Biochar nanoparticles-mediated transport of organic contaminants in porous media: dependency on contaminant properties and effects of biochar aging
Land application of biochar has been recommended as an effective soil amendment measure. Nonetheless, the applied biochar can accumulate co-existing contaminants. Meanwhile, nanoparticles formed due to biochar disintegration may facilitate contaminant transport in vadose zone and groundwater, posing...
Ausführliche Beschreibung
Autor*in: |
Ma, Pengkun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Carbon Research - Springer Nature Singapore, 2022, 2(2023), 1 vom: 19. Jan. |
---|---|
Übergeordnetes Werk: |
volume:2 ; year:2023 ; number:1 ; day:19 ; month:01 |
Links: |
---|
DOI / URN: |
10.1007/s44246-023-00036-6 |
---|
Katalog-ID: |
SPR049101269 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR049101269 | ||
003 | DE-627 | ||
005 | 20230510061034.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230120s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s44246-023-00036-6 |2 doi | |
035 | |a (DE-627)SPR049101269 | ||
035 | |a (SPR)s44246-023-00036-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Ma, Pengkun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Biochar nanoparticles-mediated transport of organic contaminants in porous media: dependency on contaminant properties and effects of biochar aging |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Land application of biochar has been recommended as an effective soil amendment measure. Nonetheless, the applied biochar can accumulate co-existing contaminants. Meanwhile, nanoparticles formed due to biochar disintegration may facilitate contaminant transport in vadose zone and groundwater, posing a potential risk to the subsurface environment. Here, we show that the presence of pinewood- and rice straw-derived biochar nanoparticles (BCNPs) at parts per million level (~ 20 mg/L) can result in significant mobilization of hydrophobic, nonpolar contaminants (naphthalene and pyrene) and positively charged polar contaminants (trimethoprim and ciprofloxacin) in saturated sandy soil, but slightly inhibits the transport of negatively charged or neutral hydrophilic compounds (sulfamethoxazole and bisphenol A). With supplemental adsorption and desorption experiments we show that the ability of BCNPs in mediating contaminant transport (either enhancing or inhibiting) relies primarily on the extent of irreversible binding of a contaminant to the BCNPs. Sulfide reduction and leaching of organic carbon, two relatively mild (in terms of modification of physicochemical properties, e.g., surface O/C ratio) but widely occurring aging processes, facilitate co-transport of pyrene and bisphenol A with the BCNPs. However, this is mainly the result of increased mobility of the BCNPs (i.e., the carrier), rather than enhanced interactions between the BCNPs and the contaminants being carried. The findings underline the significant effects of BCNPs on the fate and transport of environmental contaminants, and further highlight the important role of aging in affecting environmental behaviors and effects of biochar materials. Graphical Abstract | ||
520 | |a Highlights • Biochar nanoparticles can significantly alter contaminant mobility in subsurface. • Mobility of hydrophobic/positively charged compounds is mostly enhanced. • Mobility of negatively charged or neutral hydrophilic compounds may be inhibited. • Even mild aging may alter contaminant-mobilizing ability of biochar nanoparticles. • Mild aging affects biochar-mediated transport mainly by affecting biochar mobility. | ||
650 | 4 | |a Biochar |7 (dpeaa)DE-He213 | |
650 | 4 | |a Organic contaminants |7 (dpeaa)DE-He213 | |
650 | 4 | |a Groundwater |7 (dpeaa)DE-He213 | |
650 | 4 | |a Co-transport |7 (dpeaa)DE-He213 | |
650 | 4 | |a Aging |7 (dpeaa)DE-He213 | |
700 | 1 | |a Qi, Zhichong |0 (orcid)0000-0001-7682-1786 |4 aut | |
700 | 1 | |a Wu, Xuan |4 aut | |
700 | 1 | |a Ji, Rong |4 aut | |
700 | 1 | |a Chen, Wei |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Carbon Research |d Springer Nature Singapore, 2022 |g 2(2023), 1 vom: 19. Jan. |w (DE-627)1811827071 |x 2731-6696 |7 nnns |
773 | 1 | 8 | |g volume:2 |g year:2023 |g number:1 |g day:19 |g month:01 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s44246-023-00036-6 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 2 |j 2023 |e 1 |b 19 |c 01 |
author_variant |
p m pm z q zq x w xw r j rj w c wc |
---|---|
matchkey_str |
