Genomic prediction ability and genetic parameters for residual feed intake calculated using different approaches and their associations with growth, reproductive, and carcass traits in Nellore cattle
Abstract This study aimed to estimate prediction ability and genetic parameters for residual feed intake (RFI) calculated using a regression equation for each test (RFItest) and for the whole population (RFIpop) in Nellore beef cattle. It also aimed to evaluate the correlations between RFIpop and RF...
Ausführliche Beschreibung
Autor*in: |
Brunes, Ludmilla Costa [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Institute of Plant Genetics Polish Academy of Sciences 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of applied genetics - Dordrecht [u.a.] : Springer, 1996, 64(2022), 1 vom: 15. Nov., Seite 159-167 |
---|---|
Übergeordnetes Werk: |
volume:64 ; year:2022 ; number:1 ; day:15 ; month:11 ; pages:159-167 |
Links: |
---|
DOI / URN: |
10.1007/s13353-022-00734-8 |
---|
Katalog-ID: |
SPR049055836 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR049055836 | ||
003 | DE-627 | ||
005 | 20230510060542.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230113s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s13353-022-00734-8 |2 doi | |
035 | |a (DE-627)SPR049055836 | ||
035 | |a (SPR)s13353-022-00734-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Brunes, Ludmilla Costa |e verfasserin |0 (orcid)0000-0001-9012-520X |4 aut | |
245 | 1 | 0 | |a Genomic prediction ability and genetic parameters for residual feed intake calculated using different approaches and their associations with growth, reproductive, and carcass traits in Nellore cattle |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Institute of Plant Genetics Polish Academy of Sciences 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract This study aimed to estimate prediction ability and genetic parameters for residual feed intake (RFI) calculated using a regression equation for each test (RFItest) and for the whole population (RFIpop) in Nellore beef cattle. It also aimed to evaluate the correlations between RFIpop and RFItest with growth, reproductive, and carcass traits. Genotypic and phenotypic records from 8354 animals were used. An analysis of variance (ANOVA) was performed to verify the adequacy of the regression equations applied to estimate the RFItest and RFIpop. The (co)variance components were obtained using the single-step genomic best linear unbiased prediction under single and two-trait animal model analyses. The genetic and phenotypic correlations between RFItest and RFIpop with dry matter intake, frame, growth, reproduction, and carcass-related traits were evaluated. The prediction ability and bias were estimated to compare the RFItest and RFIpop genomic breeding values (GEBV). The RFIpop ANOVA showed a higher significance level (p < 0.0001) than did the RFItest for the fixed effects. The RFIpop displayed higher additive genetic variance estimated than the RFItest, although the RFIpop and RFItest displayed similar heritabilities. Overall, the RFItest showed higher residual correlations with growth, reproductive, and carcass traits, while the RFIpop displayed higher genetic correlations with such traits. The GEBV for the RFItest was slightly biased than GEBV RFIpop. The approach to calculate the RFI influenced the decomposition and estimation of variance components and genomic prediction for RFI. The application of RFIpop would be more appropriate for genetic evaluation purpose to adjust or correct for non-genetic effects and to decrease the prediction bias for RFI. | ||
650 | 4 | |a Accuracy |7 (dpeaa)DE-He213 | |
650 | 4 | |a Beef cattle |7 (dpeaa)DE-He213 | |
650 | 4 | |a Feed efficiency |7 (dpeaa)DE-He213 | |
650 | 4 | |a Genomic selection |7 (dpeaa)DE-He213 | |
650 | 4 | |a Residual feed intake equation |7 (dpeaa)DE-He213 | |
700 | 1 | |a de Faria, Carina Ubirajara |4 aut | |
700 | 1 | |a Magnabosco, Cláudio Ulhoa |0 (orcid)0000-0002-7274-0134 |4 aut | |
700 | 1 | |a Lobo, Raysildo Barbosa |4 aut | |
700 | 1 | |a Peripolli, Elisa |4 aut | |
700 | 1 | |a Aguilar, Ignacio |0 (orcid)0000-0002-1038-4752 |4 aut | |
700 | 1 | |a Baldi, Fernando |0 (orcid)0000-0003-4094-2011 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of applied genetics |d Dordrecht [u.a.] : Springer, 1996 |g 64(2022), 1 vom: 15. Nov., Seite 159-167 |w (DE-627)492274738 |w (DE-600)2194407-6 |x 2190-3883 |7 nnns |
773 | 1 | 8 | |g volume:64 |g year:2022 |g number:1 |g day:15 |g month:11 |g pages:159-167 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s13353-022-00734-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 64 |j 2022 |e 1 |b 15 |c 11 |h 159-167 |
author_variant |
l c b lc lcb f c u d fcu fcud c u m cu cum r b l rb rbl e p ep i a ia f b fb |
---|---|
matchkey_str |
