Carbon-based nanohybrid fabricated in-situ and boosted the adsorption of anionic reactive yellow dye
Abstract The purpose of this research is to report a unique manipulation of producing carbon nanotubes/carbon xerogel (CNTs/CX) hybrid loaded with bimetallic catalysts of Fe–Ni via one-step chemical vapor deposition (CVD) of camphor. Active bimetallic catalysts were formed during carbonization of re...
Ausführliche Beschreibung
Autor*in: |
Fathy, N. A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of environmental science and technology - Tehran : Islamic Azad University, 2004, 20(2022), 1 vom: 30. März, Seite 293-306 |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2022 ; number:1 ; day:30 ; month:03 ; pages:293-306 |
Links: |
---|
DOI / URN: |
10.1007/s13762-022-04061-7 |
---|
Katalog-ID: |
SPR049428217 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR049428217 | ||
003 | DE-627 | ||
005 | 20230510060646.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s13762-022-04061-7 |2 doi | |
035 | |a (DE-627)SPR049428217 | ||
035 | |a (SPR)s13762-022-04061-7-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Fathy, N. A. |e verfasserin |0 (orcid)0000-0002-6522-1053 |4 aut | |
245 | 1 | 0 | |a Carbon-based nanohybrid fabricated in-situ and boosted the adsorption of anionic reactive yellow dye |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Abstract The purpose of this research is to report a unique manipulation of producing carbon nanotubes/carbon xerogel (CNTs/CX) hybrid loaded with bimetallic catalysts of Fe–Ni via one-step chemical vapor deposition (CVD) of camphor. Active bimetallic catalysts were formed during carbonization of resorcinol–formaldehyde xerogel at 800 °C to form carbon xerogel (CX); meanwhile, the carbon gas was librated from camphor at 220 °C for 45 min. CX and CNTs/CX samples were analyzed using measurements of transmission electron microscope (TEM), X-ray diffraction tool (XRD) and Fourier transform infrared spectroscopy (FTIR). Further, the liquid-phase adsorption of a reactive yellow 160 (RY160) dye on CX and CNTs/CX samples and thermodynamic studies were investigated. TEM and XRD results revealed the formation of carbon nodules in CX combined with bundles of CNTs having outer diameters ranged from 40 to 80 nm in CNTs/CX. Adsorption of RY160 dye was highly relied on pH, temperature, initial dye concentration and contact time. Through kinetic modeling, pseudo-second-order kinetic model expressed closely the experimental data of RY160 adsorption. Equilibrium adsorption studies declared that the Freundlich model is the better with adsorption of RY160 on CNTs/CX due to it has heterogeneous surface character resulting from combination of CX and CNTs. Langmuir adsorption capacity ($ q_{L} $, mg/g) values exhibited that CNTs/CX sample have a superior adsorption of RY160 dye which were reached to 167 mg/g than that by CX ($ q_{L} $ = 125 mg/g). Thereof, the produced CX and CNTs/CX samples present higher removal capacity and can be employed successfully for RY160 dye removal from a textile wastewater. | ||
650 | 4 | |a Carbon nanotubes/Carbon xerogels nanohybrid |7 (dpeaa)DE-He213 | |
650 | 4 | |a Liquid-phase adsorption |7 (dpeaa)DE-He213 | |
650 | 4 | |a Reactive yellow dye |7 (dpeaa)DE-He213 | |
650 | 4 | |a Wastewater treatment |7 (dpeaa)DE-He213 | |
700 | 1 | |a El-Shafey, S. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of environmental science and technology |d Tehran : Islamic Azad University, 2004 |g 20(2022), 1 vom: 30. März, Seite 293-306 |w (DE-627)510463398 |w (DE-600)2230399-6 |x 1735-2630 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2022 |g number:1 |g day:30 |g month:03 |g pages:293-306 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s13762-022-04061-7 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 20 |j 2022 |e 1 |b 30 |c 03 |h 293-306 |
author_variant |
n a f na naf s e s ses |
---|---|
matchkey_str |