article:27316696:2023----::icannprilseitdrnproogncotmnnsnooseidpnecocnaiatr |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s44246-023-00036-6 doi (DE-627)SPR049101269 (SPR)s44246-023-00036-6-e DE-627 ger DE-627 rakwb eng Ma, Pengkun verfasserin aut Biochar nanoparticles-mediated transport of organic contaminants in porous media: dependency on contaminant properties and effects of biochar aging 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Land application of biochar has been recommended as an effective soil amendment measure. Nonetheless, the applied biochar can accumulate co-existing contaminants. Meanwhile, nanoparticles formed due to biochar disintegration may facilitate contaminant transport in vadose zone and groundwater, posing a potential risk to the subsurface environment. Here, we show that the presence of pinewood- and rice straw-derived biochar nanoparticles (BCNPs) at parts per million level (~ 20 mg/L) can result in significant mobilization of hydrophobic, nonpolar contaminants (naphthalene and pyrene) and positively charged polar contaminants (trimethoprim and ciprofloxacin) in saturated sandy soil, but slightly inhibits the transport of negatively charged or neutral hydrophilic compounds (sulfamethoxazole and bisphenol A). With supplemental adsorption and desorption experiments we show that the ability of BCNPs in mediating contaminant transport (either enhancing or inhibiting) relies primarily on the extent of irreversible binding of a contaminant to the BCNPs. Sulfide reduction and leaching of organic carbon, two relatively mild (in terms of modification of physicochemical properties, e.g., surface O/C ratio) but widely occurring aging processes, facilitate co-transport of pyrene and bisphenol A with the BCNPs. However, this is mainly the result of increased mobility of the BCNPs (i.e., the carrier), rather than enhanced interactions between the BCNPs and the contaminants being carried. The findings underline the significant effects of BCNPs on the fate and transport of environmental contaminants, and further highlight the important role of aging in affecting environmental behaviors and effects of biochar materials. Graphical Abstract Highlights • Biochar nanoparticles can significantly alter contaminant mobility in subsurface. • Mobility of hydrophobic/positively charged compounds is mostly enhanced. • Mobility of negatively charged or neutral hydrophilic compounds may be inhibited. • Even mild aging may alter contaminant-mobilizing ability of biochar nanoparticles. • Mild aging affects biochar-mediated transport mainly by affecting biochar mobility. Biochar (dpeaa)DE-He213 Organic contaminants (dpeaa)DE-He213 Groundwater (dpeaa)DE-He213 Co-transport (dpeaa)DE-He213 Aging (dpeaa)DE-He213 Qi, Zhichong (orcid)0000-0001-7682-1786 aut Wu, Xuan aut Ji, Rong aut Chen, Wei aut Enthalten in Carbon Research Springer Nature Singapore, 2022 2(2023), 1 vom: 19. Jan. (DE-627)1811827071 2731-6696 nnns volume:2 year:2023 number:1 day:19 month:01 https://dx.doi.org/10.1007/s44246-023-00036-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2023 1 19 01 |
spelling |
10.1007/s44246-023-00036-6 doi (DE-627)SPR049101269 (SPR)s44246-023-00036-6-e DE-627 ger DE-627 rakwb eng Ma, Pengkun verfasserin aut Biochar nanoparticles-mediated transport of organic contaminants in porous media: dependency on contaminant properties and effects of biochar aging 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Land application of biochar has been recommended as an effective soil amendment measure. Nonetheless, the applied biochar can accumulate co-existing contaminants. Meanwhile, nanoparticles formed due to biochar disintegration may facilitate contaminant transport in vadose zone and groundwater, posing a potential risk to the subsurface environment. Here, we show that the presence of pinewood- and rice straw-derived biochar nanoparticles (BCNPs) at parts per million level (~ 20 mg/L) can result in significant mobilization of hydrophobic, nonpolar contaminants (naphthalene and pyrene) and positively charged polar contaminants (trimethoprim and ciprofloxacin) in saturated sandy soil, but slightly inhibits the transport of negatively charged or neutral hydrophilic compounds (sulfamethoxazole and bisphenol A). With supplemental adsorption and desorption experiments we show that the ability of BCNPs in mediating contaminant transport (either enhancing or inhibiting) relies primarily on the extent of irreversible binding of a contaminant to the BCNPs. Sulfide reduction and leaching of organic carbon, two relatively mild (in terms of modification of physicochemical properties, e.g., surface O/C ratio) but widely occurring aging processes, facilitate co-transport of pyrene and bisphenol A with the BCNPs. However, this is mainly the result of increased mobility of the BCNPs (i.e., the carrier), rather than enhanced interactions between the BCNPs and the contaminants being carried. The findings