article:21903883:2022----::eoipeitoaiiyngntcaaeesorsdafeitkcluaeuigifrnapoceadhiascainwtgot |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s13353-022-00734-8 doi (DE-627)SPR049055836 (SPR)s13353-022-00734-8-e DE-627 ger DE-627 rakwb eng Brunes, Ludmilla Costa verfasserin (orcid)0000-0001-9012-520X aut Genomic prediction ability and genetic parameters for residual feed intake calculated using different approaches and their associations with growth, reproductive, and carcass traits in Nellore cattle 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Institute of Plant Genetics Polish Academy of Sciences 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract This study aimed to estimate prediction ability and genetic parameters for residual feed intake (RFI) calculated using a regression equation for each test (RFItest) and for the whole population (RFIpop) in Nellore beef cattle. It also aimed to evaluate the correlations between RFIpop and RFItest with growth, reproductive, and carcass traits. Genotypic and phenotypic records from 8354 animals were used. An analysis of variance (ANOVA) was performed to verify the adequacy of the regression equations applied to estimate the RFItest and RFIpop. The (co)variance components were obtained using the single-step genomic best linear unbiased prediction under single and two-trait animal model analyses. The genetic and phenotypic correlations between RFItest and RFIpop with dry matter intake, frame, growth, reproduction, and carcass-related traits were evaluated. The prediction ability and bias were estimated to compare the RFItest and RFIpop genomic breeding values (GEBV). The RFIpop ANOVA showed a higher significance level (p < 0.0001) than did the RFItest for the fixed effects. The RFIpop displayed higher additive genetic variance estimated than the RFItest, although the RFIpop and RFItest displayed similar heritabilities. Overall, the RFItest showed higher residual correlations with growth, reproductive, and carcass traits, while the RFIpop displayed higher genetic correlations with such traits. The GEBV for the RFItest was slightly biased than GEBV RFIpop. The approach to calculate the RFI influenced the decomposition and estimation of variance components and genomic prediction for RFI. The application of RFIpop would be more appropriate for genetic evaluation purpose to adjust or correct for non-genetic effects and to decrease the prediction bias for RFI. Accuracy (dpeaa)DE-He213 Beef cattle (dpeaa)DE-He213 Feed efficiency (dpeaa)DE-He213 Genomic selection (dpeaa)DE-He213 Residual feed intake equation (dpeaa)DE-He213 de Faria, Carina Ubirajara aut Magnabosco, Cláudio Ulhoa (orcid)0000-0002-7274-0134 aut Lobo, Raysildo Barbosa aut Peripolli, Elisa aut Aguilar, Ignacio (orcid)0000-0002-1038-4752 aut Baldi, Fernando (orcid)0000-0003-4094-2011 aut Enthalten in Journal of applied genetics Dordrecht [u.a.] : Springer, 1996 64(2022), 1 vom: 15. Nov., Seite 159-167 (DE-627)492274738 (DE-600)2194407-6 2190-3883 nnns volume:64 year:2022 number:1 day:15 month:11 pages:159-167 https://dx.doi.org/10.1007/s13353-022-00734-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 64 2022 1 15 11 159-167 |
spelling |
10.1007/s13353-022-00734-8 doi (DE-627)SPR049055836 (SPR)s13353-022-00734-8-e DE-627 ger DE-627 rakwb eng Brunes, Ludmilla Costa verfasserin (orcid)0000-0001-9012-520X aut Genomic prediction ability and genetic parameters for residual feed intake calculated using different approaches and their associations with growth, reproductive, and carcass traits in Nellore cattle 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Institute of Plant Genetics Polish Academy of Sciences 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract This study aimed to estimate prediction ability and genetic parameters for residual feed intake (RFI) calculated using a regression equation for each test (RFItest) and for the whole population (RFIpop) in Nellore beef cattle. It also aimed to evaluate the correlations between RFIpop and RFItest with growth, reproductive, and carcass traits. Genotypic and phenotypic records from 8354 animals were used. An analysis of variance (ANOVA) was performed to verify the adequacy of the regression equations applied to estimate the RFItest and RFIpop. The (co)variance components were obtained using the single-step genomic best linear unbiased prediction under single and two-trait animal model analyses. The genetic and phenotypic correlations between RFItest and RFIpop with dry matter intake, frame, growth, reproduction, and carcass-related traits were evaluated. The prediction ability and bias were estimated to compare the RFItest and RFIpop genomic breeding values (GEBV). The RFIpop ANOVA showed a higher significance level (p < 0.0001) than did the RFItest for the fixed effects. The RFIpop displayed higher additive genetic variance estimated than the RFItest, although the RFIpop and RFItest displayed similar heritabilities. Overall, the RFItest showed higher residual correlations with growth, reproductive, and carcass traits, while the