Stability analysis of yield and aflatoxin accumulation resistance in maize using GGE biplot
Abstract Maize (Zea mays L.) is the most important cereal crop in sub-Saharan Africa. However, its production is constrained by many factors including low yields and aflatoxin contamination. Host resistance to aflatoxin accumulation and productive hybrid varieties are seen as key approaches in addre...
Ausführliche Beschreibung
Autor*in: |
Oppong, Allen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Korean Society of Crop Science (KSCS) 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of crop science and biotechnology - Seoul : Korean Soc. of Crop Science, 2009, 26(2022), 2 vom: 25. Aug., Seite 167-178 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:2022 ; number:2 ; day:25 ; month:08 ; pages:167-178 |
Links: |
---|
DOI / URN: |
10.1007/s12892-022-00170-4 |
---|
Katalog-ID: |
SPR049299352 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR049299352 | ||
003 | DE-627 | ||
005 | 20230519172452.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230211s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s12892-022-00170-4 |2 doi | |
035 | |a (DE-627)SPR049299352 | ||
035 | |a (SPR)s12892-022-00170-4-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Oppong, Allen |e verfasserin |0 (orcid)0000-0002-0759-7685 |4 aut | |
245 | 1 | 0 | |a Stability analysis of yield and aflatoxin accumulation resistance in maize using GGE biplot |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Korean Society of Crop Science (KSCS) 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract Maize (Zea mays L.) is the most important cereal crop in sub-Saharan Africa. However, its production is constrained by many factors including low yields and aflatoxin contamination. Host resistance to aflatoxin accumulation and productive hybrid varieties are seen as key approaches in addressing these challenges. Sixteen aflatoxin-resistant inbreds obtained from Corn Host Plant Resistance Research Unit (CHPRRU), USDA ARS in Mississippi, USA, CIMMYT, IITA, etc., were crossed as males to six locally adapted inbreds in a North Carolina II design to generate 160 new hybrids and planted together with 9 checks using 13 × 13 lattice with three replications. The new hybrids were evaluated across six environments. Thirty-one of the most promising hybrids were subjected to the GGE biplot analysis to determine their stability for yield and aflatoxin accumulation resistance. Genotype, G10 (ENTRY-5 × Tzi8, G20 (TZEE-15 × CML343, G28 (TZEEI-6 × CML247 and G26 (TZEEI-6 × CML11 were highly stable hybrids for yield while G08 (ENTRY-5 × Ki3, G11 (ENTRY-85 × CML247 and G19 (TZEEI-15 × MP715 were relatively stable for aflatoxin accumulation resistance. This means that it is possible to produce high-yielding aflatoxin-resistant hybrids for consumers in the trial agro-ecologies. | ||
650 | 4 | |a Maize |7 (dpeaa)DE-He213 | |
650 | 4 | |a GGE biplot |7 (dpeaa)DE-He213 | |
650 | 4 | |a Aflatoxin accumulation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Yield stability |7 (dpeaa)DE-He213 | |
650 | 4 | |a Aflatoxin stability |7 (dpeaa)DE-He213 | |
700 | 1 | |a Dadzie, Abu M. |4 aut | |
700 | 1 | |a Ifie, Beatrice |4 aut | |
700 | 1 | |a Asante, Maxwell D. |4 aut | |
700 | 1 | |a Prempeh, Ruth N. A. |4 aut | |
700 | 1 | |a Abrokwah, Linda A. |4 aut | |
700 | 1 | |a Kubi, Zipporah Appiah |4 aut | |
700 | 1 | |a Marfo, Esther A. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of crop science and biotechnology |d Seoul : Korean Soc. of Crop Science, 2009 |g 26(2022), 2 vom: 25. Aug., Seite 167-178 |w (DE-627)617512175 |w (DE-600)2534833-4 |x 2005-8276 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:2022 |g number:2 |g day:25 |g month:08 |g pages:167-178 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s12892-022-00170-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 26 |j 2022 |e 2 |b 25 |c 08 |h 167-178 |
author_variant |
a o ao a m d am amd b i bi m d a md mda r n a p rna rnap l a a la laa z a k za zak e a m ea eam |
---|---|
matchkey_str |