underline the significant effects of BCNPs on the fate and transport of environmental contaminants, and further highlight the important role of aging in affecting environmental behaviors and effects of biochar materials. Graphical Abstract Highlights • Biochar nanoparticles can significantly alter contaminant mobility in subsurface. • Mobility of hydrophobic/positively charged compounds is mostly enhanced. • Mobility of negatively charged or neutral hydrophilic compounds may be inhibited. • Even mild aging may alter contaminant-mobilizing ability of biochar nanoparticles. • Mild aging affects biochar-mediated transport mainly by affecting biochar mobility. Biochar (dpeaa)DE-He213 Organic contaminants (dpeaa)DE-He213 Groundwater (dpeaa)DE-He213 Co-transport (dpeaa)DE-He213 Aging (dpeaa)DE-He213 Qi, Zhichong (orcid)0000-0001-7682-1786 aut Wu, Xuan aut Ji, Rong aut Chen, Wei aut Enthalten in Carbon Research Springer Nature Singapore, 2022 2(2023), 1 vom: 19. Jan. (DE-627)1811827071 2731-6696 nnns volume:2 year:2023 number:1 day:19 month:01 https://dx.doi.org/10.1007/s44246-023-00036-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2023 1 19 01 |
allfields_unstemmed |
10.1007/s44246-023-00036-6 doi (DE-627)SPR049101269 (SPR)s44246-023-00036-6-e DE-627 ger DE-627 rakwb eng Ma, Pengkun verfasserin aut Biochar nanoparticles-mediated transport of organic contaminants in porous media: dependency on contaminant properties and effects of biochar aging 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Land application of biochar has been recommended as an effective soil amendment measure. Nonetheless, the applied biochar can accumulate co-existing contaminants. Meanwhile, nanoparticles formed due to biochar disintegration may facilitate contaminant transport in vadose zone and groundwater, posing a potential risk to the subsurface environment. Here, we show that the presence of pinewood- and rice straw-derived biochar nanoparticles (BCNPs) at parts per million level (~ 20 mg/L) can result in significant mobilization of hydrophobic, nonpolar contaminants (naphthalene and pyrene) and positively charged polar contaminants (trimethoprim and ciprofloxacin) in saturated sandy soil, but slightly inhibits the transport of negatively charged or neutral hydrophilic compounds (sulfamethoxazole and bisphenol A). With supplemental adsorption and desorption experiments we show that the ability of BCNPs in mediating contaminant transport (either enhancing or inhibiting) relies primarily on the extent of irreversible binding of a contaminant to the BCNPs. Sulfide reduction and leaching of organic carbon, two relatively mild (in terms of modification of physicochemical properties, e.g., surface O/C ratio) but widely occurring aging processes, facilitate co-transport of pyrene and bisphenol A with the BCNPs. However, this is mainly the result of increased mobility of the BCNPs (i.e., the carrier), rather than enhanced interactions between the BCNPs and the contaminants being carried. The findings underline the significant effects of BCNPs on the fate and transport of environmental contaminants, and further highlight the important role of aging in affecting environmental behaviors and effects of biochar materials. Graphical Abstract Highlights • Biochar nanoparticles can significantly alter contaminant mobility in subsurface. • Mobility of hydrophobic/positively charged compounds is mostly enhanced. • Mobility of negatively charged or neutral hydrophilic compounds may be inhibited. • Even mild aging may alter contaminant-mobilizing ability of biochar nanoparticles. • Mild aging affects biochar-mediated transport mainly by affecting biochar mobility. Biochar (dpeaa)DE-He213 Organic contaminants (dpeaa)DE-He213 Groundwater (dpeaa)DE-He213 Co-transport (dpeaa)DE-He213 Aging (dpeaa)DE-He213 Qi, Zhichong (orcid)0000-0001-7682-1786 aut Wu, Xuan aut Ji, Rong aut Chen, Wei aut Enthalten in Carbon Research Springer Nature Singapore, 2022 2(2023), 1 vom: 19. Jan. (DE-627)1811827071 2731-6696 nnns volume:2 year:2023 number:1 day:19 month:01 https://dx.doi.org/10.1007/s44246-023-00036-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2023 1 19 01 |
allfieldsGer |