RFIpop displayed higher genetic correlations with such traits. The GEBV for the RFItest was slightly biased than GEBV RFIpop. The approach to calculate the RFI influenced the decomposition and estimation of variance components and genomic prediction for RFI. The application of RFIpop would be more appropriate for genetic evaluation purpose to adjust or correct for non-genetic effects and to decrease the prediction bias for RFI. Accuracy (dpeaa)DE-He213 Beef cattle (dpeaa)DE-He213 Feed efficiency (dpeaa)DE-He213 Genomic selection (dpeaa)DE-He213 Residual feed intake equation (dpeaa)DE-He213 de Faria, Carina Ubirajara aut Magnabosco, Cláudio Ulhoa (orcid)0000-0002-7274-0134 aut Lobo, Raysildo Barbosa aut Peripolli, Elisa aut Aguilar, Ignacio (orcid)0000-0002-1038-4752 aut Baldi, Fernando (orcid)0000-0003-4094-2011 aut Enthalten in Journal of applied genetics Dordrecht [u.a.] : Springer, 1996 64(2022), 1 vom: 15. Nov., Seite 159-167 (DE-627)492274738 (DE-600)2194407-6 2190-3883 nnns volume:64 year:2022 number:1 day:15 month:11 pages:159-167 https://dx.doi.org/10.1007/s13353-022-00734-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 64 2022 1 15 11 159-167 |
allfields_unstemmed |
10.1007/s13353-022-00734-8 doi (DE-627)SPR049055836 (SPR)s13353-022-00734-8-e DE-627 ger DE-627 rakwb eng Brunes, Ludmilla Costa verfasserin (orcid)0000-0001-9012-520X aut Genomic prediction ability and genetic parameters for residual feed intake calculated using different approaches and their associations with growth, reproductive, and carcass traits in Nellore cattle 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Institute of Plant Genetics Polish Academy of Sciences 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract This study aimed to estimate prediction ability and genetic parameters for residual feed intake (RFI) calculated using a regression equation for each test (RFItest) and for the whole population (RFIpop) in Nellore beef cattle. It also aimed to evaluate the correlations between RFIpop and RFItest with growth, reproductive, and carcass traits. Genotypic and phenotypic records from 8354 animals were used. An analysis of variance (ANOVA) was performed to verify the adequacy of the regression equations applied to estimate the RFItest and RFIpop. The (co)variance components were obtained using the single-step genomic best linear unbiased prediction under single and two-trait animal model analyses. The genetic and phenotypic correlations between RFItest and RFIpop with dry matter intake, frame, growth, reproduction, and carcass-related traits were evaluated. The prediction ability and bias were estimated to compare the RFItest and RFIpop genomic breeding values (GEBV). The RFIpop ANOVA showed a higher significance level (p < 0.0001) than did the RFItest for the fixed effects. The RFIpop displayed higher additive genetic variance estimated than the RFItest, although the RFIpop and RFItest displayed similar heritabilities. Overall, the RFItest showed higher residual correlations with growth, reproductive, and carcass traits, while the RFIpop displayed higher genetic correlations with such traits. The GEBV for the RFItest was slightly biased than GEBV RFIpop. The approach to calculate the RFI influenced the decomposition and estimation of variance components and genomic prediction for RFI. The application of RFIpop would be more appropriate for genetic evaluation purpose to adjust or correct for non-genetic effects and to decrease the prediction bias for RFI. Accuracy (dpeaa)DE-He213 Beef cattle (dpeaa)DE-He213 Feed efficiency (dpeaa)DE-He213 Genomic selection (dpeaa)DE-He213 Residual feed intake equation (dpeaa)DE-He213 de Faria, Carina Ubirajara aut Magnabosco, Cláudio Ulhoa (orcid)0000-0002-7274-0134 aut Lobo, Raysildo Barbosa aut Peripolli, Elisa aut Aguilar, Ignacio (orcid)0000-0002-1038-4752 aut Baldi, Fernando (orcid)0000-0003-4094-2011 aut Enthalten in Journal of applied genetics Dordrecht [u.a.] : Springer, 1996 64(2022), 1 vom: 15. Nov., Seite 159-167 (DE-627)492274738 (DE-600)2194407-6 2190-3883 nnns volume:64 year:2022 number:1 day:15 month:11 pages:159-167 https://dx.doi.org/10.1007/s13353-022-00734-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 64 2022 1 15 11 159-167 |
allfieldsGer |
