%$L^\infty (\Omega )%$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity
Abstract We consider a semilinear boundary value problem %$ -\Delta u= f(x,u),%$ in %$\Omega ,%$ with Dirichlet boundary conditions, where %$\Omega \subset {\mathbb {R}}^N %$ with %$N> 2,%$ is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We p...
Ausführliche Beschreibung
Autor*in: |
Pardo, Rosa [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of fixed point theory and applications - Cham (ZG) : Springer International Publishing AG, 2007, 25(2023), 2 vom: 06. Feb. |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2023 ; number:2 ; day:06 ; month:02 |
Links: |
---|
DOI / URN: |
10.1007/s11784-023-01048-w |
---|
Katalog-ID: |
SPR049260669 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR049260669 | ||
003 | DE-627 | ||
005 | 20231211064609.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230207s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11784-023-01048-w |2 doi | |
035 | |a (DE-627)SPR049260669 | ||
035 | |a (SPR)s11784-023-01048-w-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Pardo, Rosa |e verfasserin |0 (orcid)0000-0003-1914-9203 |4 aut | |
245 | 1 | 0 | |a %$L^\infty (\Omega )%$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Abstract We consider a semilinear boundary value problem %$ -\Delta u= f(x,u),%$ in %$\Omega ,%$ with Dirichlet boundary conditions, where %$\Omega \subset {\mathbb {R}}^N %$ with %$N> 2,%$ is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide %$L^\infty (\Omega )%$ a priori estimates for weak solutions in terms of their %$L^{2^*}(\Omega )%$-norm, where %$2^*=\frac{2N}{N-2}\ %$ is the critical Sobolev exponent. In particular, our results also apply to %$f(x,s)=a(x)\,\frac{|s|^{2^*_{N/r}-2}s}{\big [\log (e+|s|)\big ]^\beta }\,%$, where %$a\in L^r(\Omega )%$ with %$N/2<r\le \infty %$, and %$2_{N/r}^*:=2^*\left( 1-\frac{1}{r}\right) %$. Assume %$N/2<r\le N%$. We show that for any %$\varepsilon >0%$ there exists a constant %$C_\varepsilon >0%$ such that for any solution %$u\in H^1_0(\Omega )%$, the following holds: [log(e+‖u‖∞)]β≤Cε(1+‖u‖2∗)(2N/r∗-2)(1+ε).%$\begin{aligned} \Big [\log \big (e+\Vert u\Vert _{\infty }\big )\Big ]^\beta \le C _\varepsilon \, \Big (1+\Vert u\Vert _{2^*}\Big )^{\, (2^*_{N/r}-2)(1+\varepsilon )}. \end{aligned}%$To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having %$H_0^1(\Omega )%$ uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having %$L^\infty (\Omega )%$ uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities. | ||
650 | 4 | |a A priori estimates |7 (dpeaa)DE-He213 | |
650 | 4 | |a a priori bounds |7 (dpeaa)DE-He213 | |
650 | 4 | |a singular weights |7 (dpeaa)DE-He213 | |
650 | 4 | |a subcritical problems |7 (dpeaa)DE-He213 | |
773 | 0 | 8 | |i Enthalten in |t Journal of fixed point theory and applications |d Cham (ZG) : Springer International Publishing AG, 2007 |g 25(2023), 2 vom: 06. Feb. |w (DE-627)546007236 |w (DE-600)2389415-5 |x 1661-7746 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2023 |g number:2 |g day:06 |g month:02 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11784-023-01048-w |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 25 |j 2023 |e 2 |b 06 |c 02 |
author_variant |
r p rp |
---|---|
matchkey_str |