article:20058276:2022----::tbltaayioyednaltxncuuaineitn |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s12892-022-00170-4 doi (DE-627)SPR049299352 (SPR)s12892-022-00170-4-e DE-627 ger DE-627 rakwb eng Oppong, Allen verfasserin (orcid)0000-0002-0759-7685 aut Stability analysis of yield and aflatoxin accumulation resistance in maize using GGE biplot 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Korean Society of Crop Science (KSCS) 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Maize (Zea mays L.) is the most important cereal crop in sub-Saharan Africa. However, its production is constrained by many factors including low yields and aflatoxin contamination. Host resistance to aflatoxin accumulation and productive hybrid varieties are seen as key approaches in addressing these challenges. Sixteen aflatoxin-resistant inbreds obtained from Corn Host Plant Resistance Research Unit (CHPRRU), USDA ARS in Mississippi, USA, CIMMYT, IITA, etc., were crossed as males to six locally adapted inbreds in a North Carolina II design to generate 160 new hybrids and planted together with 9 checks using 13 × 13 lattice with three replications. The new hybrids were evaluated across six environments. Thirty-one of the most promising hybrids were subjected to the GGE biplot analysis to determine their stability for yield and aflatoxin accumulation resistance. Genotype, G10 (ENTRY-5 × Tzi8, G20 (TZEE-15 × CML343, G28 (TZEEI-6 × CML247 and G26 (TZEEI-6 × CML11 were highly stable hybrids for yield while G08 (ENTRY-5 × Ki3, G11 (ENTRY-85 × CML247 and G19 (TZEEI-15 × MP715 were relatively stable for aflatoxin accumulation resistance. This means that it is possible to produce high-yielding aflatoxin-resistant hybrids for consumers in the trial agro-ecologies. Maize (dpeaa)DE-He213 GGE biplot (dpeaa)DE-He213 Aflatoxin accumulation (dpeaa)DE-He213 Yield stability (dpeaa)DE-He213 Aflatoxin stability (dpeaa)DE-He213 Dadzie, Abu M. aut Ifie, Beatrice aut Asante, Maxwell D. aut Prempeh, Ruth N. A. aut Abrokwah, Linda A. aut Kubi, Zipporah Appiah aut Marfo, Esther A. aut Enthalten in Journal of crop science and biotechnology Seoul : Korean Soc. of Crop Science, 2009 26(2022), 2 vom: 25. Aug., Seite 167-178 (DE-627)617512175 (DE-600)2534833-4 2005-8276 nnns volume:26 year:2022 number:2 day:25 month:08 pages:167-178 https://dx.doi.org/10.1007/s12892-022-00170-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 26 2022 2 25 08 167-178 |
spelling |
10.1007/s12892-022-00170-4 doi (DE-627)SPR049299352 (SPR)s12892-022-00170-4-e DE-627 ger DE-627 rakwb eng Oppong, Allen verfasserin (orcid)0000-0002-0759-7685 aut Stability analysis of yield and aflatoxin accumulation resistance in maize using GGE biplot 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Korean Society of Crop Science (KSCS) 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Maize (Zea mays L.) is the most important cereal crop in sub-Saharan Africa. However, its production is constrained by many factors including low yields and aflatoxin contamination. Host resistance to aflatoxin accumulation and productive hybrid varieties are seen as key approaches in addressing these challenges. Sixteen aflatoxin-resistant inbreds obtained from Corn Host Plant Resistance Research Unit (CHPRRU), USDA ARS in Mississippi, USA, CIMMYT, IITA, etc., were crossed as males to six locally adapted inbreds in a North Carolina II design to generate 160 new hybrids and planted together with 9 checks using 13 × 13 lattice with three replications. The new hybrids were evaluated across six environments. Thirty-one of the most promising hybrids were subjected to the GGE biplot analysis to determine their stability for yield and aflatoxin accumulation resistance. Genotype, G10 (ENTRY-5 × Tzi8, G20 (TZEE-15 × CML343, G28 (TZEEI-6 × CML247 and G26 (TZEEI-6 × CML11 were highly stable hybrids for yield while G08 (ENTRY-5 × Ki3, G11 (ENTRY-85 × CML247 and G19 (TZEEI-15 × MP715 were relatively stable for aflatoxin accumulation resistance. This means that it is possible to produce high-yielding aflatoxin-resistant hybrids for consumers in the trial agro-ecologies. Maize (dpeaa)DE-He213 GGE biplot (dpeaa)DE-He213 Aflatoxin accumulation (dpeaa)DE-He213 Yield stability (dpeaa)DE-He213 Aflatoxin stability (dpeaa)DE-He213 Dadzie, Abu M. aut Ifie, Beatrice aut Asante, Maxwell D. aut Prempeh, Ruth N. A. aut Abrokwah, Linda A. aut Kubi, Zipporah Appiah aut Marfo, Esther A. aut Enthalten in Journal of crop science and biotechnology Seoul : Korean Soc. of Crop Science, 2009 26(2022), 2 vom: 25. Aug., Seite 167-178 (DE-627)617512175 (DE-600)2534833-4 2005-8276 nnns volume:26 year:2022 number:2 day:25 month:08 pages:167-178 https://dx.doi.org/10.1007/s12892-022-00170-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 26 2022 2 25 08 167-178 |
allfields_unstemmed |