10.1007/s44246-023-00036-6 doi (DE-627)SPR049101269 (SPR)s44246-023-00036-6-e DE-627 ger DE-627 rakwb eng Ma, Pengkun verfasserin aut Biochar nanoparticles-mediated transport of organic contaminants in porous media: dependency on contaminant properties and effects of biochar aging 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Land application of biochar has been recommended as an effective soil amendment measure. Nonetheless, the applied biochar can accumulate co-existing contaminants. Meanwhile, nanoparticles formed due to biochar disintegration may facilitate contaminant transport in vadose zone and groundwater, posing a potential risk to the subsurface environment. Here, we show that the presence of pinewood- and rice straw-derived biochar nanoparticles (BCNPs) at parts per million level (~ 20 mg/L) can result in significant mobilization of hydrophobic, nonpolar contaminants (naphthalene and pyrene) and positively charged polar contaminants (trimethoprim and ciprofloxacin) in saturated sandy soil, but slightly inhibits the transport of negatively charged or neutral hydrophilic compounds (sulfamethoxazole and bisphenol A). With supplemental adsorption and desorption experiments we show that the ability of BCNPs in mediating contaminant transport (either enhancing or inhibiting) relies primarily on the extent of irreversible binding of a contaminant to the BCNPs. Sulfide reduction and leaching of organic carbon, two relatively mild (in terms of modification of physicochemical properties, e.g., surface O/C ratio) but widely occurring aging processes, facilitate co-transport of pyrene and bisphenol A with the BCNPs. However, this is mainly the result of increased mobility of the BCNPs (i.e., the carrier), rather than enhanced interactions between the BCNPs and the contaminants being carried. The findings underline the significant effects of BCNPs on the fate and transport of environmental contaminants, and further highlight the important role of aging in affecting environmental behaviors and effects of biochar materials. Graphical Abstract Highlights • Biochar nanoparticles can significantly alter contaminant mobility in subsurface. • Mobility of hydrophobic/positively charged compounds is mostly enhanced. • Mobility of negatively charged or neutral hydrophilic compounds may be inhibited. • Even mild aging may alter contaminant-mobilizing ability of biochar nanoparticles. • Mild aging affects biochar-mediated transport mainly by affecting biochar mobility. Biochar (dpeaa)DE-He213 Organic contaminants (dpeaa)DE-He213 Groundwater (dpeaa)DE-He213 Co-transport (dpeaa)DE-He213 Aging (dpeaa)DE-He213 Qi, Zhichong (orcid)0000-0001-7682-1786 aut Wu, Xuan aut Ji, Rong aut Chen, Wei aut Enthalten in Carbon Research Springer Nature Singapore, 2022 2(2023), 1 vom: 19. Jan. (DE-627)1811827071 2731-6696 nnns volume:2 year:2023 number:1 day:19 month:01 https://dx.doi.org/10.1007/s44246-023-00036-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2023 1 19 01 |
allfieldsSound |
10.1007/s44246-023-00036-6 doi (DE-627)SPR049101269 (SPR)s44246-023-00036-6-e DE-627 ger DE-627 rakwb eng Ma, Pengkun verfasserin aut Biochar nanoparticles-mediated transport of organic contaminants in porous media: dependency on contaminant properties and effects of biochar aging 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Land application of biochar has been recommended as an effective soil amendment measure. Nonetheless, the applied biochar can accumulate co-existing contaminants. Meanwhile, nanoparticles formed due to biochar disintegration may facilitate contaminant transport in vadose zone and groundwater, posing a potential risk to the subsurface environment. Here, we show that the presence of pinewood- and rice straw-derived biochar nanoparticles (BCNPs) at parts per million level (~ 20 mg/L) can result in significant mobilization of hydrophobic, nonpolar contaminants (naphthalene and pyrene) and positively charged polar contaminants (trimethoprim and ciprofloxacin) in saturated sandy soil, but slightly inhibits the transport of negatively charged or neutral hydrophilic compounds (sulfamethoxazole and bisphenol A). With supplemental adsorption and desorption experiments we show that the ability of BCNPs in mediating contaminant transport (either enhancing or inhibiting) relies primarily on the extent of irreversible binding of a contaminant to the BCNPs. Sulfide reduction and leaching of organic carbon, two relatively mild (in terms of modification of physicochemical properties, e.g., surface O/C ratio) but widely occurring aging processes, facilitate co-transport of pyrene and bisphenol A with the BCNPs. However, this is mainly the result of increased mobility of the BCNPs (i.e., the carrier), rather than enhanced interactions between the BCNPs and the contaminants being carried. The findings underline the significant effects of BCNPs on the fate and transport of environmental contaminants, and further highlight the important role of aging in affecting environmental behaviors and effects of biochar materials. Graphical Abstract Highlights • Biochar nanoparticles can significantly alter contaminant mobility in subsurface. • Mobility of hydrophobic/positively charged compounds is mostly enhanced. • Mobility