10.1007/s13353-022-00734-8 doi (DE-627)SPR049055836 (SPR)s13353-022-00734-8-e DE-627 ger DE-627 rakwb eng Brunes, Ludmilla Costa verfasserin (orcid)0000-0001-9012-520X aut Genomic prediction ability and genetic parameters for residual feed intake calculated using different approaches and their associations with growth, reproductive, and carcass traits in Nellore cattle 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Institute of Plant Genetics Polish Academy of Sciences 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract This study aimed to estimate prediction ability and genetic parameters for residual feed intake (RFI) calculated using a regression equation for each test (RFItest) and for the whole population (RFIpop) in Nellore beef cattle. It also aimed to evaluate the correlations between RFIpop and RFItest with growth, reproductive, and carcass traits. Genotypic and phenotypic records from 8354 animals were used. An analysis of variance (ANOVA) was performed to verify the adequacy of the regression equations applied to estimate the RFItest and RFIpop. The (co)variance components were obtained using the single-step genomic best linear unbiased prediction under single and two-trait animal model analyses. The genetic and phenotypic correlations between RFItest and RFIpop with dry matter intake, frame, growth, reproduction, and carcass-related traits were evaluated. The prediction ability and bias were estimated to compare the RFItest and RFIpop genomic breeding values (GEBV). The RFIpop ANOVA showed a higher significance level (p < 0.0001) than did the RFItest for the fixed effects. The RFIpop displayed higher additive genetic variance estimated than the RFItest, although the RFIpop and RFItest displayed similar heritabilities. Overall, the RFItest showed higher residual correlations with growth, reproductive, and carcass traits, while the RFIpop displayed higher genetic correlations with such traits. The GEBV for the RFItest was slightly biased than GEBV RFIpop. The approach to calculate the RFI influenced the decomposition and estimation of variance components and genomic prediction for RFI. The application of RFIpop would be more appropriate for genetic evaluation purpose to adjust or correct for non-genetic effects and to decrease the prediction bias for RFI. Accuracy (dpeaa)DE-He213 Beef cattle (dpeaa)DE-He213 Feed efficiency (dpeaa)DE-He213 Genomic selection (dpeaa)DE-He213 Residual feed intake equation (dpeaa)DE-He213 de Faria, Carina Ubirajara aut Magnabosco, Cláudio Ulhoa (orcid)0000-0002-7274-0134 aut Lobo, Raysildo Barbosa aut Peripolli, Elisa aut Aguilar, Ignacio (orcid)0000-0002-1038-4752 aut Baldi, Fernando (orcid)0000-0003-4094-2011 aut Enthalten in Journal of applied genetics Dordrecht [u.a.] : Springer, 1996 64(2022), 1 vom: 15. Nov., Seite 159-167 (DE-627)492274738 (DE-600)2194407-6 2190-3883 nnns volume:64 year:2022 number:1 day:15 month:11 pages:159-167 https://dx.doi.org/10.1007/s13353-022-00734-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 64 2022 1 15 11 159-167 |
allfieldsSound |
10.1007/s13353-022-00734-8 doi (DE-627)SPR049055836 (SPR)s13353-022-00734-8-e DE-627 ger DE-627 rakwb eng Brunes, Ludmilla Costa verfasserin (orcid)0000-0001-9012-520X aut Genomic prediction ability and genetic parameters for residual feed intake calculated using different approaches and their associations with growth, reproductive, and carcass traits in Nellore cattle 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Institute of Plant Genetics Polish Academy of Sciences 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract This study aimed to estimate prediction ability and genetic parameters for residual feed intake (RFI) calculated using a regression equation for each test (RFItest) and for the whole population (RFIpop) in Nellore beef cattle. It also aimed to evaluate the correlations between RFIpop and RFItest with growth, reproductive, and carcass traits. Genotypic and phenotypic records from 8354 animals were used. An analysis of variance (ANOVA) was performed to verify the adequacy of the regression equations applied to estimate the RFItest and RFIpop. The (co)variance components were obtained using the single-step genomic best linear unbiased prediction under single and two-trait animal model analyses. The genetic and phenotypic correlations between RFItest and RFIpop with dry matter intake, frame, growth, reproduction, and carcass-related traits were evaluated. The prediction ability and bias were estimated to compare the RFItest and RFIpop genomic breeding values (GEBV). The RFIpop ANOVA showed a higher significance level (p < 0.0001) than did the RFItest for the fixed effects. The RFIpop displayed higher additive genetic variance estimated than the RFItest, although the RFIpop and RFItest displayed similar heritabilities. Overall, the RFItest showed higher residual correlations with growth, reproductive, and carcass traits, while the RFIpop displayed higher genetic correlations with such traits. The GEBV for the RFItest was slightly biased than GEBV RFIpop. The approach to calculate the RFI influenced the decomposition and estimation of variance components and genomic prediction for RFI. The application of RFIpop would be more appropriate for genetic evaluation purpose to adjust or correct for non-genetic effects and to decrease the prediction bias for RFI. Accuracy (dpeaa)DE-He213 Beef cattle (dpeaa)DE-He213 Feed efficiency (dpeaa)DE-He213 Genomic selection (dpeaa)DE-He213 Residual feed intake equation (dpeaa)DE-He213 de Faria, Carina Ubirajara aut Magnabosco, Cláudio Ulhoa (orcid)0000-0002-7274-0134 aut Lobo, Raysildo Barbosa aut Peripolli, Elisa aut Aguilar, Ignacio (orcid)0000-0002-1038-4752 aut Baldi, Fernando (orcid)0000-0003-4094-2011 aut Enthalten in Journal of applied genetics Dordrecht [u.a.] : Springer, 1996 64(2022), 1 vom: 15. Nov., Seite 159-167 (DE-627)492274738 (DE-600)2194407-6 2190-3883 nnns volume:64 year:2022 number:1 day:15 month:11 pages:159-167 https://dx.doi.org/10.1007/s13353-022-00734-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 64 2022 1 15 11 159-167 |
