A Novel Biosynthesized $ ZnFe_{2} %$ O_{4} $@Ag Nanocomposite: Implications for Cytotoxicity, Gene Expression and Antiproliferative Studies in Breast Cancer Cell Line
Abstract The development of potent anticancer compounds with magnetic properties not only provides efficient cancer chemotherapy through site-directed drug delivery but also reduces their side effects by prevention of systemic distribution of the drugs. Therefore, this work aimed to biosynthesize $...
Ausführliche Beschreibung
Autor*in: |
Jodati, Shadi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of cluster science - New York, NY : Springer Science + Business Media B.V., 1990, 34(2022), 1 vom: 04. Feb., Seite 415-426 |
---|---|
Übergeordnetes Werk: |
volume:34 ; year:2022 ; number:1 ; day:04 ; month:02 ; pages:415-426 |
Links: |
---|
DOI / URN: |
10.1007/s10876-022-02234-5 |
---|
Katalog-ID: |
SPR049330543 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR049330543 | ||
003 | DE-627 | ||
005 | 20230519172506.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230215s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10876-022-02234-5 |2 doi | |
035 | |a (DE-627)SPR049330543 | ||
035 | |a (SPR)s10876-022-02234-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Jodati, Shadi |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Novel Biosynthesized $ ZnFe_{2} %$ O_{4} $@Ag Nanocomposite: Implications for Cytotoxicity, Gene Expression and Antiproliferative Studies in Breast Cancer Cell Line |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 | ||
520 | |a Abstract The development of potent anticancer compounds with magnetic properties not only provides efficient cancer chemotherapy through site-directed drug delivery but also reduces their side effects by prevention of systemic distribution of the drugs. Therefore, this work aimed to biosynthesize $ ZnFe_{2} %$ O_{4} $Ag nanocomposite and characterizes its antiproliferative potential against breast cancer cells. The nanocomposite was synthesized using Scenedesmus obliquus extract, its proper synthesis was characterized using physicochemical analyses and its antiproliferative potential in MCF-7 cells was investigated. The nanocomposite had spherical shapes with a size range of 26–44 nm with a low agglomeration state and zeta potential of − 32 mV. Also, the purity and magnetic property of $ ZnFe_{2} %$ O_{4} $@Ag nanoparticles were confirmed by EDS-mapping and VSM analyses, respectively. The MTT assay revealed significantly higher cytotoxicity of $ ZnFe_{2} %$ O_{4} $@Ag for MCF-7 breast cancer cells than HEK-293 (normal) cells, with $ IC_{50} $ value of 111 and 372 µg/mL, respectively. The flow cytometry assay showed apoptosis induction of 49.7% in nanocomposite treated MCF-7 cells, which was confirmed by increased expression of caspase-8 (1.81 folds), and p53 (1.70 folds) genes, and also increased activity of the caspase-3 protease (2.1 folds). The nuclear damages induced by $ ZnFe_{2} %$ O_{4} $@Ag exposure, including chromatin fragmentation and appearance of apoptotic bodies were also confirmed by Hoechst staining of MCF-7 cells. This work described the green synthesis of $ ZnFe_{2} %$ O_{4} $@Ag nanocomposite and characterized their antiproliferative potential against breast cancer cells that could be considered for site-directed cancer chemotherapy after further in-vivo characterization. | ||
650 | 4 | |a Apoptosis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Breast cancer |7 (dpeaa)DE-He213 | |
650 | 4 | |a Magnetic nanocomposite |7 (dpeaa)DE-He213 | |
650 | 4 | |a ZnFe |7 (dpeaa)DE-He213 | |
650 | 4 | |a O |7 (dpeaa)DE-He213 | |
650 | 4 | |a @Ag |7 (dpeaa)DE-He213 | |
700 | 1 | |a Gorji, Selena |4 aut | |
700 | 1 | |a Sharif, Ali Panahi |4 aut | |
700 | 1 | |a Taramsari, Somayeh Maghsoomi |4 aut | |
700 | 1 | |a Salehzadeh, Ali |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of cluster science |d New York, NY : Springer Science + Business Media B.V., 1990 |g 34(2022), 1 vom: 04. Feb., Seite 415-426 |w (DE-627)320573427 |w (DE-600)2016762-3 |x 1572-8862 |7 nnns |
773 | 1 | 8 | |g volume:34 |g year:2022 |g number:1 |g day:04 |g month:02 |g pages:415-426 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10876-022-02234-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 34 |j 2022 |e 1 |b 04 |c 02 |h 415-426 |
author_variant |
s j sj s g sg a p s ap aps s m t sm smt a s as |
---|---|
matchkey_str |