article:16617746:2023----::ifymgaroisiaefruciiasmlnaelpieutosih |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s11784-023-01048-w doi (DE-627)SPR049260669 (SPR)s11784-023-01048-w-e DE-627 ger DE-627 rakwb eng Pardo, Rosa verfasserin (orcid)0000-0003-1914-9203 aut %$L^\infty (\Omega )%$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract We consider a semilinear boundary value problem %$ -\Delta u= f(x,u),%$ in %$\Omega ,%$ with Dirichlet boundary conditions, where %$\Omega \subset {\mathbb {R}}^N %$ with %$N> 2,%$ is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide %$L^\infty (\Omega )%$ a priori estimates for weak solutions in terms of their %$L^{2^*}(\Omega )%$-norm, where %$2^*=\frac{2N}{N-2}\ %$ is the critical Sobolev exponent. In particular, our results also apply to %$f(x,s)=a(x)\,\frac{|s|^{2^*_{N/r}-2}s}{\big [\log (e+|s|)\big ]^\beta }\,%$, where %$a\in L^r(\Omega )%$ with %$N/2<r\le \infty %$, and %$2_{N/r}^*:=2^*\left( 1-\frac{1}{r}\right) %$. Assume %$N/2<r\le N%$. We show that for any %$\varepsilon >0%$ there exists a constant %$C_\varepsilon >0%$ such that for any solution %$u\in H^1_0(\Omega )%$, the following holds: [log(e+‖u‖∞)]β≤Cε(1+‖u‖2∗)(2N/r∗-2)(1+ε).%$\begin{aligned} \Big [\log \big (e+\Vert u\Vert _{\infty }\big )\Big ]^\beta \le C _\varepsilon \, \Big (1+\Vert u\Vert _{2^*}\Big )^{\, (2^*_{N/r}-2)(1+\varepsilon )}. \end{aligned}%$To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having %$H_0^1(\Omega )%$ uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having %$L^\infty (\Omega )%$ uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities. A priori estimates (dpeaa)DE-He213 a priori bounds (dpeaa)DE-He213 singular weights (dpeaa)DE-He213 subcritical problems (dpeaa)DE-He213 Enthalten in Journal of fixed point theory and applications Cham (ZG) : Springer International Publishing AG, 2007 25(2023), 2 vom: 06. Feb. (DE-627)546007236 (DE-600)2389415-5 1661-7746 nnns volume:25 year:2023 number:2 day:06 month:02 https://dx.doi.org/10.1007/s11784-023-01048-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 25 2023 2 06 02 |
spelling |
10.1007/s11784-023-01048-w doi (DE-627)SPR049260669 (SPR)s11784-023-01048-w-e DE-627 ger DE-627 rakwb eng Pardo, Rosa verfasserin (orcid)0000-0003-1914-9203 aut %$L^\infty (\Omega )%$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract We consider a semilinear boundary value problem %$ -\Delta u= f(x,u),%$ in %$\Omega ,%$ with Dirichlet boundary conditions, where %$\Omega \subset {\mathbb {R}}^N %$ with %$N> 2,%$ is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide %$L^\infty (\Omega )%$ a priori estimates for weak solutions in terms of their %$L^{2^*}(\Omega )%$-norm, where %$2^*=\frac{2N}{N-2}\ %$ is the critical Sobolev exponent. In particular, our results also apply to %$f(x,s)=a(x)\,\frac{|s|^{2^*_{N/r}-2}s}{\big [\log (e+|s|)\big ]^\beta }\,%$, where %$a\in L^r(\Omega )%$ with %$N/2<r\le \infty %$, and %$2_{N/r}^*:=2^*\left( 1-\frac{1}{r}\right) %$. Assume %$N/2<r\le N%$. We show that for any %$\varepsilon >0%$ there exists a constant %$C_\varepsilon >0%$ such that for any solution %$u\in H^1_0(\Omega )%$, the following holds: [log(e+‖u‖∞)]β≤Cε(1+‖u‖2∗)(2N/r∗-2)(1+ε).%$\begin{aligned} \Big [\log \big (e+\Vert u\Vert _{\infty }\big )\Big ]^\beta \le C _\varepsilon \, \Big (1+\Vert u\Vert _{2^*}\Big )^{\, (2^*_{N/r}-2)(1+\varepsilon )}. \end{aligned}%$To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having %$H_0^1(\Omega )%$ uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having %$L^\infty (\Omega )%$ uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities. A priori estimates (dpeaa)DE-He213 a priori bounds (dpeaa)DE-He213 singular weights (dpeaa)DE-He213 subcritical problems (dpeaa)DE-He213 Enthalten in Journal of fixed point theory and applications Cham (ZG) : Springer International Publishing AG, 2007 25(2023), 2 vom: 06. Feb. (DE-627)546007236 (DE-600)2389415-5 1661-7746 nnns volume:25 year:2023 number:2 day:06 month:02 https://dx.doi.org/10.1007/s11784-023-01048-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 25 2023 2 06 02 |
allfields_unstemmed |