language |
English |
source |
Enthalten in Journal of applied genetics 64(2022), 1 vom: 15. Nov., Seite 159-167 volume:64 year:2022 number:1 day:15 month:11 pages:159-167 |
sourceStr |
Enthalten in Journal of applied genetics 64(2022), 1 vom: 15. Nov., Seite 159-167 volume:64 year:2022 number:1 day:15 month:11 pages:159-167 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Accuracy Beef cattle Feed efficiency Genomic selection Residual feed intake equation |
isfreeaccess_bool |
false |
container_title |
Journal of applied genetics |
authorswithroles_txt_mv |
Brunes, Ludmilla Costa @@aut@@ de Faria, Carina Ubirajara @@aut@@ Magnabosco, Cláudio Ulhoa @@aut@@ Lobo, Raysildo Barbosa @@aut@@ Peripolli, Elisa @@aut@@ Aguilar, Ignacio @@aut@@ Baldi, Fernando @@aut@@ |
publishDateDaySort_date |
2022-11-15T00:00:00Z |
hierarchy_top_id |
492274738 |
id |
SPR049055836 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR049055836</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510060542.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230113s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13353-022-00734-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049055836</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13353-022-00734-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brunes, Ludmilla Costa</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9012-520X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Genomic prediction ability and genetic parameters for residual feed intake calculated using different approaches and their associations with growth, reproductive, and carcass traits in Nellore cattle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Institute of Plant Genetics Polish Academy of Sciences 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This study aimed to estimate prediction ability and genetic parameters for residual feed intake (RFI) calculated using a regression equation for each test (RFItest) and for the whole population (RFIpop) in Nellore beef cattle. It also aimed to evaluate the correlations between RFIpop and RFItest with growth, reproductive, and carcass traits. Genotypic and phenotypic records from 8354 animals were used. An analysis of variance (ANOVA) was performed to verify the adequacy of the regression equations applied to estimate the RFItest and RFIpop. The (co)variance components were obtained using the single-step genomic best linear unbiased prediction under single and two-trait animal model analyses. The genetic and phenotypic correlations between RFItest and RFIpop with dry matter intake, frame, growth, reproduction, and carcass-related traits were evaluated. The prediction ability and bias were estimated to compare the RFItest and RFIpop genomic breeding values (GEBV). The RFIpop ANOVA showed a higher significance level (p < 0.0001) than did the RFItest for the fixed effects. The RFIpop displayed higher additive genetic variance estimated than the RFItest, although the RFIpop and RFItest displayed similar heritabilities. Overall, the RFItest showed higher residual correlations with growth, reproductive, and carcass traits, while the RFIpop displayed higher genetic correlations with such traits. The GEBV for the RFItest was slightly biased than GEBV RFIpop. The approach to calculate the RFI influenced the decomposition and estimation of variance components and genomic prediction for RFI. The application of RFIpop would be more appropriate for genetic evaluation purpose to adjust or correct for non-genetic effects and to decrease the prediction bias for RFI.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accuracy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Beef cattle</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feed efficiency</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genomic selection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Residual feed intake equation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Faria, Carina Ubirajara</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Magnabosco, Cláudio Ulhoa</subfield><subfield code="0">(orcid)0000-0002-7274-0134</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lobo, Raysildo Barbosa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peripolli, Elisa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aguilar, Ignacio</subfield><subfield code="0">(orcid)0000-0002-1038-4752</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baldi, Fernando</subfield><subfield code="0">(orcid)0000-0003-4094-2011</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of applied genetics</subfield><subfield code="d">Dordrecht ˜[u.a.]