article:15728862:2022----::nvlisnhszdne2_anncmoiemlctosocttxctgnepesoadnirlf |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s10876-022-02234-5 doi (DE-627)SPR049330543 (SPR)s10876-022-02234-5-e DE-627 ger DE-627 rakwb eng Jodati, Shadi verfasserin aut A Novel Biosynthesized $ ZnFe_{2} %$ O_{4} $@Ag Nanocomposite: Implications for Cytotoxicity, Gene Expression and Antiproliferative Studies in Breast Cancer Cell Line 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract The development of potent anticancer compounds with magnetic properties not only provides efficient cancer chemotherapy through site-directed drug delivery but also reduces their side effects by prevention of systemic distribution of the drugs. Therefore, this work aimed to biosynthesize $ ZnFe_{2} %$ O_{4} $Ag nanocomposite and characterizes its antiproliferative potential against breast cancer cells. The nanocomposite was synthesized using Scenedesmus obliquus extract, its proper synthesis was characterized using physicochemical analyses and its antiproliferative potential in MCF-7 cells was investigated. The nanocomposite had spherical shapes with a size range of 26–44 nm with a low agglomeration state and zeta potential of − 32 mV. Also, the purity and magnetic property of $ ZnFe_{2} %$ O_{4} $@Ag nanoparticles were confirmed by EDS-mapping and VSM analyses, respectively. The MTT assay revealed significantly higher cytotoxicity of $ ZnFe_{2} %$ O_{4} $@Ag for MCF-7 breast cancer cells than HEK-293 (normal) cells, with $ IC_{50} $ value of 111 and 372 µg/mL, respectively. The flow cytometry assay showed apoptosis induction of 49.7% in nanocomposite treated MCF-7 cells, which was confirmed by increased expression of caspase-8 (1.81 folds), and p53 (1.70 folds) genes, and also increased activity of the caspase-3 protease (2.1 folds). The nuclear damages induced by $ ZnFe_{2} %$ O_{4} $@Ag exposure, including chromatin fragmentation and appearance of apoptotic bodies were also confirmed by Hoechst staining of MCF-7 cells. This work described the green synthesis of $ ZnFe_{2} %$ O_{4} $@Ag nanocomposite and characterized their antiproliferative potential against breast cancer cells that could be considered for site-directed cancer chemotherapy after further in-vivo characterization. Apoptosis (dpeaa)DE-He213 Breast cancer (dpeaa)DE-He213 Magnetic nanocomposite (dpeaa)DE-He213 ZnFe (dpeaa)DE-He213 O (dpeaa)DE-He213 @Ag (dpeaa)DE-He213 Gorji, Selena aut Sharif, Ali Panahi aut Taramsari, Somayeh Maghsoomi aut Salehzadeh, Ali aut Enthalten in Journal of cluster science New York, NY : Springer Science + Business Media B.V., 1990 34(2022), 1 vom: 04. Feb., Seite 415-426 (DE-627)320573427 (DE-600)2016762-3 1572-8862 nnns volume:34 year:2022 number:1 day:04 month:02 pages:415-426 https://dx.doi.org/10.1007/s10876-022-02234-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 34 2022 1 04 02 415-426 |
spelling |
10.1007/s10876-022-02234-5 doi (DE-627)SPR049330543 (SPR)s10876-022-02234-5-e DE-627 ger DE-627 rakwb eng Jodati, Shadi verfasserin aut A Novel Biosynthesized $ ZnFe_{2} %$ O_{4} $@Ag Nanocomposite: Implications for Cytotoxicity, Gene Expression and Antiproliferative Studies in Breast Cancer Cell Line 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract The development of potent anticancer compounds with magnetic properties not only provides efficient cancer chemotherapy through site-directed drug delivery but also reduces their side effects by prevention of systemic distribution of the drugs. Therefore, this work aimed to biosynthesize $ ZnFe_{2} %$ O_{4} $Ag nanocomposite and characterizes its antiproliferative potential against breast cancer cells. The nanocomposite was synthesized using Scenedesmus obliquus extract, its proper synthesis was characterized using physicochemical analyses and its antiproliferative potential in MCF-7 cells was investigated. The nanocomposite had spherical shapes with a size range of 26–44 nm with a low agglomeration state and zeta potential of − 32 mV. Also, the purity and magnetic property of $ ZnFe_{2} %$ O_{4} $@Ag nanoparticles were confirmed by EDS-mapping and VSM analyses, respectively. The MTT assay revealed significantly higher cytotoxicity of $ ZnFe_{2} %$ O_{4} $@Ag for MCF-7 breast cancer cells than HEK-293 (normal) cells, with $ IC_{50} $ value of 111 and 372 µg/mL, respectively. The flow cytometry assay showed apoptosis induction of 49.7% in nanocomposite treated MCF-7 cells, which was confirmed by increased expression of caspase-8 (1.81 folds), and p53 (1.70 