10.1007/s11784-023-01048-w doi (DE-627)SPR049260669 (SPR)s11784-023-01048-w-e DE-627 ger DE-627 rakwb eng Pardo, Rosa verfasserin (orcid)0000-0003-1914-9203 aut %$L^\infty (\Omega )%$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract We consider a semilinear boundary value problem %$ -\Delta u= f(x,u),%$ in %$\Omega ,%$ with Dirichlet boundary conditions, where %$\Omega \subset {\mathbb {R}}^N %$ with %$N> 2,%$ is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide %$L^\infty (\Omega )%$ a priori estimates for weak solutions in terms of their %$L^{2^*}(\Omega )%$-norm, where %$2^*=\frac{2N}{N-2}\ %$ is the critical Sobolev exponent. In particular, our results also apply to %$f(x,s)=a(x)\,\frac{|s|^{2^*_{N/r}-2}s}{\big [\log (e+|s|)\big ]^\beta }\,%$, where %$a\in L^r(\Omega )%$ with %$N/2<r\le \infty %$, and %$2_{N/r}^*:=2^*\left( 1-\frac{1}{r}\right) %$. Assume %$N/2<r\le N%$. We show that for any %$\varepsilon >0%$ there exists a constant %$C_\varepsilon >0%$ such that for any solution %$u\in H^1_0(\Omega )%$, the following holds: [log(e+‖u‖∞)]β≤Cε(1+‖u‖2∗)(2N/r∗-2)(1+ε).%$\begin{aligned} \Big [\log \big (e+\Vert u\Vert _{\infty }\big )\Big ]^\beta \le C _\varepsilon \, \Big (1+\Vert u\Vert _{2^*}\Big )^{\, (2^*_{N/r}-2)(1+\varepsilon )}. \end{aligned}%$To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having %$H_0^1(\Omega )%$ uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having %$L^\infty (\Omega )%$ uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities. A priori estimates (dpeaa)DE-He213 a priori bounds (dpeaa)DE-He213 singular weights (dpeaa)DE-He213 subcritical problems (dpeaa)DE-He213 Enthalten in Journal of fixed point theory and applications Cham (ZG) : Springer International Publishing AG, 2007 25(2023), 2 vom: 06. Feb. (DE-627)546007236 (DE-600)2389415-5 1661-7746 nnns volume:25 year:2023 number:2 day:06 month:02 https://dx.doi.org/10.1007/s11784-023-01048-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 25 2023 2 06 02 |
allfieldsGer |
10.1007/s11784-023-01048-w doi (DE-627)SPR049260669 (SPR)s11784-023-01048-w-e DE-627 ger DE-627 rakwb eng Pardo, Rosa verfasserin (orcid)0000-0003-1914-9203 aut %$L^\infty (\Omega )%$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract We consider a semilinear boundary value problem %$ -\Delta u= f(x,u),%$ in %$\Omega ,%$ with Dirichlet boundary conditions, where %$\Omega \subset {\mathbb {R}}^N %$ with %$N> 2,%$ is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide %$L^\infty (\Omega )%$ a priori estimates for weak solutions in terms of their %$L^{2^*}(\Omega )%$-norm, where %$2^*=\frac{2N}{N-2}\ %$ is the critical Sobolev exponent. In particular, our results also apply to %$f(x,s)=a(x)\,\frac{|s|^{2^*_{N/r}-2}s}{\big [\log (e+|s|)\big ]^\beta }\,%$, where %$a\in L^r(\Omega )%$ with %$N/2<r\le \infty %$, and %$2_{N/r}^*:=2^*\left( 1-\frac{1}{r}\right) %$. Assume %$N/2<r\le N%$. We show that for any %$\varepsilon >0%$ there exists a constant %$C_\varepsilon >0%$ such that for any solution %$u\in H^1_0(\Omega )%$, the following holds: [log(e+‖u‖∞)]β≤Cε(1+‖u‖2∗)(2N/r∗-2)(1+ε).%$\begin{aligned} \Big [\log \big (e+\Vert u\Vert _{\infty }\big )\Big ]^\beta \le C _\varepsilon \, \Big (1+\Vert u\Vert _{2^*}\Big )^{\, (2^*_{N/r}-2)(1+\varepsilon )}. \end{aligned}%$To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having %$H_0^1(\Omega )%$ uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having %$L^\infty (\Omega )%$ uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities. A priori estimates (dpeaa)DE-He213 a priori bounds (dpeaa)DE-He213 singular weights (dpeaa)DE-He213 subcritical problems (dpeaa)DE-He213 Enthalten in Journal of fixed point theory and applications Cham (ZG) : Springer International Publishing AG, 2007 25(2023), 2 vom: 06. Feb. (DE-627)546007236 (DE-600)2389415-5 1661-7746 nnns volume:25 year:2023 number:2 day:06 month:02 https://dx.doi.org/10.1007/s11784-023-01048-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 25 2023 2 06 02 |