of negatively charged or neutral hydrophilic compounds may be inhibited. • Even mild aging may alter contaminant-mobilizing ability of biochar nanoparticles. • Mild aging affects biochar-mediated transport mainly by affecting biochar mobility. Biochar (dpeaa)DE-He213 Organic contaminants (dpeaa)DE-He213 Groundwater (dpeaa)DE-He213 Co-transport (dpeaa)DE-He213 Aging (dpeaa)DE-He213 Qi, Zhichong (orcid)0000-0001-7682-1786 aut Wu, Xuan aut Ji, Rong aut Chen, Wei aut Enthalten in Carbon Research Springer Nature Singapore, 2022 2(2023), 1 vom: 19. Jan. (DE-627)1811827071 2731-6696 nnns volume:2 year:2023 number:1 day:19 month:01 https://dx.doi.org/10.1007/s44246-023-00036-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2023 1 19 01 |
language |
English |
source |
Enthalten in Carbon Research 2(2023), 1 vom: 19. Jan. volume:2 year:2023 number:1 day:19 month:01 |
sourceStr |
Enthalten in Carbon Research 2(2023), 1 vom: 19. Jan. volume:2 year:2023 number:1 day:19 month:01 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Biochar Organic contaminants Groundwater Co-transport Aging |
isfreeaccess_bool |
true |
container_title |
Carbon Research |
authorswithroles_txt_mv |
Ma, Pengkun @@aut@@ Qi, Zhichong @@aut@@ Wu, Xuan @@aut@@ Ji, Rong @@aut@@ Chen, Wei @@aut@@ |
publishDateDaySort_date |
2023-01-19T00:00:00Z |
hierarchy_top_id |
1811827071 |
id |
SPR049101269 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR049101269</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510061034.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230120s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s44246-023-00036-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049101269</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s44246-023-00036-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ma, Pengkun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biochar nanoparticles-mediated transport of organic contaminants in porous media: dependency on contaminant properties and effects of biochar aging</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Land application of biochar has been recommended as an effective soil amendment measure. Nonetheless, the applied biochar can accumulate co-existing contaminants. Meanwhile, nanoparticles formed due to biochar disintegration may facilitate contaminant transport in vadose zone and groundwater, posing a potential risk to the subsurface environment. Here, we show that the presence of pinewood- and rice straw-derived biochar nanoparticles (BCNPs) at parts per million level (~ 20 mg/L) can result in significant mobilization of hydrophobic, nonpolar contaminants (naphthalene and pyrene) and positively charged polar contaminants (trimethoprim and ciprofloxacin) in saturated sandy soil, but slightly inhibits the transport of negatively charged or neutral hydrophilic compounds (sulfamethoxazole and bisphenol A). With supplemental adsorption and desorption experiments we show that the ability of BCNPs in mediating contaminant transport (either enhancing or inhibiting) relies primarily on the extent of irreversible binding of a contaminant to the BCNPs. Sulfide reduction and leaching of organic carbon, two relatively mild (in terms of modification of physicochemical properties, e.g., surface O/C ratio) but widely occurring aging processes, facilitate co-transport of pyrene and bisphenol A with the BCNPs. However, this is mainly the result of increased mobility of the BCNPs (i.e., the carrier), rather than enhanced interactions between the BCNPs and the contaminants being carried. The findings underline the significant effects of BCNPs on the fate and transport of environmental contaminants, and further highlight the important role of aging in affecting environmental behaviors and effects of biochar materials. Graphical Abstract</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Highlights • Biochar nanoparticles can significantly alter contaminant mobility in subsurface. • Mobility of hydrophobic/positively charged compounds is mostly enhanced. • Mobility of negatively charged or neutral hydrophilic compounds may be inhibited. • Even mild aging may alter contaminant-mobilizing ability of biochar nanoparticles. • Mild aging affects biochar-mediated transport mainly by affecting biochar mobility.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biochar</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organic contaminants</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groundwater</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Co-transport</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aging</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qi, Zhichong</subfield><subfield code="0">(orcid)0000-0001-7682-1786</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Xuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ji, Rong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Carbon Research</subfield><subfield code="d">Springer Nature Singapore, 2022</subfield><subfield code="g">2(2023), 1 vom: 19. Jan.</subfield><subfield code="w">(DE-627)1811827071</subfield><subfield code="x">2731-6696</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:19</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s44246-023-00036-6</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">19</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