article:17352630:2022----::abnaennhbifbiaeistadosetedopinf |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s13762-022-04061-7 doi (DE-627)SPR049428217 (SPR)s13762-022-04061-7-e DE-627 ger DE-627 rakwb eng Fathy, N. A. verfasserin (orcid)0000-0002-6522-1053 aut Carbon-based nanohybrid fabricated in-situ and boosted the adsorption of anionic reactive yellow dye 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract The purpose of this research is to report a unique manipulation of producing carbon nanotubes/carbon xerogel (CNTs/CX) hybrid loaded with bimetallic catalysts of Fe–Ni via one-step chemical vapor deposition (CVD) of camphor. Active bimetallic catalysts were formed during carbonization of resorcinol–formaldehyde xerogel at 800 °C to form carbon xerogel (CX); meanwhile, the carbon gas was librated from camphor at 220 °C for 45 min. CX and CNTs/CX samples were analyzed using measurements of transmission electron microscope (TEM), X-ray diffraction tool (XRD) and Fourier transform infrared spectroscopy (FTIR). Further, the liquid-phase adsorption of a reactive yellow 160 (RY160) dye on CX and CNTs/CX samples and thermodynamic studies were investigated. TEM and XRD results revealed the formation of carbon nodules in CX combined with bundles of CNTs having outer diameters ranged from 40 to 80 nm in CNTs/CX. Adsorption of RY160 dye was highly relied on pH, temperature, initial dye concentration and contact time. Through kinetic modeling, pseudo-second-order kinetic model expressed closely the experimental data of RY160 adsorption. Equilibrium adsorption studies declared that the Freundlich model is the better with adsorption of RY160 on CNTs/CX due to it has heterogeneous surface character resulting from combination of CX and CNTs. Langmuir adsorption capacity ($ q_{L} $, mg/g) values exhibited that CNTs/CX sample have a superior adsorption of RY160 dye which were reached to 167 mg/g than that by CX ($ q_{L} $ = 125 mg/g). Thereof, the produced CX and CNTs/CX samples present higher removal capacity and can be employed successfully for RY160 dye removal from a textile wastewater. Carbon nanotubes/Carbon xerogels nanohybrid (dpeaa)DE-He213 Liquid-phase adsorption (dpeaa)DE-He213 Reactive yellow dye (dpeaa)DE-He213 Wastewater treatment (dpeaa)DE-He213 El-Shafey, S. aut Enthalten in International journal of environmental science and technology Tehran : Islamic Azad University, 2004 20(2022), 1 vom: 30. März, Seite 293-306 (DE-627)510463398 (DE-600)2230399-6 1735-2630 nnns volume:20 year:2022 number:1 day:30 month:03 pages:293-306 https://dx.doi.org/10.1007/s13762-022-04061-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 20 2022 1 30 03 293-306 |
spelling |
10.1007/s13762-022-04061-7 doi (DE-627)SPR049428217 (SPR)s13762-022-04061-7-e DE-627 ger DE-627 rakwb eng Fathy, N. A. verfasserin (orcid)0000-0002-6522-1053 aut Carbon-based nanohybrid fabricated in-situ and boosted the adsorption of anionic reactive yellow dye 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract The purpose of this research is to report a unique manipulation of producing carbon nanotubes/carbon xerogel (CNTs/CX) hybrid loaded with bimetallic catalysts of Fe–Ni via one-step chemical vapor deposition (CVD) of camphor. Active bimetallic catalysts were formed during carbonization of resorcinol–formaldehyde xerogel at 800 °C to form carbon xerogel (CX); meanwhile, the carbon gas was librated from camphor at 220 °C for 45 min. CX and CNTs/CX samples were analyzed using measurements of transmission electron microscope (TEM), X-ray diffraction tool (XRD) and Fourier transform infrared spectroscopy (FTIR). Further, the liquid-phase adsorption of a reactive yellow 160 (RY160) dye on CX and CNTs/CX samples and thermodynamic studies were investigated. TEM and XRD results revealed the formation of carbon nodules in CX combined with bundles of CNTs having outer diameters ranged from 40 to 80 nm in CNTs/CX. Adsorption of RY160 dye was highly relied on pH, temperature, initial dye concentration and contact time. Through kinetic modeling, pseudo-second-order kinetic model expressed closely the experimental data of RY160 adsorption. Equilibrium adsorption studies declared that the Freundlich model is the better with adsorption of RY160 on CNTs/CX due to it has heterogeneous surface character resulting from combination of CX and CNTs. Langmuir adsorption capacity ($ q_{L} $, mg/g) values exhibited that CNTs/CX sample have a superior adsorption of RY160 dye which were reached to 167 mg/g than that by CX ($ q_{L} $ = 125 mg/g). Thereof, the produced CX and CNTs/CX samples present higher removal capacity and can be employed successfully for RY160 dye removal from a textile wastewater. Carbon nanotubes/Carbon xerogels nanohybrid (dpeaa)DE-He213 Liquid-phase adsorption (dpeaa)DE-He213 Reactive yellow dye (dpeaa)DE-He213 Wastewater treatment (dpeaa)DE-He213 El-Shafey, S. aut Enthalten in International journal of environmental science and technology Tehran : Islamic Azad University, 2004 20(2022), 1 vom: 30. März, Seite 293-306 (DE-627)510463398 (DE-600)2230399-6 1735-2630 nnns volume:20 year:2022 number:1 day:30 month:03 pages:293-306 https://dx.doi.org/10.1007/s13762-022-04061-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 20 2022 1 30 03 293-306 |