10.1007/s12892-022-00170-4 doi (DE-627)SPR049299352 (SPR)s12892-022-00170-4-e DE-627 ger DE-627 rakwb eng Oppong, Allen verfasserin (orcid)0000-0002-0759-7685 aut Stability analysis of yield and aflatoxin accumulation resistance in maize using GGE biplot 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Korean Society of Crop Science (KSCS) 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Maize (Zea mays L.) is the most important cereal crop in sub-Saharan Africa. However, its production is constrained by many factors including low yields and aflatoxin contamination. Host resistance to aflatoxin accumulation and productive hybrid varieties are seen as key approaches in addressing these challenges. Sixteen aflatoxin-resistant inbreds obtained from Corn Host Plant Resistance Research Unit (CHPRRU), USDA ARS in Mississippi, USA, CIMMYT, IITA, etc., were crossed as males to six locally adapted inbreds in a North Carolina II design to generate 160 new hybrids and planted together with 9 checks using 13 × 13 lattice with three replications. The new hybrids were evaluated across six environments. Thirty-one of the most promising hybrids were subjected to the GGE biplot analysis to determine their stability for yield and aflatoxin accumulation resistance. Genotype, G10 (ENTRY-5 × Tzi8, G20 (TZEE-15 × CML343, G28 (TZEEI-6 × CML247 and G26 (TZEEI-6 × CML11 were highly stable hybrids for yield while G08 (ENTRY-5 × Ki3, G11 (ENTRY-85 × CML247 and G19 (TZEEI-15 × MP715 were relatively stable for aflatoxin accumulation resistance. This means that it is possible to produce high-yielding aflatoxin-resistant hybrids for consumers in the trial agro-ecologies. Maize (dpeaa)DE-He213 GGE biplot (dpeaa)DE-He213 Aflatoxin accumulation (dpeaa)DE-He213 Yield stability (dpeaa)DE-He213 Aflatoxin stability (dpeaa)DE-He213 Dadzie, Abu M. aut Ifie, Beatrice aut Asante, Maxwell D. aut Prempeh, Ruth N. A. aut Abrokwah, Linda A. aut Kubi, Zipporah Appiah aut Marfo, Esther A. aut Enthalten in Journal of crop science and biotechnology Seoul : Korean Soc. of Crop Science, 2009 26(2022), 2 vom: 25. Aug., Seite 167-178 (DE-627)617512175 (DE-600)2534833-4 2005-8276 nnns volume:26 year:2022 number:2 day:25 month:08 pages:167-178 https://dx.doi.org/10.1007/s12892-022-00170-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 26 2022 2 25 08 167-178 |
allfieldsGer |
10.1007/s12892-022-00170-4 doi (DE-627)SPR049299352 (SPR)s12892-022-00170-4-e DE-627 ger DE-627 rakwb eng Oppong, Allen verfasserin (orcid)0000-0002-0759-7685 aut Stability analysis of yield and aflatoxin accumulation resistance in maize using GGE biplot 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Korean Society of Crop Science (KSCS) 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Maize (Zea mays L.) is the most important cereal crop in sub-Saharan Africa. However, its production is constrained by many factors including low yields and aflatoxin contamination. Host resistance to aflatoxin accumulation and productive hybrid varieties are seen as key approaches in addressing these challenges. Sixteen aflatoxin-resistant inbreds obtained from Corn Host Plant Resistance Research Unit (CHPRRU), USDA ARS in Mississippi, USA, CIMMYT, IITA, etc., were crossed as males to six locally adapted inbreds in a North Carolina II design to generate 160 new hybrids and planted together with 9 checks using 13 × 13 lattice with three replications. The new hybrids were evaluated across six environments. Thirty-one of the most promising hybrids were subjected to the GGE biplot analysis to determine their stability for yield and aflatoxin accumulation resistance. Genotype, G10 (ENTRY-5 × Tzi8, G20 (TZEE-15 × CML343, G28 (TZEEI-6 × CML247 and G26 (TZEEI-6 × CML11 were highly stable hybrids for yield while G08 (ENTRY-5 × Ki3, G11 (ENTRY-85 × CML247 and G19 (TZEEI-15 × MP715 were relatively stable for aflatoxin accumulation resistance. This means that it is possible to produce high-yielding aflatoxin-resistant hybrids for consumers in the trial agro-ecologies. Maize (dpeaa)DE-He213 GGE biplot (dpeaa)DE-He213 Aflatoxin accumulation (dpeaa)DE-He213 Yield stability (dpeaa)DE-He213 Aflatoxin stability (dpeaa)DE-He213 Dadzie, Abu M. aut Ifie, Beatrice aut Asante, Maxwell D. aut Prempeh, Ruth N. A. aut Abrokwah, Linda A. aut Kubi, Zipporah Appiah aut Marfo, Esther A. aut Enthalten in Journal of crop science and biotechnology Seoul : Korean Soc. of Crop Science, 2009 26(2022), 2 vom: 25. Aug., Seite 167-178 (DE-627)617512175 (DE-600)2534833-4 2005-8276 nnns volume:26 year:2022 number:2 day:25 month:08 pages:167-178 https://dx.doi.org/10.1007/s12892-022-00170-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 26 2022 2 25 08 167-178 |