œ : Springer, 1996</subfield><subfield code="g">64(2022), 1 vom: 15. Nov., Seite 159-167</subfield><subfield code="w">(DE-627)492274738</subfield><subfield code="w">(DE-600)2194407-6</subfield><subfield code="x">2190-3883</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:15</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:159-167</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13353-022-00734-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">15</subfield><subfield code="c">11</subfield><subfield code="h">159-167</subfield></datafield></record></collection>
|
author |
Brunes, Ludmilla Costa |
spellingShingle |
Brunes, Ludmilla Costa misc Accuracy misc Beef cattle misc Feed efficiency misc Genomic selection misc Residual feed intake equation Genomic prediction ability and genetic parameters for residual feed intake calculated using different approaches and their associations with growth, reproductive, and carcass traits in Nellore cattle |
authorStr |
Brunes, Ludmilla Costa |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)492274738 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2190-3883 |
topic_title |
Genomic prediction ability and genetic parameters for residual feed intake calculated using different approaches and their associations with growth, reproductive, and carcass traits in Nellore cattle Accuracy (dpeaa)DE-He213 Beef cattle (dpeaa)DE-He213 Feed efficiency (dpeaa)DE-He213 Genomic selection (dpeaa)DE-He213 Residual feed intake equation (dpeaa)DE-He213 |
topic |
misc Accuracy misc Beef cattle misc Feed efficiency misc Genomic selection misc Residual feed intake equation |
topic_unstemmed |
misc Accuracy misc Beef cattle misc Feed efficiency misc Genomic selection misc Residual feed intake equation |
topic_browse |
misc Accuracy misc Beef cattle misc Feed efficiency misc Genomic selection misc Residual feed intake equation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of applied genetics |
hierarchy_parent_id |
492274738 |
hierarchy_top_title |
Journal of applied genetics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)492274738 (DE-600)2194407-6 |
title |
Genomic prediction ability and genetic parameters for residual feed intake calculated using different approaches and their associations with growth, reproductive, and carcass traits in Nellore cattle |
ctrlnum |
(DE-627)SPR049055836 (SPR)s13353-022-00734-8-e |
title_full |
Genomic prediction ability and genetic parameters for residual feed intake calculated using different approaches and their associations with growth, reproductive, and carcass traits in Nellore cattle |
author_sort |
Brunes, Ludmilla Costa |
journal |
Journal of applied genetics |
journalStr |
Journal of applied genetics |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
159 |
author_browse |
Brunes, Ludmilla Costa de Faria, Carina Ubirajara Magnabosco, Cláudio Ulhoa Lobo, Raysildo Barbosa Peripolli, Elisa Aguilar, Ignacio Baldi, Fernando |
container_volume |
64 |
format_se |
Elektronische Aufsätze |
author-letter |
Brunes, Ludmilla Costa |
doi_str_mv |
10.1007/s13353-022-00734-8 |
normlink |
(ORCID)0000-0001-9012-520X (ORCID)0000-0002-7274-0134 (ORCID)0000-0002-1038-4752 (ORCID)0000-0003-4094-2011 |
normlink_prefix_str_mv |
(orcid)0000-0001-9012-520X (orcid)0000-0002-7274-0134 (orcid)0000-0002-1038-4752 (orcid)0000-0003-4094-2011 |
title_sort |
genomic prediction ability and genetic parameters for residual feed intake calculated using different approaches and their associations with growth, reproductive, and carcass traits in nellore cattle |
title_auth |
Genomic prediction ability and genetic parameters for residual feed intake calculated using different approaches and their associations with growth, reproductive, and carcass traits in Nellore cattle |
abstract |
Abstract This study aimed to estimate prediction ability and genetic parameters for residual feed intake (RFI) calculated using a regression equation for each test (RFItest) and for the whole population (RFIpop) in Nellore beef cattle. It also aimed to evaluate the correlations between RFIpop and RFItest with growth, reproductive, and carcass traits. Genotypic and phenotypic records from 8354 animals were used. An analysis of variance (ANOVA) was performed to verify the adequacy of the regression equations applied to estimate the RFItest and RFIpop. The (co)variance components were obtained using the single-step genomic best linear unbiased prediction under single and two-trait animal model analyses. The genetic and phenotypic correlations between RFItest and RFIpop with dry matter intake, frame, growth, reproduction, and carcass-related traits were evaluated. The prediction ability and bias were estimated to compare the RFItest and RFIpop genomic breeding values (GEBV). The