allfieldsSound |
10.1007/s11784-023-01048-w doi (DE-627)SPR049260669 (SPR)s11784-023-01048-w-e DE-627 ger DE-627 rakwb eng Pardo, Rosa verfasserin (orcid)0000-0003-1914-9203 aut %$L^\infty (\Omega )%$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract We consider a semilinear boundary value problem %$ -\Delta u= f(x,u),%$ in %$\Omega ,%$ with Dirichlet boundary conditions, where %$\Omega \subset {\mathbb {R}}^N %$ with %$N> 2,%$ is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide %$L^\infty (\Omega )%$ a priori estimates for weak solutions in terms of their %$L^{2^*}(\Omega )%$-norm, where %$2^*=\frac{2N}{N-2}\ %$ is the critical Sobolev exponent. In particular, our results also apply to %$f(x,s)=a(x)\,\frac{|s|^{2^*_{N/r}-2}s}{\big [\log (e+|s|)\big ]^\beta }\,%$, where %$a\in L^r(\Omega )%$ with %$N/2<r\le \infty %$, and %$2_{N/r}^*:=2^*\left( 1-\frac{1}{r}\right) %$. Assume %$N/2<r\le N%$. We show that for any %$\varepsilon >0%$ there exists a constant %$C_\varepsilon >0%$ such that for any solution %$u\in H^1_0(\Omega )%$, the following holds: [log(e+‖u‖∞)]β≤Cε(1+‖u‖2∗)(2N/r∗-2)(1+ε).%$\begin{aligned} \Big [\log \big (e+\Vert u\Vert _{\infty }\big )\Big ]^\beta \le C _\varepsilon \, \Big (1+\Vert u\Vert _{2^*}\Big )^{\, (2^*_{N/r}-2)(1+\varepsilon )}. \end{aligned}%$To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having %$H_0^1(\Omega )%$ uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having %$L^\infty (\Omega )%$ uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities. A priori estimates (dpeaa)DE-He213 a priori bounds (dpeaa)DE-He213 singular weights (dpeaa)DE-He213 subcritical problems (dpeaa)DE-He213 Enthalten in Journal of fixed point theory and applications Cham (ZG) : Springer International Publishing AG, 2007 25(2023), 2 vom: 06. Feb. (DE-627)546007236 (DE-600)2389415-5 1661-7746 nnns volume:25 year:2023 number:2 day:06 month:02 https://dx.doi.org/10.1007/s11784-023-01048-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 25 2023 2 06 02 |
language |
English |
source |
Enthalten in Journal of fixed point theory and applications 25(2023), 2 vom: 06. Feb. volume:25 year:2023 number:2 day:06 month:02 |
sourceStr |
Enthalten in Journal of fixed point theory and applications 25(2023), 2 vom: 06. Feb. volume:25 year:2023 number:2 day:06 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
A priori estimates a priori bounds singular weights subcritical problems |
isfreeaccess_bool |
true |
container_title |
Journal of fixed point theory and applications |
authorswithroles_txt_mv |
Pardo, Rosa @@aut@@ |
publishDateDaySort_date |
2023-02-06T00:00:00Z |
hierarchy_top_id |
546007236 |
id |
SPR049260669 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR049260669</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231211064609.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230207s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11784-023-01048-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049260669</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11784-023-01048-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pardo, Rosa</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1914-9203</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">%$L^\infty (\Omega )%$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider a semilinear boundary value problem %$ -\Delta u= f(x,u),%$ in %$\Omega ,%$ with Dirichlet boundary conditions, where %$\Omega \subset {\mathbb {R}}^N %$ with %$N> 2,%$ is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide %$L^\infty (\Omega )%$ a priori estimates for weak solutions in terms of their %$L^{2^*}(\Omega )%$-norm, where %$2^*=\frac{2N}{N-2}\ %$ is the critical Sobolev exponent. In particular, our results also apply to %$f(x,s)=a(x)\,\frac{|s|^{2^*_{N/r}-2}s}{\big [\log (e+|s|)\big ]^\beta }\,%$, where %$a\in L^r(\Omega )%$ with %$N/2<r\le \infty %$, and %$2_{N/r}^*:=2^*\left( 1-\frac{1}{r}\right) %$. Assume %$N/2<r\le N%$. We show that for any %$\varepsilon >0%$ there exists a constant %$C_\varepsilon >0%$ such that for any solution %$u\in H^1_0(\Omega )%$, the following holds: [log(e+‖u‖∞)]β≤Cε(1+‖u‖2∗)(2N/r∗-2)(1+ε).%$\begin{aligned} \Big [\log \big (e+\Vert u\Vert _{\infty }\big )\Big ]^\beta \le C _\varepsilon \, \Big (1+\Vert u\Vert _{2^*}\Big )^{\, (2^*_{N/r}-2)(1+\varepsilon )}. \end{aligned}%$To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having %$H_0^1(\Omega )%$ uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having %$L^\infty (\Omega )%$ uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">A priori estimates</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">a priori bounds</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">singular weights</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subcritical problems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of fixed point theory and applications</subfield><subfield code="d">Cham (ZG) : Springer International Publishing AG, 2007</subfield><subfield code="g">25(2023), 2 vom: 06. Feb.</subfield><subfield code="w">(DE-627)546007236</subfield><subfield code="w">(DE-600)2389415-5</subfield><subfield code="x">1661-7746</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2</subfield><subfield code="g">day:06</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11784-023-01048-w</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2023</subfield><subfield code="e">2</subfield><subfield code="b">06</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Pardo, Rosa |
spellingShingle |
Pardo, Rosa misc A priori estimates misc a priori bounds misc singular weights misc subcritical problems %$L^\infty (\Omega )%$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity |
authorStr |
Pardo, Rosa |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)546007236 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1661-7746 |
topic_title |
%$L^\infty (\Omega )%$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity A priori estimates (dpeaa)DE-He213 a priori bounds (dpeaa)DE-He213 singular weights (dpeaa)DE-He213 subcritical problems (dpeaa)DE-He213 |
topic |
misc A priori estimates misc a priori bounds misc singular weights misc subcritical problems |
topic_unstemmed |
misc A priori estimates misc a priori bounds misc singular weights misc subcritical problems |
topic_browse |
misc A priori estimates misc a priori bounds misc singular weights misc subcritical problems |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of fixed point theory and applications |
hierarchy_parent_id |
546007236 |
hierarchy_top_title |
Journal of fixed point theory and applications |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)546007236 (DE-600)2389415-5 |
title |
%$L^\infty (\Omega )%$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity |
ctrlnum |
(DE-627)SPR049260669 (SPR)s11784-023-01048-w-e |
title_full |
%$L^\infty (\Omega )%$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity |
author_sort |
Pardo, Rosa |
journal |
Journal of fixed point theory and applications |
journalStr |
Journal of fixed point theory and applications |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Pardo, Rosa |
container_volume |
25 |
format_se |
Elektronische Aufsätze |
author-letter |
Pardo, Rosa |