folds) genes, and also increased activity of the caspase-3 protease (2.1 folds). The nuclear damages induced by $ ZnFe_{2} %$ O_{4} $@Ag exposure, including chromatin fragmentation and appearance of apoptotic bodies were also confirmed by Hoechst staining of MCF-7 cells. This work described the green synthesis of $ ZnFe_{2} %$ O_{4} $@Ag nanocomposite and characterized their antiproliferative potential against breast cancer cells that could be considered for site-directed cancer chemotherapy after further in-vivo characterization. Apoptosis (dpeaa)DE-He213 Breast cancer (dpeaa)DE-He213 Magnetic nanocomposite (dpeaa)DE-He213 ZnFe (dpeaa)DE-He213 O (dpeaa)DE-He213 @Ag (dpeaa)DE-He213 Gorji, Selena aut Sharif, Ali Panahi aut Taramsari, Somayeh Maghsoomi aut Salehzadeh, Ali aut Enthalten in Journal of cluster science New York, NY : Springer Science + Business Media B.V., 1990 34(2022), 1 vom: 04. Feb., Seite 415-426 (DE-627)320573427 (DE-600)2016762-3 1572-8862 nnns volume:34 year:2022 number:1 day:04 month:02 pages:415-426 https://dx.doi.org/10.1007/s10876-022-02234-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 34 2022 1 04 02 415-426 |
allfields_unstemmed |
10.1007/s10876-022-02234-5 doi (DE-627)SPR049330543 (SPR)s10876-022-02234-5-e DE-627 ger DE-627 rakwb eng Jodati, Shadi verfasserin aut A Novel Biosynthesized $ ZnFe_{2} %$ O_{4} $@Ag Nanocomposite: Implications for Cytotoxicity, Gene Expression and Antiproliferative Studies in Breast Cancer Cell Line 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract The development of potent anticancer compounds with magnetic properties not only provides efficient cancer chemotherapy through site-directed drug delivery but also reduces their side effects by prevention of systemic distribution of the drugs. Therefore, this work aimed to biosynthesize $ ZnFe_{2} %$ O_{4} $Ag nanocomposite and characterizes its antiproliferative potential against breast cancer cells. The nanocomposite was synthesized using Scenedesmus obliquus extract, its proper synthesis was characterized using physicochemical analyses and its antiproliferative potential in MCF-7 cells was investigated. The nanocomposite had spherical shapes with a size range of 26–44 nm with a low agglomeration state and zeta potential of − 32 mV. Also, the purity and magnetic property of $ ZnFe_{2} %$ O_{4} $@Ag nanoparticles were confirmed by EDS-mapping and VSM analyses, respectively. The MTT assay revealed significantly higher cytotoxicity of $ ZnFe_{2} %$ O_{4} $@Ag for MCF-7 breast cancer cells than HEK-293 (normal) cells, with $ IC_{50} $ value of 111 and 372 µg/mL, respectively. The flow cytometry assay showed apoptosis induction of 49.7% in nanocomposite treated MCF-7 cells, which was confirmed by increased expression of caspase-8 (1.81 folds), and p53 (1.70 folds) genes, and also increased activity of the caspase-3 protease (2.1 folds). The nuclear damages induced by $ ZnFe_{2} %$ O_{4} $@Ag exposure, including chromatin fragmentation and appearance of apoptotic bodies were also confirmed by Hoechst staining of MCF-7 cells. This work described the green synthesis of $ ZnFe_{2} %$ O_{4} $@Ag nanocomposite and characterized their antiproliferative potential against breast cancer cells that could be considered for site-directed cancer chemotherapy after further in-vivo characterization. Apoptosis (dpeaa)DE-He213 Breast cancer (dpeaa)DE-He213 Magnetic nanocomposite (dpeaa)DE-He213 ZnFe (dpeaa)DE-He213 O (dpeaa)DE-He213 @Ag (dpeaa)DE-He213 Gorji, Selena aut Sharif, Ali Panahi aut Taramsari, Somayeh Maghsoomi aut Salehzadeh, Ali aut Enthalten in Journal of cluster science New York, NY : Springer Science + Business Media B.V., 1990 34(2022), 1 vom: 04. Feb., Seite 415-426 (DE-627)320573427 (DE-600)2016762-3 1572-8862 nnns volume:34 year:2022 number:1 day:04 month:02 pages:415-426 https://dx.doi.org/10.1007/s10876-022-02234-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 34 2022 1 04 02 415-426 |
allfieldsGer |