author |
Ma, Pengkun |
spellingShingle |
Ma, Pengkun misc Biochar misc Organic contaminants misc Groundwater misc Co-transport misc Aging Biochar nanoparticles-mediated transport of organic contaminants in porous media: dependency on contaminant properties and effects of biochar aging |
authorStr |
Ma, Pengkun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1811827071 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2731-6696 |
topic_title |
Biochar nanoparticles-mediated transport of organic contaminants in porous media: dependency on contaminant properties and effects of biochar aging Biochar (dpeaa)DE-He213 Organic contaminants (dpeaa)DE-He213 Groundwater (dpeaa)DE-He213 Co-transport (dpeaa)DE-He213 Aging (dpeaa)DE-He213 |
topic |
misc Biochar misc Organic contaminants misc Groundwater misc Co-transport misc Aging |
topic_unstemmed |
misc Biochar misc Organic contaminants misc Groundwater misc Co-transport misc Aging |
topic_browse |
misc Biochar misc Organic contaminants misc Groundwater misc Co-transport misc Aging |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Carbon Research |
hierarchy_parent_id |
1811827071 |
hierarchy_top_title |
Carbon Research |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1811827071 |
title |
Biochar nanoparticles-mediated transport of organic contaminants in porous media: dependency on contaminant properties and effects of biochar aging |
ctrlnum |
(DE-627)SPR049101269 (SPR)s44246-023-00036-6-e |
title_full |
Biochar nanoparticles-mediated transport of organic contaminants in porous media: dependency on contaminant properties and effects of biochar aging |
author_sort |
Ma, Pengkun |
journal |
Carbon Research |
journalStr |
Carbon Research |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Ma, Pengkun Qi, Zhichong Wu, Xuan Ji, Rong Chen, Wei |
container_volume |
2 |
format_se |
Elektronische Aufsätze |
author-letter |
Ma, Pengkun |
doi_str_mv |
10.1007/s44246-023-00036-6 |
normlink |
(ORCID)0000-0001-7682-1786 |
normlink_prefix_str_mv |
(orcid)0000-0001-7682-1786 |
title_sort |
biochar nanoparticles-mediated transport of organic contaminants in porous media: dependency on contaminant properties and effects of biochar aging |
title_auth |
Biochar nanoparticles-mediated transport of organic contaminants in porous media: dependency on contaminant properties and effects of biochar aging |
abstract |
Land application of biochar has been recommended as an effective soil amendment measure. Nonetheless, the applied biochar can accumulate co-existing contaminants. Meanwhile, nanoparticles formed due to biochar disintegration may facilitate contaminant transport in vadose zone and groundwater, posing a potential risk to the subsurface environment. Here, we show that the presence of pinewood- and rice straw-derived biochar nanoparticles (BCNPs) at parts per million level (~ 20 mg/L) can result in significant mobilization of hydrophobic, nonpolar contaminants (naphthalene and pyrene) and positively charged polar contaminants (trimethoprim and ciprofloxacin) in saturated sandy soil, but slightly inhibits the transport of negatively charged or neutral hydrophilic compounds (sulfamethoxazole and bisphenol A). With supplemental adsorption and desorption experiments we show that the ability of BCNPs in mediating contaminant transport (either enhancing or inhibiting) relies primarily on the extent of irreversible binding of a contaminant to the BCNPs. Sulfide reduction and leaching of organic carbon, two relatively mild (in terms of modification of physicochemical properties, e.g., surface O/C ratio) but widely occurring aging processes, facilitate co-transport of pyrene and bisphenol A with the BCNPs. However, this is mainly the result of increased mobility of the BCNPs (i.e., the carrier), rather than enhanced interactions between the BCNPs and the contaminants being carried. The findings underline the significant effects of BCNPs on the fate and transport of environmental contaminants, and further highlight the important role of aging in affecting environmental behaviors and effects of biochar materials. Graphical Abstract Highlights • Biochar nanoparticles can significantly alter contaminant mobility in subsurface. • Mobility of hydrophobic/positively charged compounds is mostly enhanced. • Mobility of negatively charged or neutral hydrophilic compounds may be inhibited. • Even mild aging may alter contaminant-mobilizing ability of biochar nanoparticles. • Mild aging affects biochar-mediated transport mainly by affecting biochar mobility. © The Author(s) 2023 |