allfieldsSound |
10.1007/s12892-022-00170-4 doi (DE-627)SPR049299352 (SPR)s12892-022-00170-4-e DE-627 ger DE-627 rakwb eng Oppong, Allen verfasserin (orcid)0000-0002-0759-7685 aut Stability analysis of yield and aflatoxin accumulation resistance in maize using GGE biplot 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Korean Society of Crop Science (KSCS) 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Maize (Zea mays L.) is the most important cereal crop in sub-Saharan Africa. However, its production is constrained by many factors including low yields and aflatoxin contamination. Host resistance to aflatoxin accumulation and productive hybrid varieties are seen as key approaches in addressing these challenges. Sixteen aflatoxin-resistant inbreds obtained from Corn Host Plant Resistance Research Unit (CHPRRU), USDA ARS in Mississippi, USA, CIMMYT, IITA, etc., were crossed as males to six locally adapted inbreds in a North Carolina II design to generate 160 new hybrids and planted together with 9 checks using 13 × 13 lattice with three replications. The new hybrids were evaluated across six environments. Thirty-one of the most promising hybrids were subjected to the GGE biplot analysis to determine their stability for yield and aflatoxin accumulation resistance. Genotype, G10 (ENTRY-5 × Tzi8, G20 (TZEE-15 × CML343, G28 (TZEEI-6 × CML247 and G26 (TZEEI-6 × CML11 were highly stable hybrids for yield while G08 (ENTRY-5 × Ki3, G11 (ENTRY-85 × CML247 and G19 (TZEEI-15 × MP715 were relatively stable for aflatoxin accumulation resistance. This means that it is possible to produce high-yielding aflatoxin-resistant hybrids for consumers in the trial agro-ecologies. Maize (dpeaa)DE-He213 GGE biplot (dpeaa)DE-He213 Aflatoxin accumulation (dpeaa)DE-He213 Yield stability (dpeaa)DE-He213 Aflatoxin stability (dpeaa)DE-He213 Dadzie, Abu M. aut Ifie, Beatrice aut Asante, Maxwell D. aut Prempeh, Ruth N. A. aut Abrokwah, Linda A. aut Kubi, Zipporah Appiah aut Marfo, Esther A. aut Enthalten in Journal of crop science and biotechnology Seoul : Korean Soc. of Crop Science, 2009 26(2022), 2 vom: 25. Aug., Seite 167-178 (DE-627)617512175 (DE-600)2534833-4 2005-8276 nnns volume:26 year:2022 number:2 day:25 month:08 pages:167-178 https://dx.doi.org/10.1007/s12892-022-00170-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 26 2022 2 25 08 167-178 |
language |
English |
source |
Enthalten in Journal of crop science and biotechnology 26(2022), 2 vom: 25. Aug., Seite 167-178 volume:26 year:2022 number:2 day:25 month:08 pages:167-178 |
sourceStr |
Enthalten in Journal of crop science and biotechnology 26(2022), 2 vom: 25. Aug., Seite 167-178 volume:26 year:2022 number:2 day:25 month:08 pages:167-178 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Maize GGE biplot Aflatoxin accumulation Yield stability Aflatoxin stability |
isfreeaccess_bool |
false |
container_title |
Journal of crop science and biotechnology |
authorswithroles_txt_mv |
Oppong, Allen @@aut@@ Dadzie, Abu M. @@aut@@ Ifie, Beatrice @@aut@@ Asante, Maxwell D. @@aut@@ Prempeh, Ruth N. A. @@aut@@ Abrokwah, Linda A. @@aut@@ Kubi, Zipporah Appiah @@aut@@ Marfo, Esther A. @@aut@@ |
publishDateDaySort_date |
2022-08-25T00:00:00Z |
hierarchy_top_id |
617512175 |
id |
SPR049299352 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR049299352</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519172452.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230211s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12892-022-00170-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049299352</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12892-022-00170-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Oppong, Allen</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0759-7685</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stability analysis of yield and aflatoxin accumulation resistance in maize using GGE biplot</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Korean Society of Crop Science (KSCS) 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Maize (Zea mays L.) is the most important cereal crop in sub-Saharan Africa. However, its production is constrained by many factors including low yields and aflatoxin contamination. Host resistance to aflatoxin accumulation and