allfields_unstemmed |
10.1007/s13762-022-04061-7 doi (DE-627)SPR049428217 (SPR)s13762-022-04061-7-e DE-627 ger DE-627 rakwb eng Fathy, N. A. verfasserin (orcid)0000-0002-6522-1053 aut Carbon-based nanohybrid fabricated in-situ and boosted the adsorption of anionic reactive yellow dye 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract The purpose of this research is to report a unique manipulation of producing carbon nanotubes/carbon xerogel (CNTs/CX) hybrid loaded with bimetallic catalysts of Fe–Ni via one-step chemical vapor deposition (CVD) of camphor. Active bimetallic catalysts were formed during carbonization of resorcinol–formaldehyde xerogel at 800 °C to form carbon xerogel (CX); meanwhile, the carbon gas was librated from camphor at 220 °C for 45 min. CX and CNTs/CX samples were analyzed using measurements of transmission electron microscope (TEM), X-ray diffraction tool (XRD) and Fourier transform infrared spectroscopy (FTIR). Further, the liquid-phase adsorption of a reactive yellow 160 (RY160) dye on CX and CNTs/CX samples and thermodynamic studies were investigated. TEM and XRD results revealed the formation of carbon nodules in CX combined with bundles of CNTs having outer diameters ranged from 40 to 80 nm in CNTs/CX. Adsorption of RY160 dye was highly relied on pH, temperature, initial dye concentration and contact time. Through kinetic modeling, pseudo-second-order kinetic model expressed closely the experimental data of RY160 adsorption. Equilibrium adsorption studies declared that the Freundlich model is the better with adsorption of RY160 on CNTs/CX due to it has heterogeneous surface character resulting from combination of CX and CNTs. Langmuir adsorption capacity ($ q_{L} $, mg/g) values exhibited that CNTs/CX sample have a superior adsorption of RY160 dye which were reached to 167 mg/g than that by CX ($ q_{L} $ = 125 mg/g). Thereof, the produced CX and CNTs/CX samples present higher removal capacity and can be employed successfully for RY160 dye removal from a textile wastewater. Carbon nanotubes/Carbon xerogels nanohybrid (dpeaa)DE-He213 Liquid-phase adsorption (dpeaa)DE-He213 Reactive yellow dye (dpeaa)DE-He213 Wastewater treatment (dpeaa)DE-He213 El-Shafey, S. aut Enthalten in International journal of environmental science and technology Tehran : Islamic Azad University, 2004 20(2022), 1 vom: 30. März, Seite 293-306 (DE-627)510463398 (DE-600)2230399-6 1735-2630 nnns volume:20 year:2022 number:1 day:30 month:03 pages:293-306 https://dx.doi.org/10.1007/s13762-022-04061-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 20 2022 1 30 03 293-306 |
allfieldsGer |
10.1007/s13762-022-04061-7 doi (DE-627)SPR049428217 (SPR)s13762-022-04061-7-e DE-627 ger DE-627 rakwb eng Fathy, N. A. verfasserin (orcid)0000-0002-6522-1053 aut Carbon-based nanohybrid fabricated in-situ and boosted the adsorption of anionic reactive yellow dye 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract The purpose of this research is to report a unique manipulation of producing carbon nanotubes/carbon xerogel (CNTs/CX) hybrid loaded with bimetallic catalysts of Fe–Ni via one-step chemical vapor deposition (CVD) of camphor. Active bimetallic catalysts were formed during carbonization of resorcinol–formaldehyde xerogel at 800 °C to form carbon xerogel (CX); meanwhile, the carbon gas was librated from camphor at 220 °C for 45 min. CX and CNTs/CX samples were analyzed using measurements of transmission electron microscope (TEM), X-ray diffraction tool (XRD) and Fourier transform infrared spectroscopy (FTIR). Further, the liquid-phase adsorption of a reactive yellow 160 (RY160) dye on CX and CNTs/CX samples and thermodynamic studies were investigated. TEM and XRD results revealed the formation of carbon nodules in CX combined with bundles of CNTs having outer diameters ranged from 40 to 80 nm in CNTs/CX. Adsorption of RY160 dye was highly relied on pH, temperature, initial dye concentration and contact time. Through kinetic modeling, pseudo-second-order kinetic model expressed closely the experimental data of RY160 adsorption. Equilibrium adsorption studies declared that the Freundlich model is the better with adsorption of RY160 on CNTs/CX due to it has heterogeneous