10.1007/s10876-022-02234-5 doi (DE-627)SPR049330543 (SPR)s10876-022-02234-5-e DE-627 ger DE-627 rakwb eng Jodati, Shadi verfasserin aut A Novel Biosynthesized $ ZnFe_{2} %$ O_{4} $@Ag Nanocomposite: Implications for Cytotoxicity, Gene Expression and Antiproliferative Studies in Breast Cancer Cell Line 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract The development of potent anticancer compounds with magnetic properties not only provides efficient cancer chemotherapy through site-directed drug delivery but also reduces their side effects by prevention of systemic distribution of the drugs. Therefore, this work aimed to biosynthesize $ ZnFe_{2} %$ O_{4} $Ag nanocomposite and characterizes its antiproliferative potential against breast cancer cells. The nanocomposite was synthesized using Scenedesmus obliquus extract, its proper synthesis was characterized using physicochemical analyses and its antiproliferative potential in MCF-7 cells was investigated. The nanocomposite had spherical shapes with a size range of 26–44 nm with a low agglomeration state and zeta potential of − 32 mV. Also, the purity and magnetic property of $ ZnFe_{2} %$ O_{4} $@Ag nanoparticles were confirmed by EDS-mapping and VSM analyses, respectively. The MTT assay revealed significantly higher cytotoxicity of $ ZnFe_{2} %$ O_{4} $@Ag for MCF-7 breast cancer cells than HEK-293 (normal) cells, with $ IC_{50} $ value of 111 and 372 µg/mL, respectively. The flow cytometry assay showed apoptosis induction of 49.7% in nanocomposite treated MCF-7 cells, which was confirmed by increased expression of caspase-8 (1.81 folds), and p53 (1.70 folds) genes, and also increased activity of the caspase-3 protease (2.1 folds). The nuclear damages induced by $ ZnFe_{2} %$ O_{4} $@Ag exposure, including chromatin fragmentation and appearance of apoptotic bodies were also confirmed by Hoechst staining of MCF-7 cells. This work described the green synthesis of $ ZnFe_{2} %$ O_{4} $@Ag nanocomposite and characterized their antiproliferative potential against breast cancer cells that could be considered for site-directed cancer chemotherapy after further in-vivo characterization. Apoptosis (dpeaa)DE-He213 Breast cancer (dpeaa)DE-He213 Magnetic nanocomposite (dpeaa)DE-He213 ZnFe (dpeaa)DE-He213 O (dpeaa)DE-He213 @Ag (dpeaa)DE-He213 Gorji, Selena aut Sharif, Ali Panahi aut Taramsari, Somayeh Maghsoomi aut Salehzadeh, Ali aut Enthalten in Journal of cluster science New York, NY : Springer Science + Business Media B.V., 1990 34(2022), 1 vom: 04. Feb., Seite 415-426 (DE-627)320573427 (DE-600)2016762-3 1572-8862 nnns volume:34 year:2022 number:1 day:04 month:02 pages:415-426 https://dx.doi.org/10.1007/s10876-022-02234-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 34 2022 1 04 02 415-426 |
allfieldsSound |
10.1007/s10876-022-02234-5 doi (DE-627)SPR049330543 (SPR)s10876-022-02234-5-e DE-627 ger DE-627 rakwb eng Jodati, Shadi verfasserin aut A Novel Biosynthesized $ ZnFe_{2} %$ O_{4} $@Ag Nanocomposite: Implications for Cytotoxicity, Gene Expression and Antiproliferative Studies in Breast Cancer Cell Line 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract The development of potent anticancer compounds with magnetic properties not only provides efficient cancer chemotherapy through site-directed drug delivery but also reduces their side effects by prevention of systemic distribution of the drugs. Therefore, this work aimed to biosynthesize $ ZnFe_{2} %$ O_{4} $Ag nanocomposite and characterizes its antiproliferative potential against breast cancer cells. The nanocomposite was synthesized using Scenedesmus obliquus extract, its proper synthesis was characterized using physicochemical analyses and its antiproliferative potential in MCF-7 cells was investigated. The nanocomposite had spherical shapes with a size range of 26–44 nm with a low agglomeration state and zeta potential of − 32 mV. Also, the purity and magnetic property of $ ZnFe_{2} %$ O_{4} $@Ag nanoparticles were confirmed by EDS-mapping and VSM analyses, respectively. The MTT assay revealed significantly higher cytotoxicity of $ ZnFe_{2} %$ O_{4} $@Ag for MCF-7 breast cancer cells than HEK-293 (normal) cells, with $ IC_{50} $ value of 111 and 372 µg/mL, respectively. The flow cytometry assay showed apoptosis induction of 49.7% in nanocomposite treated MCF-7 cells, which was confirmed by increased expression of caspase-8 (1.81 folds), and p53 (1.70 folds) genes, and also increased activity of the caspase-3 protease (2.1 folds). The nuclear damages induced by $ ZnFe_{2} %$ O_{4} $@Ag exposure, including chromatin fragmentation and appearance of apoptotic bodies were also confirmed by Hoechst staining of MCF-7 cells. This work described the green synthesis of $ ZnFe_{2} %$ O_{4} $@Ag nanocomposite and characterized their antiproliferative potential against breast cancer cells that could be considered for site-directed cancer chemotherapy after further in-vivo characterization. Apoptosis (dpeaa)DE-He213 Breast cancer (dpeaa)DE-He213 Magnetic nanocomposite (dpeaa)DE-He213 ZnFe (dpeaa)DE-He213 O (dpeaa)DE-He213 @Ag (dpeaa)DE-He213 Gorji, Selena aut Sharif, Ali Panahi aut Taramsari, Somayeh Maghsoomi aut Salehzadeh, Ali aut Enthalten in Journal of cluster science New York, NY : Springer Science + Business Media B.V., 1990 34(2022), 1 vom: 04. Feb., Seite 415-426 (DE-627)320573427 (DE-600)2016762-3 1572-8862 nnns volume:34 year:2022 number:1 day:04 month:02 pages:415-426 https://dx.doi.org/10.1007/s10876-022-02234-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 34 2022 1 04 02 415-426 |