RFIpop ANOVA showed a higher significance level (p < 0.0001) than did the RFItest for the fixed effects. The RFIpop displayed higher additive genetic variance estimated than the RFItest, although the RFIpop and RFItest displayed similar heritabilities. Overall, the RFItest showed higher residual correlations with growth, reproductive, and carcass traits, while the RFIpop displayed higher genetic correlations with such traits. The GEBV for the RFItest was slightly biased than GEBV RFIpop. The approach to calculate the RFI influenced the decomposition and estimation of variance components and genomic prediction for RFI. The application of RFIpop would be more appropriate for genetic evaluation purpose to adjust or correct for non-genetic effects and to decrease the prediction bias for RFI. © The Author(s), under exclusive licence to Institute of Plant Genetics Polish Academy of Sciences 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract This study aimed to estimate prediction ability and genetic parameters for residual feed intake (RFI) calculated using a regression equation for each test (RFItest) and for the whole population (RFIpop) in Nellore beef cattle. It also aimed to evaluate the correlations between RFIpop and RFItest with growth, reproductive, and carcass traits. Genotypic and phenotypic records from 8354 animals were used. An analysis of variance (ANOVA) was performed to verify the adequacy of the regression equations applied to estimate the RFItest and RFIpop. The (co)variance components were obtained using the single-step genomic best linear unbiased prediction under single and two-trait animal model analyses. The genetic and phenotypic correlations between RFItest and RFIpop with dry matter intake, frame, growth, reproduction, and carcass-related traits were evaluated. The prediction ability and bias were estimated to compare the RFItest and RFIpop genomic breeding values (GEBV). The RFIpop ANOVA showed a higher significance level (p < 0.0001) than did the RFItest for the fixed effects. The RFIpop displayed higher additive genetic variance estimated than the RFItest, although the RFIpop and RFItest displayed similar heritabilities. Overall, the RFItest showed higher residual correlations with growth, reproductive, and carcass traits, while the RFIpop displayed higher genetic correlations with such traits. The GEBV for the RFItest was slightly biased than GEBV RFIpop. The approach to calculate the RFI influenced the decomposition and estimation of variance components and genomic prediction for RFI. The application of RFIpop would be more appropriate for genetic evaluation purpose to adjust or correct for non-genetic effects and to decrease the prediction bias for RFI. © The Author(s), under exclusive licence to Institute of Plant Genetics Polish Academy of Sciences 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract This study aimed to estimate prediction ability and genetic parameters for residual feed intake (RFI) calculated using a regression equation for each test (RFItest) and for the whole population (RFIpop) in Nellore beef cattle. It also aimed to evaluate the correlations between RFIpop and RFItest with growth, reproductive, and carcass traits. Genotypic and phenotypic records from 8354 animals were used. An analysis of variance (ANOVA) was performed to verify the adequacy of the regression equations applied to estimate the RFItest and RFIpop. The (co)variance components were obtained using the single-step genomic best linear unbiased prediction under single and two-trait animal model analyses. The genetic and phenotypic correlations between RFItest and RFIpop with dry matter intake, frame, growth, reproduction, and carcass-related traits were evaluated. The prediction ability and bias were estimated to compare the RFItest and RFIpop genomic breeding values (GEBV). The RFIpop ANOVA showed a higher significance level (p < 0.0001) than did the RFItest for the fixed effects. The RFIpop displayed higher additive genetic variance estimated than the RFItest, although the RFIpop and RFItest displayed similar heritabilities. Overall, the RFItest showed higher residual correlations with growth, reproductive, and carcass traits, while the RFIpop displayed higher genetic correlations with such traits. The GEBV for the RFItest was slightly biased than GEBV RFIpop. The approach to calculate the RFI influenced the decomposition and estimation of variance components and genomic prediction for RFI. The application of RFIpop would be more appropriate for genetic evaluation purpose to adjust or correct for non-genetic effects and to decrease the prediction bias for RFI. © The Author(s), under exclusive licence to Institute of Plant Genetics Polish Academy of Sciences 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Genomic prediction ability and genetic parameters for residual feed intake calculated using different approaches and their associations with growth, reproductive, and carcass traits in Nellore cattle |