surface character resulting from combination of CX and CNTs. Langmuir adsorption capacity ($ q_{L} $, mg/g) values exhibited that CNTs/CX sample have a superior adsorption of RY160 dye which were reached to 167 mg/g than that by CX ($ q_{L} $ = 125 mg/g). Thereof, the produced CX and CNTs/CX samples present higher removal capacity and can be employed successfully for RY160 dye removal from a textile wastewater. Carbon nanotubes/Carbon xerogels nanohybrid (dpeaa)DE-He213 Liquid-phase adsorption (dpeaa)DE-He213 Reactive yellow dye (dpeaa)DE-He213 Wastewater treatment (dpeaa)DE-He213 El-Shafey, S. aut Enthalten in International journal of environmental science and technology Tehran : Islamic Azad University, 2004 20(2022), 1 vom: 30. März, Seite 293-306 (DE-627)510463398 (DE-600)2230399-6 1735-2630 nnns volume:20 year:2022 number:1 day:30 month:03 pages:293-306 https://dx.doi.org/10.1007/s13762-022-04061-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 20 2022 1 30 03 293-306 |
allfieldsSound |
10.1007/s13762-022-04061-7 doi (DE-627)SPR049428217 (SPR)s13762-022-04061-7-e DE-627 ger DE-627 rakwb eng Fathy, N. A. verfasserin (orcid)0000-0002-6522-1053 aut Carbon-based nanohybrid fabricated in-situ and boosted the adsorption of anionic reactive yellow dye 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract The purpose of this research is to report a unique manipulation of producing carbon nanotubes/carbon xerogel (CNTs/CX) hybrid loaded with bimetallic catalysts of Fe–Ni via one-step chemical vapor deposition (CVD) of camphor. Active bimetallic catalysts were formed during carbonization of resorcinol–formaldehyde xerogel at 800 °C to form carbon xerogel (CX); meanwhile, the carbon gas was librated from camphor at 220 °C for 45 min. CX and CNTs/CX samples were analyzed using measurements of transmission electron microscope (TEM), X-ray diffraction tool (XRD) and Fourier transform infrared spectroscopy (FTIR). Further, the liquid-phase adsorption of a reactive yellow 160 (RY160) dye on CX and CNTs/CX samples and thermodynamic studies were investigated. TEM and XRD results revealed the formation of carbon nodules in CX combined with bundles of CNTs having outer diameters ranged from 40 to 80 nm in CNTs/CX. Adsorption of RY160 dye was highly relied on pH, temperature, initial dye concentration and contact time. Through kinetic modeling, pseudo-second-order kinetic model expressed closely the experimental data of RY160 adsorption. Equilibrium adsorption studies declared that the Freundlich model is the better with adsorption of RY160 on CNTs/CX due to it has heterogeneous surface character resulting from combination of CX and CNTs. Langmuir adsorption capacity ($ q_{L} $, mg/g) values exhibited that CNTs/CX sample have a superior adsorption of RY160 dye which were reached to 167 mg/g than that by CX ($ q_{L} $ = 125 mg/g). Thereof, the produced CX and CNTs/CX samples present higher removal capacity and can be employed successfully for RY160 dye removal from a textile wastewater. Carbon nanotubes/Carbon xerogels nanohybrid (dpeaa)DE-He213 Liquid-phase adsorption (dpeaa)DE-He213 Reactive yellow dye (dpeaa)DE-He213 Wastewater treatment (dpeaa)DE-He213 El-Shafey, S. aut Enthalten in International journal of environmental science and technology Tehran : Islamic Azad University, 2004 20(2022), 1 vom: 30. März, Seite 293-306 (DE-627)510463398 (DE-600)2230399-6 1735-2630 nnns volume:20 year:2022 number:1 day:30 month:03 pages:293-306 https://dx.doi.org/10.1007/s13762-022-04061-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 20 2022 1 30 03 293-306 |
language |
English |
source |
Enthalten in International journal of environmental science and technology 20(2022), 1 vom: 30. März, Seite 293-306 volume:20 year:2022 number:1 day:30 month:03 pages:293-306 |
sourceStr |
Enthalten in International journal of environmental science and technology 20(2022), 1 vom: 30. März, Seite 293-306 volume:20 year:2022 number:1 day:30 month:03 pages:293-306 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Carbon nanotubes/Carbon xerogels nanohybrid Liquid-phase adsorption Reactive yellow dye Wastewater treatment |
isfreeaccess_bool |
true |
container_title |
International journal of environmental science and technology |
authorswithroles_txt_mv |
Fathy, N. A. @@aut@@ El-Shafey, S. @@aut@@ |
publishDateDaySort_date |
2022-03-30T00:00:00Z |
hierarchy_top_id |
510463398 |
id |
