MulStepNET: stronger multi-step graph convolutional networks via multi-power adjacency matrix combination

Abstract Graph convolutional networks (GCNs) have become the de facto approaches and achieved state-of-the-art results for circumventing many real-world problems on graph-structured data. However, these networks are usually shallow due to the over-smoothing of GCNs with many layers, which limits the...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Liu, Xun [verfasserIn]

Lei, Fangyuan

Xia, Guoqing

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2021

Schlagwörter:

Graph convolutional networks

High complexity

Simple Graph Convolution

Multi-power adjacency matrix

Multi-step neighborhoods information

Multi-step graph convolutional network

Anmerkung:

© The Author(s) 2021

Übergeordnetes Werk:

Enthalten in: Journal of ambient intelligence and humanized computing - Berlin : Springer, 2010, 14(2021), 2 vom: 06. Aug., Seite 1017-1026

Übergeordnetes Werk:

volume:14 ; year:2021 ; number:2 ; day:06 ; month:08 ; pages:1017-1026

Links:

Volltext

DOI / URN:

10.1007/s12652-021-03355-x

Katalog-ID:

SPR049168134

Nicht das Richtige dabei?

Schreiben Sie uns!