emilio aut Barbarossa, Sergio aut Enthalten in EURASIP journal on wireless communications and networking Heidelberg : Springer, 2004 2022(2022), 1 vom: 13. Dez. (DE-627)47265151X (DE-600)2168613-0 1687-1499 nnns volume:2022 year:2022 number:1 day:13 month:12 https://dx.doi.org/10.1186/s13638-022-02203-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 2022 1 13 12 |
language |
English |
source |
Enthalten in EURASIP journal on wireless communications and networking 2022(2022), 1 vom: 13. Dez. volume:2022 year:2022 number:1 day:13 month:12 |
sourceStr |
Enthalten in EURASIP journal on wireless communications and networking 2022(2022), 1 vom: 13. Dez. volume:2022 year:2022 number:1 day:13 month:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Mobile edge computing Reconfigurable intelligent surfaces Lyapunov stochastic optimization Dynamic resource allocation |
isfreeaccess_bool |
true |
container_title |
EURASIP journal on wireless communications and networking |
authorswithroles_txt_mv |
Di Lorenzo, Paolo @@aut@@ Merluzzi, Mattia @@aut@@ Calvanese Strinati, Emilio @@aut@@ Barbarossa, Sergio @@aut@@ |
publishDateDaySort_date |
2022-12-13T00:00:00Z |
hierarchy_top_id |
47265151X |
id |
SPR048871613 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048871613</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509122603.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221214s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13638-022-02203-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048871613</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13638-022-02203-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Di Lorenzo, Paolo</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-4130-3177</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic edge computing empowered by reconfigurable intelligent surfaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we propose a novel algorithm for energy-efficient low-latency dynamic mobile edge computing (MEC), in the context of beyond 5G networks endowed with reconfigurable intelligent surfaces (RISs). We consider a scenario where new computing requests are continuously generated by a set of devices and are handled through a dynamic queueing system. Building on stochastic optimization tools, we devise a dynamic learning algorithm that jointly optimizes the allocation of radio resources (i.e., power, transmission rates, sleep mode and duty cycle), computation resources (i.e., CPU cycles), and RIS reflectivity parameters (i.e., phase shifts), while guaranteeing a target performance in terms of average end-to-end delay. The proposed strategy enables dynamic control of the system, performing a low-complexity optimization on a per-slot basis while dealing with time-varying radio channels and task arrivals, whose statistics are unknown. The presence and optimization of RISs helps boosting the performance of dynamic MEC, thanks to the capability to shape and adapt the wireless propagation environment. Numerical results assess the performance in terms of service delay, learning, and adaptation capabilities of the proposed strategy for RIS-empowered MEC.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mobile edge computing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reconfigurable intelligent surfaces</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lyapunov stochastic optimization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic resource allocation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Merluzzi, Mattia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Calvanese Strinati, Emilio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barbarossa, Sergio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">EURASIP journal on wireless communications and networking</subfield><subfield code="d">Heidelberg : Springer, 2004</subfield><subfield code="g">2022(2022), 1 vom: 13. Dez.</subfield><subfield code="w">(DE-627)47265151X</subfield><subfield code="w">(DE-600)2168613-0</subfield><subfield code="x">1687-1499</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2022</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:13</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13638-022-02203-6</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2022</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">13</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
author |
Di Lorenzo, Paolo |
spellingShingle |
Di Lorenzo, Paolo misc Mobile edge computing misc Reconfigurable intelligent surfaces misc Lyapunov stochastic optimization misc Dynamic resource allocation Dynamic edge computing empowered by reconfigurable intelligent surfaces |
authorStr |
Di Lorenzo, Paolo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)47265151X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1687-1499 |
topic_title |
Dynamic edge computing empowered by reconfigurable intelligent surfaces Mobile edge computing (dpeaa)DE-He213 Reconfigurable intelligent surfaces (dpeaa)DE-He213 Lyapunov stochastic optimization (dpeaa)DE-He213 Dynamic resource allocation (dpeaa)DE-He213 |
topic |
misc Mobile edge computing misc Reconfigurable intelligent surfaces misc Lyapunov stochastic optimization misc Dynamic resource allocation |
topic_unstemmed |
misc Mobile edge computing misc Reconfigurable intelligent surfaces misc Lyapunov stochastic optimization misc Dynamic resource allocation |
topic_browse |
misc Mobile edge computing misc Reconfigurable intelligent surfaces misc Lyapunov stochastic optimization misc Dynamic resource allocation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
EURASIP journal on wireless communications and networking |
hierarchy_parent_id |
47265151X |
hierarchy_top_title |
EURASIP journal on wireless communications and networking |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)47265151X (DE-600)2168613-0 |
title |
Dynamic edge computing empowered by reconfigurable intelligent surfaces |
ctrlnum |
(DE-627)SPR048871613 (SPR)s13638-022-02203-6-e |
title_full |
Dynamic edge computing empowered by reconfigurable intelligent surfaces |
author_sort |
Di Lorenzo, Paolo |
journal |
EURASIP journal on wireless communications and networking |
journalStr |
EURASIP journal on wireless communications and networking |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Di Lorenzo, Paolo Merluzzi, Mattia Calvanese Strinati, Emilio Barbarossa, Sergio |
container_volume |
2022 |
format_se |
Elektronische Aufsätze |
author-letter |
Di Lorenzo, Paolo |
doi_str_mv |
10.1186/s13638-022-02203-6 |
normlink |
(ORCID)0000-0002-4130-3177 |
normlink_prefix_str_mv |
(orcid)0000-0002-4130-3177 |
title_sort |
dynamic edge computing empowered by reconfigurable intelligent surfaces |
title_auth |
Dynamic edge computing empowered by reconfigurable intelligent surfaces |
abstract |
