Improving Hospital Outpatient Clinics Appointment Schedules by Prediction Models

Abstract Patient no-shows and suboptimal patient appointment length scheduling reduce clinical efficiency and impair the clinic’s quality of service. The main objective of this study is to improve appointment scheduling in hospital outpatient clinics. We developed generic supervised machine learning...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Babayoff, Orel [verfasserIn]

Shehory, Onn

Geller, Shamir

Shitrit-Niselbaum, Chen

Weiss-Meilik, Ahuva

Sprecher, Eli

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Length of appointment

No-show

Prediction model

Machine learning

Healthcare

Scheduling

Anmerkung:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Journal of medical systems - New York, NY : Plenum Press, 1977, 47(2022), 1 vom: 31. Dez.

Übergeordnetes Werk:

volume:47 ; year:2022 ; number:1 ; day:31 ; month:12

Links:

Volltext

DOI / URN:

10.1007/s10916-022-01902-3

Katalog-ID:

SPR048952761

Nicht das Richtige dabei?

Schreiben Sie uns!