abstractGer |
Land application of biochar has been recommended as an effective soil amendment measure. Nonetheless, the applied biochar can accumulate co-existing contaminants. Meanwhile, nanoparticles formed due to biochar disintegration may facilitate contaminant transport in vadose zone and groundwater, posing a potential risk to the subsurface environment. Here, we show that the presence of pinewood- and rice straw-derived biochar nanoparticles (BCNPs) at parts per million level (~ 20 mg/L) can result in significant mobilization of hydrophobic, nonpolar contaminants (naphthalene and pyrene) and positively charged polar contaminants (trimethoprim and ciprofloxacin) in saturated sandy soil, but slightly inhibits the transport of negatively charged or neutral hydrophilic compounds (sulfamethoxazole and bisphenol A). With supplemental adsorption and desorption experiments we show that the ability of BCNPs in mediating contaminant transport (either enhancing or inhibiting) relies primarily on the extent of irreversible binding of a contaminant to the BCNPs. Sulfide reduction and leaching of organic carbon, two relatively mild (in terms of modification of physicochemical properties, e.g., surface O/C ratio) but widely occurring aging processes, facilitate co-transport of pyrene and bisphenol A with the BCNPs. However, this is mainly the result of increased mobility of the BCNPs (i.e., the carrier), rather than enhanced interactions between the BCNPs and the contaminants being carried. The findings underline the significant effects of BCNPs on the fate and transport of environmental contaminants, and further highlight the important role of aging in affecting environmental behaviors and effects of biochar materials. Graphical Abstract Highlights • Biochar nanoparticles can significantly alter contaminant mobility in subsurface. • Mobility of hydrophobic/positively charged compounds is mostly enhanced. • Mobility of negatively charged or neutral hydrophilic compounds may be inhibited. • Even mild aging may alter contaminant-mobilizing ability of biochar nanoparticles. • Mild aging affects biochar-mediated transport mainly by affecting biochar mobility. © The Author(s) 2023 |
abstract_unstemmed |
Land application of biochar has been recommended as an effective soil amendment measure. Nonetheless, the applied biochar can accumulate co-existing contaminants. Meanwhile, nanoparticles formed due to biochar disintegration may facilitate contaminant transport in vadose zone and groundwater, posing a potential risk to the subsurface environment. Here, we show that the presence of pinewood- and rice straw-derived biochar nanoparticles (BCNPs) at parts per million level (~ 20 mg/L) can result in significant mobilization of hydrophobic, nonpolar contaminants (naphthalene and pyrene) and positively charged polar contaminants (trimethoprim and ciprofloxacin) in saturated sandy soil, but slightly inhibits the transport of negatively charged or neutral hydrophilic compounds (sulfamethoxazole and bisphenol A). With supplemental adsorption and desorption experiments we show that the ability of BCNPs in mediating contaminant transport (either enhancing or inhibiting) relies primarily on the extent of irreversible binding of a contaminant to the BCNPs. Sulfide reduction and leaching of organic carbon, two relatively mild (in terms of modification of physicochemical properties, e.g., surface O/C ratio) but widely occurring aging processes, facilitate co-transport of pyrene and bisphenol A with the BCNPs. However, this is mainly the result of increased mobility of the BCNPs (i.e., the carrier), rather than enhanced interactions between the BCNPs and the contaminants being carried. The findings underline the significant effects of BCNPs on the fate and transport of environmental contaminants, and further highlight the important role of aging in affecting environmental behaviors and effects of biochar materials. Graphical Abstract Highlights • Biochar nanoparticles can significantly alter contaminant mobility in subsurface. • Mobility of hydrophobic/positively charged compounds is mostly enhanced. • Mobility of negatively charged or neutral hydrophilic compounds may be inhibited. • Even mild aging may alter contaminant-mobilizing ability of biochar nanoparticles. • Mild aging affects biochar-mediated transport mainly by affecting biochar mobility. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Biochar nanoparticles-mediated transport of organic contaminants in porous media: dependency on contaminant properties and effects of biochar aging |