url |
https://dx.doi.org/10.1007/s13353-022-00734-8 |
remote_bool |
true |
author2 |
de Faria, Carina Ubirajara Magnabosco, Cláudio Ulhoa Lobo, Raysildo Barbosa Peripolli, Elisa Aguilar, Ignacio Baldi, Fernando |
author2Str |
de Faria, Carina Ubirajara Magnabosco, Cláudio Ulhoa Lobo, Raysildo Barbosa Peripolli, Elisa Aguilar, Ignacio Baldi, Fernando |
ppnlink |
492274738 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s13353-022-00734-8 |
up_date |
2024-07-03T23:04:11.236Z |
_version_ |
1803600895659737088 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR049055836</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510060542.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230113s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13353-022-00734-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049055836</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13353-022-00734-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brunes, Ludmilla Costa</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9012-520X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Genomic prediction ability and genetic parameters for residual feed intake calculated using different approaches and their associations with growth, reproductive, and carcass traits in Nellore cattle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Institute of Plant Genetics Polish Academy of Sciences 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This study aimed to estimate prediction ability and genetic parameters for residual feed intake (RFI) calculated using a regression equation for each test (RFItest) and for the whole population (RFIpop) in Nellore beef cattle. It also aimed to evaluate the correlations between RFIpop and RFItest with growth, reproductive, and carcass traits. Genotypic and phenotypic records from 8354 animals were used. An analysis of variance (ANOVA) was performed to verify the adequacy of the regression equations applied to estimate the RFItest and RFIpop. The (co)variance components were obtained using the single-step genomic best linear unbiased prediction under single and two-trait animal model analyses. The genetic and phenotypic correlations between RFItest and RFIpop with dry matter intake, frame, growth, reproduction, and carcass-related traits were evaluated. The prediction ability and bias were estimated to compare the RFItest and RFIpop genomic breeding values (GEBV). The RFIpop ANOVA showed a higher significance level (p < 0.0001) than did the RFItest for the fixed effects. The RFIpop displayed higher additive genetic variance estimated than the RFItest, although the RFIpop and RFItest displayed similar heritabilities. Overall, the RFItest showed higher residual correlations with growth, reproductive, and carcass traits, while the RFIpop displayed higher genetic correlations with such traits. The GEBV for the RFItest was slightly biased than GEBV RFIpop. The approach to calculate the RFI influenced the decomposition and estimation of variance components and genomic prediction for RFI. The application of RFIpop would be more appropriate for genetic evaluation purpose to adjust or correct for non-genetic effects and to decrease the prediction bias for RFI.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accuracy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Beef cattle</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feed efficiency</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genomic selection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Residual feed intake equation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Faria, Carina Ubirajara</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Magnabosco, Cláudio Ulhoa</subfield><subfield code="0">(orcid)0000-0002-7274-0134</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lobo, Raysildo Barbosa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peripolli, Elisa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aguilar, Ignacio</subfield><subfield code="0">(orcid)0000-0002-1038-4752</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baldi, Fernando</subfield><subfield code="0">(orcid)0000-0003-4094-2011</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of applied genetics</subfield><subfield code="d">Dordrecht ˜[u.a.]œ : Springer, 1996</subfield><subfield code="g">64(2022), 1 vom: 15. Nov., Seite 159-167</subfield><subfield code="w">(DE-627)492274738</subfield><subfield code="w">(DE-600)2194407-6</subfield><subfield code="x">2190-3883</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:15</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:159-167</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13353-022-00734-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">15</subfield><subfield code="c">11</subfield><subfield code="h">159-167</subfield></datafield></record></collection>
|
score |
7.403097 |