doi_str_mv |
10.1007/s11784-023-01048-w |
normlink |
(ORCID)0000-0003-1914-9203 |
normlink_prefix_str_mv |
(orcid)0000-0003-1914-9203 |
title_sort |
%$l^\infty (\omega )%$ a priori estimates for subcritical semilinear elliptic equations with a carathéodory non-linearity |
title_auth |
%$L^\infty (\Omega )%$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity |
abstract |
Abstract We consider a semilinear boundary value problem %$ -\Delta u= f(x,u),%$ in %$\Omega ,%$ with Dirichlet boundary conditions, where %$\Omega \subset {\mathbb {R}}^N %$ with %$N> 2,%$ is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide %$L^\infty (\Omega )%$ a priori estimates for weak solutions in terms of their %$L^{2^*}(\Omega )%$-norm, where %$2^*=\frac{2N}{N-2}\ %$ is the critical Sobolev exponent. In particular, our results also apply to %$f(x,s)=a(x)\,\frac{|s|^{2^*_{N/r}-2}s}{\big [\log (e+|s|)\big ]^\beta }\,%$, where %$a\in L^r(\Omega )%$ with %$N/2<r\le \infty %$, and %$2_{N/r}^*:=2^*\left( 1-\frac{1}{r}\right) %$. Assume %$N/2<r\le N%$. We show that for any %$\varepsilon >0%$ there exists a constant %$C_\varepsilon >0%$ such that for any solution %$u\in H^1_0(\Omega )%$, the following holds: [log(e+‖u‖∞)]β≤Cε(1+‖u‖2∗)(2N/r∗-2)(1+ε).%$\begin{aligned} \Big [\log \big (e+\Vert u\Vert _{\infty }\big )\Big ]^\beta \le C _\varepsilon \, \Big (1+\Vert u\Vert _{2^*}\Big )^{\, (2^*_{N/r}-2)(1+\varepsilon )}. \end{aligned}%$To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having %$H_0^1(\Omega )%$ uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having %$L^\infty (\Omega )%$ uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities. © The Author(s) 2023 |
abstractGer |
Abstract We consider a semilinear boundary value problem %$ -\Delta u= f(x,u),%$ in %$\Omega ,%$ with Dirichlet boundary conditions, where %$\Omega \subset {\mathbb {R}}^N %$ with %$N> 2,%$ is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide %$L^\infty (\Omega )%$ a priori estimates for weak solutions in terms of their %$L^{2^*}(\Omega )%$-norm, where %$2^*=\frac{2N}{N-2}\ %$ is the critical Sobolev exponent. In particular, our results also apply to %$f(x,s)=a(x)\,\frac{|s|^{2^*_{N/r}-2}s}{\big [\log (e+|s|)\big ]^\beta }\,%$, where %$a\in L^r(\Omega )%$ with %$N/2<r\le \infty %$, and %$2_{N/r}^*:=2^*\left( 1-\frac{1}{r}\right) %$. Assume %$N/2<r\le N%$. We show that for any %$\varepsilon >0%$ there exists a constant %$C_\varepsilon >0%$ such that for any solution %$u\in H^1_0(\Omega )%$, the following holds: [log(e+‖u‖∞)]β≤Cε(1+‖u‖2∗)(2N/r∗-2)(1+ε).%$\begin{aligned} \Big [\log \big (e+\Vert u\Vert _{\infty }\big )\Big ]^\beta \le C _\varepsilon \, \Big (1+\Vert u\Vert _{2^*}\Big )^{\, (2^*_{N/r}-2)(1+\varepsilon )}. \end{aligned}%$To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having %$H_0^1(\Omega )%$ uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having %$L^\infty (\Omega )%$ uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities. © The Author(s) 2023 |
abstract_unstemmed |
Abstract We consider a semilinear boundary value problem %$ -\Delta u= f(x,u),%$ in %$\Omega ,%$ with Dirichlet boundary conditions, where %$\Omega \subset {\mathbb {R}}^N %$ with %$N> 2,%$ is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide %$L^\infty (\Omega )%$ a priori estimates for weak solutions in terms of their %$L^{2^*}(\Omega )%$-norm, where %$2^*=\frac{2N}{N-2}\ %$ is the critical Sobolev exponent. In particular, our results also apply to %$f(x,s)=a(x)\,\frac{|s|^{2^*_{N/r}-2}s}{\big [\log (e+|s|)\big ]^\beta }\,%$, where %$a\in L^r(\Omega )%$ with %$N/2<r\le \infty %$, and %$2_{N/r}^*:=2^*\left( 1-\frac{1}{r}\right) %$. Assume %$N/2<r\le N%$. We show that for any %$\varepsilon >0%$ there exists a constant %$C_\varepsilon >0%$ such that for any solution %$u\in H^1_0(\Omega )%$, the following holds: [log(e+‖u‖∞)]β≤Cε(1+‖u‖2∗)(2N/r∗-2)(1+ε).%$\begin{aligned} \Big [\log \big (e+\Vert u\Vert _{\infty }\big )\Big ]^\beta \le C _\varepsilon \, \Big (1+\Vert u\Vert _{2^*}\Big )^{\, (2^*_{N/r}-2)(1+\varepsilon )}. \end{aligned}%$To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having %$H_0^1(\Omega )%$ uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having %$L^\infty (\Omega )%$ uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