language |
English |
source |
Enthalten in Journal of cluster science 34(2022), 1 vom: 04. Feb., Seite 415-426 volume:34 year:2022 number:1 day:04 month:02 pages:415-426 |
sourceStr |
Enthalten in Journal of cluster science 34(2022), 1 vom: 04. Feb., Seite 415-426 volume:34 year:2022 number:1 day:04 month:02 pages:415-426 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Apoptosis Breast cancer Magnetic nanocomposite ZnFe O @Ag |
isfreeaccess_bool |
false |
container_title |
Journal of cluster science |
authorswithroles_txt_mv |
Jodati, Shadi @@aut@@ Gorji, Selena @@aut@@ Sharif, Ali Panahi @@aut@@ Taramsari, Somayeh Maghsoomi @@aut@@ Salehzadeh, Ali @@aut@@ |
publishDateDaySort_date |
2022-02-04T00:00:00Z |
hierarchy_top_id |
320573427 |
id |
SPR049330543 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR049330543</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519172506.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230215s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10876-022-02234-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049330543</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10876-022-02234-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jodati, Shadi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Novel Biosynthesized $ ZnFe_{2} %$ O_{4} $@Ag Nanocomposite: Implications for Cytotoxicity, Gene Expression and Antiproliferative Studies in Breast Cancer Cell Line</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The development of potent anticancer compounds with magnetic properties not only provides efficient cancer chemotherapy through site-directed drug delivery but also reduces their side effects by prevention of systemic distribution of the drugs. Therefore, this work aimed to biosynthesize $ ZnFe_{2} %$ O_{4} $Ag nanocomposite and characterizes its antiproliferative potential against breast cancer cells. The nanocomposite was synthesized using Scenedesmus obliquus extract, its proper synthesis was characterized using physicochemical analyses and its antiproliferative potential in MCF-7 cells was investigated. The nanocomposite had spherical shapes with a size range of 26–44 nm with a low agglomeration state and zeta potential of − 32 mV. Also, the purity and magnetic property of $ ZnFe_{2} %$ O_{4} $@Ag nanoparticles were confirmed by EDS-mapping and VSM analyses, respectively. The MTT assay revealed significantly higher cytotoxicity of $ ZnFe_{2} %$ O_{4} $@Ag for MCF-7 breast cancer cells than HEK-293 (normal) cells, with $ IC_{50} $ value of 111 and 372 µg/mL, respectively. The flow cytometry assay showed apoptosis induction of 49.7% in nanocomposite treated MCF-7 cells, which was confirmed by increased expression of caspase-8 (1.81 folds), and p53 (1.70 folds) genes, and also increased activity of the caspase-3 protease (2.1 folds). The nuclear damages induced by $ ZnFe_{2} %$ O_{4} $@Ag exposure, including chromatin fragmentation and appearance of apoptotic bodies were also confirmed by Hoechst staining of MCF-7 cells. This work described the green synthesis of $ ZnFe_{2} %$ O_{4} $@Ag nanocomposite and characterized their antiproliferative potential against breast cancer cells that could be considered for site-directed cancer chemotherapy after further in-vivo characterization.