productive hybrid varieties are seen as key approaches in addressing these challenges. Sixteen aflatoxin-resistant inbreds obtained from Corn Host Plant Resistance Research Unit (CHPRRU), USDA ARS in Mississippi, USA, CIMMYT, IITA, etc., were crossed as males to six locally adapted inbreds in a North Carolina II design to generate 160 new hybrids and planted together with 9 checks using 13 × 13 lattice with three replications. The new hybrids were evaluated across six environments. Thirty-one of the most promising hybrids were subjected to the GGE biplot analysis to determine their stability for yield and aflatoxin accumulation resistance. Genotype, G10 (ENTRY-5 × Tzi8, G20 (TZEE-15 × CML343, G28 (TZEEI-6 × CML247 and G26 (TZEEI-6 × CML11 were highly stable hybrids for yield while G08 (ENTRY-5 × Ki3, G11 (ENTRY-85 × CML247 and G19 (TZEEI-15 × MP715 were relatively stable for aflatoxin accumulation resistance. This means that it is possible to produce high-yielding aflatoxin-resistant hybrids for consumers in the trial agro-ecologies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maize</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GGE biplot</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aflatoxin accumulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yield stability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aflatoxin stability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dadzie, Abu M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ifie, Beatrice</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Asante, Maxwell D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prempeh, Ruth N. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abrokwah, Linda A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kubi, Zipporah Appiah</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marfo, Esther A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of crop science and biotechnology</subfield><subfield code="d">Seoul : Korean Soc. of Crop Science, 2009</subfield><subfield code="g">26(2022), 2 vom: 25. Aug., Seite 167-178</subfield><subfield code="w">(DE-627)617512175</subfield><subfield code="w">(DE-600)2534833-4</subfield><subfield code="x">2005-8276</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">day:25</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:167-178</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12892-022-00170-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="b">25</subfield><subfield code="c">08</subfield><subfield code="h">167-178</subfield></datafield></record></collection>
|
author |
Oppong, Allen |
spellingShingle |
Oppong, Allen misc Maize misc GGE biplot misc Aflatoxin accumulation misc Yield stability misc Aflatoxin stability Stability analysis of yield and aflatoxin accumulation resistance in maize using GGE biplot |
authorStr |
Oppong, Allen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)617512175 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2005-8276 |
topic_title |
Stability analysis of yield and aflatoxin accumulation resistance in maize using GGE biplot Maize (dpeaa)DE-He213 GGE biplot (dpeaa)DE-He213 Aflatoxin accumulation (dpeaa)DE-He213 Yield stability (dpeaa)DE-He213 Aflatoxin stability (dpeaa)DE-He213 |
topic |
misc Maize misc GGE biplot misc Aflatoxin accumulation misc Yield stability misc Aflatoxin stability |
topic_unstemmed |
misc Maize misc GGE biplot misc Aflatoxin accumulation misc Yield stability misc Aflatoxin stability |
topic_browse |
misc Maize misc GGE biplot misc Aflatoxin accumulation misc Yield stability misc Aflatoxin stability |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of crop science and biotechnology |
hierarchy_parent_id |
617512175 |
hierarchy_top_title |
Journal of crop science and biotechnology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)617512175 (DE-600)2534833-4 |
title |
Stability analysis of yield and aflatoxin accumulation resistance in maize using GGE biplot |
ctrlnum |
(DE-627)SPR049299352 (SPR)s12892-022-00170-4-e |
title_full |
Stability analysis of yield and aflatoxin accumulation resistance in maize using GGE biplot |
author_sort |
Oppong, Allen |
journal |
Journal of crop science and biotechnology |
journalStr |
Journal of crop science and biotechnology |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
167 |
author_browse |
Oppong, Allen Dadzie, Abu M. Ifie, Beatrice Asante, Maxwell D. Prempeh, Ruth N. A. Abrokwah, Linda A. Kubi, Zipporah Appiah Marfo, Esther A. |