Abstract In this paper, we propose a novel algorithm for energy-efficient low-latency dynamic mobile edge computing (MEC), in the context of beyond 5G networks endowed with reconfigurable intelligent surfaces (RISs). We consider a scenario where new computing requests are continuously generated by a set of devices and are handled through a dynamic queueing system. Building on stochastic optimization tools, we devise a dynamic learning algorithm that jointly optimizes the allocation of radio resources (i.e., power, transmission rates, sleep mode and duty cycle), computation resources (i.e., CPU cycles), and RIS reflectivity parameters (i.e., phase shifts), while guaranteeing a target performance in terms of average end-to-end delay. The proposed strategy enables dynamic control of the system, performing a low-complexity optimization on a per-slot basis while dealing with time-varying radio channels and task arrivals, whose statistics are unknown. The presence and optimization of RISs helps boosting the performance of dynamic MEC, thanks to the capability to shape and adapt the wireless propagation environment. Numerical results assess the performance in terms of service delay, learning, and adaptation capabilities of the proposed strategy for RIS-empowered MEC. © The Author(s) 2022 |
abstractGer |
Abstract In this paper, we propose a novel algorithm for energy-efficient low-latency dynamic mobile edge computing (MEC), in the context of beyond 5G networks endowed with reconfigurable intelligent surfaces (RISs). We consider a scenario where new computing requests are continuously generated by a set of devices and are handled through a dynamic queueing system. Building on stochastic optimization tools, we devise a dynamic learning algorithm that jointly optimizes the allocation of radio resources (i.e., power, transmission rates, sleep mode and duty cycle), computation resources (i.e., CPU cycles), and RIS reflectivity parameters (i.e., phase shifts), while guaranteeing a target performance in terms of average end-to-end delay. The proposed strategy enables dynamic control of the system, performing a low-complexity optimization on a per-slot basis while dealing with time-varying radio channels and task arrivals, whose statistics are unknown. The presence and optimization of RISs helps boosting the performance of dynamic MEC, thanks to the capability to shape and adapt the wireless propagation environment. Numerical results assess the performance in terms of service delay, learning, and adaptation capabilities of the proposed strategy for RIS-empowered MEC. © The Author(s) 2022 |
abstract_unstemmed |
Abstract In this paper, we propose a novel algorithm for energy-efficient low-latency dynamic mobile edge computing (MEC), in the context of beyond 5G networks endowed with reconfigurable intelligent surfaces (RISs). We consider a scenario where new computing requests are continuously generated by a set of devices and are handled through a dynamic queueing system. Building on stochastic optimization tools, we devise a dynamic learning algorithm that jointly optimizes the allocation of radio resources (i.e., power, transmission rates, sleep mode and duty cycle), computation resources (i.e., CPU cycles), and RIS reflectivity parameters (i.e., phase shifts), while guaranteeing a target performance in terms of average end-to-end delay. The proposed strategy enables dynamic control of the system, performing a low-complexity optimization on a per-slot basis while dealing with time-varying radio channels and task arrivals, whose statistics are unknown. The presence and optimization of RISs helps boosting the performance of dynamic MEC, thanks to the capability to shape and adapt the wireless propagation environment. Numerical results assess the performance in terms of service delay, learning, and adaptation capabilities of the proposed strategy for RIS-empowered MEC. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Dynamic edge computing empowered by reconfigurable intelligent surfaces |
url |
https://dx.doi.org/10.1186/s13638-022-02203-6 |
remote_bool |
true |
author2 |
Merluzzi, Mattia Calvanese Strinati, Emilio Barbarossa, Sergio |
author2Str |
Merluzzi, Mattia Calvanese Strinati, Emilio Barbarossa, Sergio |
ppnlink |
47265151X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13638-022-02203-6 |
up_date |
2024-07-03T21:59:32.953Z |
_version_ |
1803596828987359232 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048871613</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509122603.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221214s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13638-022-02203-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048871613</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13638-022-02203-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Di Lorenzo, Paolo</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-4130-3177</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic edge computing empowered by reconfigurable intelligent surfaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we propose a novel algorithm for energy-efficient low-latency dynamic mobile edge computing (MEC), in the context of beyond 5G networks endowed with reconfigurable intelligent surfaces (RISs). We consider a scenario where new computing requests are continuously generated by a set of devices and are handled through a dynamic queueing system. Building on stochastic optimization tools, we devise a dynamic learning algorithm that jointly optimizes the allocation of radio resources (i.e., power, transmission rates, sleep mode and duty cycle), computation resources (i.e., CPU cycles), and RIS reflectivity parameters (i.e., phase shifts), while guaranteeing a target performance in terms of average end-to-end delay. The proposed strategy enables dynamic control of the system, performing a low-complexity optimization on a per-slot basis while dealing with time-varying radio channels and task arrivals, whose statistics are unknown. The presence and optimization of RISs helps boosting the performance of dynamic MEC, thanks to the capability to shape and adapt the wireless propagation environment. Numerical results assess the performance in terms of service delay, learning, and adaptation capabilities of the proposed strategy for RIS-empowered MEC.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mobile edge computing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reconfigurable intelligent surfaces</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lyapunov stochastic optimization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic resource allocation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Merluzzi, Mattia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Calvanese Strinati, Emilio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barbarossa, Sergio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">EURASIP journal on wireless communications and networking</subfield><subfield code="d">Heidelberg : Springer, 2004</subfield><subfield code="g">2022(2022), 1 vom: 13. Dez.</subfield><subfield code="w">(DE-627)47265151X</subfield><subfield code="w">(DE-600)2168613-0</subfield><subfield code="x">1687-1499</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2022</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:13</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13638-022-02203-6</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2022</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">13</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
score |
7.4005623 |