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apoptosis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breast cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic nanocomposite</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ZnFe</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">O</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">@Ag</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gorji, Selena</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sharif, Ali Panahi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taramsari, Somayeh Maghsoomi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Salehzadeh, Ali</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of cluster science</subfield><subfield code="d">New York, NY : Springer Science + Business Media B.V., 1990</subfield><subfield code="g">34(2022), 1 vom: 04. Feb., Seite 415-426</subfield><subfield code="w">(DE-627)320573427</subfield><subfield code="w">(DE-600)2016762-3</subfield><subfield code="x">1572-8862</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:04</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:415-426</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10876-022-02234-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">04</subfield><subfield code="c">02</subfield><subfield code="h">415-426</subfield></datafield></record></collection>
|
author |
Jodati, Shadi |
spellingShingle |
Jodati, Shadi misc Apoptosis misc Breast cancer misc Magnetic nanocomposite misc ZnFe misc O misc @Ag A Novel Biosynthesized $ ZnFe_{2} %$ O_{4} $@Ag Nanocomposite: Implications for Cytotoxicity, Gene Expression and Antiproliferative Studies in Breast Cancer Cell Line |
authorStr |
Jodati, Shadi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320573427 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1572-8862 |
topic_title |
A Novel Biosynthesized $ ZnFe_{2} %$ O_{4} $@Ag Nanocomposite: Implications for Cytotoxicity, Gene Expression and Antiproliferative Studies in Breast Cancer Cell Line Apoptosis (dpeaa)DE-He213 Breast cancer (dpeaa)DE-He213 Magnetic nanocomposite (dpeaa)DE-He213 ZnFe (dpeaa)DE-He213 O (dpeaa)DE-He213 @Ag (dpeaa)DE-He213 |
topic |
misc Apoptosis misc Breast cancer misc Magnetic nanocomposite misc ZnFe misc O misc @Ag |
topic_unstemmed |
misc Apoptosis misc Breast cancer misc Magnetic nanocomposite misc ZnFe misc O misc @Ag |
topic_browse |
misc Apoptosis misc Breast cancer misc Magnetic nanocomposite misc ZnFe misc O misc @Ag |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of cluster science |
hierarchy_parent_id |
320573427 |
hierarchy_top_title |
Journal of cluster science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320573427 (DE-600)2016762-3 |
title |
A Novel Biosynthesized $ ZnFe_{2} %$ O_{4} $@Ag Nanocomposite: Implications for Cytotoxicity, Gene Expression and Antiproliferative Studies in Breast Cancer Cell Line |
ctrlnum |
(DE-627)SPR049330543 (SPR)s10876-022-02234-5-e |
title_full |
A Novel Biosynthesized $ ZnFe_{2} %$ O_{4} $@Ag Nanocomposite: Implications for Cytotoxicity, Gene Expression and Antiproliferative Studies in Breast Cancer Cell Line |
author_sort |
Jodati, Shadi |
journal |
Journal of cluster science |
journalStr |
Journal of cluster science |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
415 |
author_browse |
Jodati, Shadi Gorji, Selena Sharif, Ali Panahi Taramsari, Somayeh Maghsoomi Salehzadeh, Ali |
container_volume |
34 |
format_se |
Elektronische Aufsätze |
author-letter |
Jodati, Shadi |
doi_str_mv |
10.1007/s10876-022-02234-5 |
title_sort |
novel biosynthesized $ znfe_{2} %$ o_{4} $@ag nanocomposite: implications for cytotoxicity, gene expression and antiproliferative studies in breast cancer cell line |
title_auth |
A Novel Biosynthesized $ ZnFe_{2} %$ O_{4} $@Ag Nanocomposite: Implications for Cytotoxicity, Gene Expression and Antiproliferative Studies in Breast Cancer Cell Line |
abstract |
Abstract The development of potent anticancer compounds with magnetic properties not only provides efficient cancer chemotherapy through site-directed drug delivery but also reduces their side effects by prevention of systemic distribution of the drugs. Therefore, this work aimed to biosynthesize $ ZnFe_{2} %$ O_{4} $Ag nanocomposite and characterizes its antiproliferative potential against breast cancer cells. The nanocomposite was synthesized using Scenedesmus obliquus extract, its proper synthesis was characterized using physicochemical analyses and its antiproliferative potential in MCF-7 cells was investigated. The nanocomposite had spherical shapes with a size range of 26–44 nm with a low agglomeration state and zeta potential of − 32 mV. Also, the purity and magnetic property of $ ZnFe_{2} %$ O_{4} $@Ag nanoparticles were confirmed by EDS-mapping and VSM analyses, respectively. The MTT assay revealed significantly higher cytotoxicity of $ ZnFe_{2} %$ O_{4} $@Ag for MCF-7 breast cancer cells than HEK-293 (normal) cells, with $ IC_{50} $ value of 111 and 372 µg/mL, respectively. The flow cytometry assay showed apoptosis induction of 49.7% in nanocomposite treated MCF-7 cells, which was confirmed by increased expression of caspase-8 (1.81 folds), and p53 (1.70 folds) genes, and also increased activity of the caspase-3 protease (2.1 folds). The nuclear damages induced by $ ZnFe_{2} %$ O_{4} $@Ag exposure, including chromatin fragmentation and appearance of apoptotic bodies were also confirmed by Hoechst staining of MCF-7 cells. This work described the green synthesis of $ ZnFe_{2} %$ O_{4} $@Ag nanocomposite and characterized their antiproliferative potential against breast cancer cells that could be considered for site-directed cancer chemotherapy after further in-vivo characterization. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstractGer |
Abstract The development of potent anticancer compounds with magnetic properties not only provides efficient cancer chemotherapy through site-directed drug delivery but also reduces their side effects by prevention of systemic distribution of the drugs. Therefore, this work aimed to biosynthesize $ ZnFe_{2} %$ O_{4} $Ag nanocomposite and characterizes its antiproliferative potential against breast cancer cells. The nanocomposite was synthesized using Scenedesmus obliquus extract, its proper synthesis was characterized using physicochemical analyses and its antiproliferative potential in MCF-7 cells was investigated. The nanocomposite had spherical shapes with a size range of 26–44 nm with a low agglomeration state and zeta potential of − 32 mV. Also, the purity and magnetic property of $ ZnFe_{2} %$ O_{4} $@Ag nanoparticles were confirmed by EDS-mapping and VSM analyses, respectively. The MTT assay revealed significantly higher cytotoxicity of $ ZnFe_{2} %$ O_{4} $@Ag for MCF-7 breast cancer cells than HEK-293 (normal) cells, with $ IC_{50} $ value of 111 and 372 µg/mL, respectively. The flow cytometry assay showed apoptosis induction of 49.7% in nanocomposite treated MCF-7 cells, which was confirmed by increased expression of caspase-8 (1.81 folds), and p53 (1.70 folds) genes, and also increased activity of the caspase-3 protease (2.1 folds). The nuclear damages induced by $ ZnFe_{2} %$ O_{4} $@Ag exposure, including chromatin fragmentation and appearance of apoptotic bodies were also confirmed by Hoechst staining of MCF-7 cells. This work described the green synthesis of $ ZnFe_{2} %$ O_{4} $@Ag nanocomposite and characterized their antiproliferative potential against breast cancer cells that could be considered for site-directed cancer chemotherapy after further in-vivo characterization. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract The development of potent anticancer compounds with magnetic properties not only provides efficient cancer chemotherapy through site-directed drug delivery but also reduces their side effects by prevention of systemic distribution of the drugs. Therefore, this work aimed to biosynthesize $ ZnFe_{2} %$ O_{4} $Ag nanocomposite and characterizes its antiproliferative potential against breast cancer cells. The nanocomposite was synthesized using Scenedesmus obliquus extract, its proper synthesis was characterized using physicochemical analyses and its antiproliferative potential in MCF-7 cells was investigated. The nanocomposite had spherical shapes with a size range of 26–44 nm with a low agglomeration state and zeta potential of − 32 mV. Also, the purity and magnetic property of $ ZnFe_{2} %$ O_{4} $@Ag nanoparticles were confirmed by EDS-mapping and VSM analyses, respectively. The MTT assay revealed significantly higher cytotoxicity of $ ZnFe_{2} %$ O_{4} $@Ag for MCF-7 breast cancer cells than HEK-293 (normal) cells, with $ IC_{50} $ value of 111 and 372 µg/mL, respectively. The flow cytometry assay showed apoptosis induction of 49.7% in nanocomposite treated MCF-7 cells, which was confirmed by increased expression of caspase-8 (1.81 folds), and p53 (1.70 folds) genes, and also increased activity of the caspase-3 protease (2.1 folds). The nuclear damages induced by $ ZnFe_{2} %$ O_{4} $@Ag exposure, including chromatin fragmentation and appearance of apoptotic bodies were also confirmed by Hoechst staining of MCF-7 cells. This work described the green synthesis of $ ZnFe_{2} %$ O_{4} $@Ag nanocomposite and characterized their antiproliferative potential against breast cancer cells that could be considered for site-directed cancer chemotherapy after further in-vivo characterization. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