container_volume |
26 |
format_se |
Elektronische Aufsätze |
author-letter |
Oppong, Allen |
doi_str_mv |
10.1007/s12892-022-00170-4 |
normlink |
(ORCID)0000-0002-0759-7685 |
normlink_prefix_str_mv |
(orcid)0000-0002-0759-7685 |
title_sort |
stability analysis of yield and aflatoxin accumulation resistance in maize using gge biplot |
title_auth |
Stability analysis of yield and aflatoxin accumulation resistance in maize using GGE biplot |
abstract |
Abstract Maize (Zea mays L.) is the most important cereal crop in sub-Saharan Africa. However, its production is constrained by many factors including low yields and aflatoxin contamination. Host resistance to aflatoxin accumulation and productive hybrid varieties are seen as key approaches in addressing these challenges. Sixteen aflatoxin-resistant inbreds obtained from Corn Host Plant Resistance Research Unit (CHPRRU), USDA ARS in Mississippi, USA, CIMMYT, IITA, etc., were crossed as males to six locally adapted inbreds in a North Carolina II design to generate 160 new hybrids and planted together with 9 checks using 13 × 13 lattice with three replications. The new hybrids were evaluated across six environments. Thirty-one of the most promising hybrids were subjected to the GGE biplot analysis to determine their stability for yield and aflatoxin accumulation resistance. Genotype, G10 (ENTRY-5 × Tzi8, G20 (TZEE-15 × CML343, G28 (TZEEI-6 × CML247 and G26 (TZEEI-6 × CML11 were highly stable hybrids for yield while G08 (ENTRY-5 × Ki3, G11 (ENTRY-85 × CML247 and G19 (TZEEI-15 × MP715 were relatively stable for aflatoxin accumulation resistance. This means that it is possible to produce high-yielding aflatoxin-resistant hybrids for consumers in the trial agro-ecologies. © The Author(s), under exclusive licence to Korean Society of Crop Science (KSCS) 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract Maize (Zea mays L.) is the most important cereal crop in sub-Saharan Africa. However, its production is constrained by many factors including low yields and aflatoxin contamination. Host resistance to aflatoxin accumulation and productive hybrid varieties are seen as key approaches in addressing these challenges. Sixteen aflatoxin-resistant inbreds obtained from Corn Host Plant Resistance Research Unit (CHPRRU), USDA ARS in Mississippi, USA, CIMMYT, IITA, etc., were crossed as males to six locally adapted inbreds in a North Carolina II design to generate 160 new hybrids and planted together with 9 checks using 13 × 13 lattice with three replications. The new hybrids were evaluated across six environments. Thirty-one of the most promising hybrids were subjected to the GGE biplot analysis to determine their stability for yield and aflatoxin accumulation resistance. Genotype, G10 (ENTRY-5 × Tzi8, G20 (TZEE-15 × CML343, G28 (TZEEI-6 × CML247 and G26 (TZEEI-6 × CML11 were highly stable hybrids for yield while G08 (ENTRY-5 × Ki3, G11 (ENTRY-85 × CML247 and G19 (TZEEI-15 × MP715 were relatively stable for aflatoxin accumulation resistance. This means that it is possible to produce high-yielding aflatoxin-resistant hybrids for consumers in the trial agro-ecologies. © The Author(s), under exclusive licence to Korean Society of Crop Science (KSCS) 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract Maize (Zea mays L.) is the most important cereal crop in sub-Saharan Africa. However, its production is constrained by many factors including low yields and aflatoxin contamination. Host resistance to aflatoxin accumulation and productive hybrid varieties are seen as key approaches in addressing these challenges. Sixteen aflatoxin-resistant inbreds obtained from Corn Host Plant Resistance Research Unit (CHPRRU), USDA ARS in Mississippi, USA, CIMMYT, IITA, etc., were crossed as males to six locally adapted inbreds in a North Carolina II design to generate 160 new hybrids and planted together with 9 checks using 13 × 13 lattice with three replications. The new hybrids were evaluated across six environments. Thirty-one of the most promising hybrids were subjected to the GGE biplot analysis to determine their stability for yield and aflatoxin accumulation resistance. Genotype, G10 (ENTRY-5 × Tzi8, G20 (TZEE-15 × CML343, G28 (TZEEI-6 × CML247 and G26 (TZEEI-6 × CML11 were highly stable hybrids for yield while G08 (ENTRY-5 × Ki3, G11 (ENTRY-85 × CML247 and G19 (TZEEI-15 × MP715 were relatively stable for aflatoxin accumulation resistance. This means that it is possible to produce high-yielding aflatoxin-resistant hybrids for consumers in the trial agro-ecologies. © The Author(s), under exclusive licence to Korean Society of Crop Science (KSCS) 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Stability analysis of yield and aflatoxin accumulation resistance in maize using GGE biplot |