url |
https://dx.doi.org/10.1007/s44246-023-00036-6 |
remote_bool |
true |
author2 |
Qi, Zhichong Wu, Xuan Ji, Rong Chen, Wei |
author2Str |
Qi, Zhichong Wu, Xuan Ji, Rong Chen, Wei |
ppnlink |
1811827071 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s44246-023-00036-6 |
up_date |
2024-07-03T23:18:41.422Z |
_version_ |
1803601808114843649 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR049101269</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510061034.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230120s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s44246-023-00036-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049101269</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s44246-023-00036-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ma, Pengkun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biochar nanoparticles-mediated transport of organic contaminants in porous media: dependency on contaminant properties and effects of biochar aging</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Land application of biochar has been recommended as an effective soil amendment measure. Nonetheless, the applied biochar can accumulate co-existing contaminants. Meanwhile, nanoparticles formed due to biochar disintegration may facilitate contaminant transport in vadose zone and groundwater, posing a potential risk to the subsurface environment. Here, we show that the presence of pinewood- and rice straw-derived biochar nanoparticles (BCNPs) at parts per million level (~ 20 mg/L) can result in significant mobilization of hydrophobic, nonpolar contaminants (naphthalene and pyrene) and positively charged polar contaminants (trimethoprim and ciprofloxacin) in saturated sandy soil, but slightly inhibits the transport of negatively charged or neutral hydrophilic compounds (sulfamethoxazole and bisphenol A). With supplemental adsorption and desorption experiments we show that the ability of BCNPs in mediating contaminant transport (either enhancing or inhibiting) relies primarily on the extent of irreversible binding of a contaminant to the BCNPs. Sulfide reduction and leaching of organic carbon, two relatively mild (in terms of modification of physicochemical properties, e.g., surface O/C ratio) but widely occurring aging processes, facilitate co-transport of pyrene and bisphenol A with the BCNPs. However, this is mainly the result of increased mobility of the BCNPs (i.e., the carrier), rather than enhanced interactions between the BCNPs and the contaminants being carried. The findings underline the significant effects of BCNPs on the fate and transport of environmental contaminants, and further highlight the important role of aging in affecting environmental behaviors and effects of biochar materials. Graphical Abstract</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Highlights • Biochar nanoparticles can significantly alter contaminant mobility in subsurface. • Mobility of hydrophobic/positively charged compounds is mostly enhanced. • Mobility of negatively charged or neutral hydrophilic compounds may be inhibited. • Even mild aging may alter contaminant-mobilizing ability of biochar nanoparticles. • Mild aging affects biochar-mediated transport mainly by affecting biochar mobility.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biochar</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organic contaminants</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groundwater</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Co-transport</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aging</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qi, Zhichong</subfield><subfield code="0">(orcid)0000-0001-7682-1786</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Xuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ji, Rong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Carbon Research</subfield><subfield code="d">Springer Nature Singapore, 2022</subfield><subfield code="g">2(2023), 1 vom: 19. Jan.</subfield><subfield code="w">(DE-627)1811827071</subfield><subfield code="x">2731-6696</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:19</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s44246-023-00036-6</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">19</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
score |
7.398695 |