2 |
title_short |
%$L^\infty (\Omega )%$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity |
url |
https://dx.doi.org/10.1007/s11784-023-01048-w |
remote_bool |
true |
ppnlink |
546007236 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11784-023-01048-w |
up_date |
2024-07-04T00:04:33.281Z |
_version_ |
1803604693658632192 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR049260669</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231211064609.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230207s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11784-023-01048-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049260669</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11784-023-01048-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pardo, Rosa</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1914-9203</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">%$L^\infty (\Omega )%$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider a semilinear boundary value problem %$ -\Delta u= f(x,u),%$ in %$\Omega ,%$ with Dirichlet boundary conditions, where %$\Omega \subset {\mathbb {R}}^N %$ with %$N> 2,%$ is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide %$L^\infty (\Omega )%$ a priori estimates for weak solutions in terms of their %$L^{2^*}(\Omega )%$-norm, where %$2^*=\frac{2N}{N-2}\ %$ is the critical Sobolev exponent. In particular, our results also apply to %$f(x,s)=a(x)\,\frac{|s|^{2^*_{N/r}-2}s}{\big [\log (e+|s|)\big ]^\beta }\,%$, where %$a\in L^r(\Omega )%$ with %$N/2<r\le \infty %$, and %$2_{N/r}^*:=2^*\left( 1-\frac{1}{r}\right) %$. Assume %$N/2<r\le N%$. We show that for any %$\varepsilon >0%$ there exists a constant %$C_\varepsilon >0%$ such that for any solution %$u\in H^1_0(\Omega )%$, the following holds: [log(e+‖u‖∞)]β≤Cε(1+‖u‖2∗)(2N/r∗-2)(1+ε).%$\begin{aligned} \Big [\log \big (e+\Vert u\Vert _{\infty }\big )\Big ]^\beta \le C _\varepsilon \, \Big (1+\Vert u\Vert _{2^*}\Big )^{\, (2^*_{N/r}-2)(1+\varepsilon )}. \end{aligned}%$To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having %$H_0^1(\Omega )%$ uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having %$L^\infty (\Omega )%$ uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">A priori estimates</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">a priori bounds</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">singular weights</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subcritical problems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of fixed point theory and applications</subfield><subfield code="d">Cham (ZG) : Springer International Publishing AG, 2007</subfield><subfield code="g">25(2023), 2 vom: 06. Feb.</subfield><subfield code="w">(DE-627)546007236</subfield><subfield code="w">(DE-600)2389415-5</subfield><subfield code="x">1661-7746</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2</subfield><subfield code="g">day:06</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11784-023-01048-w</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2023</subfield><subfield code="e">2</subfield><subfield code="b">06</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.401947 |