url |
https://dx.doi.org/10.1007/s12892-022-00170-4 |
remote_bool |
true |
author2 |
Dadzie, Abu M. Ifie, Beatrice Asante, Maxwell D. Prempeh, Ruth N. A. Abrokwah, Linda A. Kubi, Zipporah Appiah Marfo, Esther A. |
author2Str |
Dadzie, Abu M. Ifie, Beatrice Asante, Maxwell D. Prempeh, Ruth N. A. Abrokwah, Linda A. Kubi, Zipporah Appiah Marfo, Esther A. |
ppnlink |
617512175 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s12892-022-00170-4 |
up_date |
2024-07-04T00:14:24.892Z |
_version_ |
1803605313997242368 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR049299352</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519172452.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230211s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12892-022-00170-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049299352</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12892-022-00170-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Oppong, Allen</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0759-7685</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stability analysis of yield and aflatoxin accumulation resistance in maize using GGE biplot</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Korean Society of Crop Science (KSCS) 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Maize (Zea mays L.) is the most important cereal crop in sub-Saharan Africa. However, its production is constrained by many factors including low yields and aflatoxin contamination. Host resistance to aflatoxin accumulation and productive hybrid varieties are seen as key approaches in addressing these challenges. Sixteen aflatoxin-resistant inbreds obtained from Corn Host Plant Resistance Research Unit (CHPRRU), USDA ARS in Mississippi, USA, CIMMYT, IITA, etc., were crossed as males to six locally adapted inbreds in a North Carolina II design to generate 160 new hybrids and planted together with 9 checks using 13 × 13 lattice with three replications. The new hybrids were evaluated across six environments. Thirty-one of the most promising hybrids were subjected to the GGE biplot analysis to determine their stability for yield and aflatoxin accumulation resistance. Genotype, G10 (ENTRY-5 × Tzi8, G20 (TZEE-15 × CML343, G28 (TZEEI-6 × CML247 and G26 (TZEEI-6 × CML11 were highly stable hybrids for yield while G08 (ENTRY-5 × Ki3, G11 (ENTRY-85 × CML247 and G19 (TZEEI-15 × MP715 were relatively stable for aflatoxin accumulation resistance. This means that it is possible to produce high-yielding aflatoxin-resistant hybrids for consumers in the trial agro-ecologies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maize</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GGE biplot</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aflatoxin accumulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yield stability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aflatoxin stability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dadzie, Abu M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ifie, Beatrice</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Asante, Maxwell D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prempeh, Ruth N. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abrokwah, Linda A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kubi, Zipporah Appiah</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marfo, Esther A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of crop science and biotechnology</subfield><subfield code="d">Seoul : Korean Soc. of Crop Science, 2009</subfield><subfield code="g">26(2022), 2 vom: 25. Aug., Seite 167-178</subfield><subfield code="w">(DE-627)617512175</subfield><subfield code="w">(DE-600)2534833-4</subfield><subfield code="x">2005-8276</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">day:25</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:167-178</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12892-022-00170-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="b">25</subfield><subfield code="c">08</subfield><subfield code="h">167-178</subfield></datafield></record></collection>
|
score |
7.4014273 |