A Novel Biosynthesized $ ZnFe_{2} %$ O_{4} $@Ag Nanocomposite: Implications for Cytotoxicity, Gene Expression and Antiproliferative Studies in Breast Cancer Cell Line |
url |
https://dx.doi.org/10.1007/s10876-022-02234-5 |
remote_bool |
true |
author2 |
Gorji, Selena Sharif, Ali Panahi Taramsari, Somayeh Maghsoomi Salehzadeh, Ali |
author2Str |
Gorji, Selena Sharif, Ali Panahi Taramsari, Somayeh Maghsoomi Salehzadeh, Ali |
ppnlink |
320573427 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10876-022-02234-5 |
up_date |
2024-07-04T00:21:47.995Z |
_version_ |
1803605778625462272 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR049330543</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519172506.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230215s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10876-022-02234-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049330543</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10876-022-02234-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jodati, Shadi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Novel Biosynthesized $ ZnFe_{2} %$ O_{4} $@Ag Nanocomposite: Implications for Cytotoxicity, Gene Expression and Antiproliferative Studies in Breast Cancer Cell Line</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The development of potent anticancer compounds with magnetic properties not only provides efficient cancer chemotherapy through site-directed drug delivery but also reduces their side effects by prevention of systemic distribution of the drugs. Therefore, this work aimed to biosynthesize $ ZnFe_{2} %$ O_{4} $Ag nanocomposite and characterizes its antiproliferative potential against breast cancer cells. The nanocomposite was synthesized using Scenedesmus obliquus extract, its proper synthesis was characterized using physicochemical analyses and its antiproliferative potential in MCF-7 cells was investigated. The nanocomposite had spherical shapes with a size range of 26–44 nm with a low agglomeration state and zeta potential of − 32 mV. Also, the purity and magnetic property of $ ZnFe_{2} %$ O_{4} $@Ag nanoparticles were confirmed by EDS-mapping and VSM analyses, respectively. The MTT assay revealed significantly higher cytotoxicity of $ ZnFe_{2} %$ O_{4} $@Ag for MCF-7 breast cancer cells than HEK-293 (normal) cells, with $ IC_{50} $ value of 111 and 372 µg/mL, respectively. The flow cytometry assay showed apoptosis induction of 49.7% in nanocomposite treated MCF-7 cells, which was confirmed by increased expression of caspase-8 (1.81 folds), and p53 (1.70 folds) genes, and also increased activity of the caspase-3 protease (2.1 folds). The nuclear damages induced by $ ZnFe_{2} %$ O_{4} $@Ag exposure, including chromatin fragmentation and appearance of apoptotic bodies were also confirmed by Hoechst staining of MCF-7 cells. This work described the green synthesis of $ ZnFe_{2} %$ O_{4} $@Ag nanocomposite and characterized their antiproliferative potential against breast cancer cells that could be considered for site-directed cancer chemotherapy after further in-vivo characterization.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apoptosis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breast cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic nanocomposite</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ZnFe</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">O</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">@Ag</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gorji, Selena</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sharif, Ali Panahi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taramsari, Somayeh Maghsoomi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Salehzadeh, Ali</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of cluster science</subfield><subfield code="d">New York, NY : Springer Science + Business Media B.V., 1990</subfield><subfield code="g">34(2022), 1 vom: 04. Feb., Seite 415-426</subfield><subfield code="w">(DE-627)320573427</subfield><subfield code="w">(DE-600)2016762-3</subfield><subfield code="x">1572-8862</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:04</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:415-426</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10876-022-02234-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">04</subfield><subfield code="c">02</subfield><subfield code="h">415-426</subfield></datafield></record></collection>
|
score |
7.4011803 |