SPR049428217 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR049428217</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510060646.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13762-022-04061-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049428217</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13762-022-04061-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fathy, N. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6522-1053</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Carbon-based nanohybrid fabricated in-situ and boosted the adsorption of anionic reactive yellow dye</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The purpose of this research is to report a unique manipulation of producing carbon nanotubes/carbon xerogel (CNTs/CX) hybrid loaded with bimetallic catalysts of Fe–Ni via one-step chemical vapor deposition (CVD) of camphor. Active bimetallic catalysts were formed during carbonization of resorcinol–formaldehyde xerogel at 800 °C to form carbon xerogel (CX); meanwhile, the carbon gas was librated from camphor at 220 °C for 45 min. CX and CNTs/CX samples were analyzed using measurements of transmission electron microscope (TEM), X-ray diffraction tool (XRD) and Fourier transform infrared spectroscopy (FTIR). Further, the liquid-phase adsorption of a reactive yellow 160 (RY160) dye on CX and CNTs/CX samples and thermodynamic studies were investigated. TEM and XRD results revealed the formation of carbon nodules in CX combined with bundles of CNTs having outer diameters ranged from 40 to 80 nm in CNTs/CX. Adsorption of RY160 dye was highly relied on pH, temperature, initial dye concentration and contact time. Through kinetic modeling, pseudo-second-order kinetic model expressed closely the experimental data of RY160 adsorption. Equilibrium adsorption studies declared that the Freundlich model is the better with adsorption of RY160 on CNTs/CX due to it has heterogeneous surface character resulting from combination of CX and CNTs. Langmuir adsorption capacity ($ q_{L} $, mg/g) values exhibited that CNTs/CX sample have a superior adsorption of RY160 dye which were reached to 167 mg/g than that by CX ($ q_{L} $ = 125 mg/g). Thereof, the produced CX and CNTs/CX samples present higher removal capacity and can be employed successfully for RY160 dye removal from a textile wastewater.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon nanotubes/Carbon xerogels nanohybrid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liquid-phase adsorption</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reactive yellow dye</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wastewater treatment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">El-Shafey, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of environmental science and technology</subfield><subfield code="d">Tehran : Islamic Azad University, 2004</subfield><subfield code="g">20(2022), 1 vom: 30. März, Seite 293-306</subfield><subfield code="w">(DE-627)510463398</subfield><subfield code="w">(DE-600)2230399-6</subfield><subfield code="x">1735-2630</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:30</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:293-306</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13762-022-04061-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">30</subfield><subfield code="c">03</subfield><subfield code="h">293-306</subfield></datafield></record></collection>
|
author |
Fathy, N. A. |
spellingShingle |
Fathy, N. A. misc Carbon nanotubes/Carbon xerogels nanohybrid misc Liquid-phase adsorption misc Reactive yellow dye misc Wastewater treatment Carbon-based nanohybrid fabricated in-situ and boosted the adsorption of anionic reactive yellow dye |
authorStr |
Fathy, N. A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)510463398 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1735-2630 |
topic_title |
Carbon-based nanohybrid fabricated in-situ and boosted the adsorption of anionic reactive yellow dye Carbon nanotubes/Carbon xerogels nanohybrid (dpeaa)DE-He213 Liquid-phase adsorption (dpeaa)DE-He213 Reactive yellow dye (dpeaa)DE-He213 Wastewater treatment (dpeaa)DE-He213 |
topic |
misc Carbon nanotubes/Carbon xerogels nanohybrid misc Liquid-phase adsorption misc Reactive yellow dye misc Wastewater treatment |
topic_unstemmed |
misc Carbon nanotubes/Carbon xerogels nanohybrid misc Liquid-phase adsorption misc Reactive yellow dye misc Wastewater treatment |
topic_browse |
misc Carbon nanotubes/Carbon xerogels nanohybrid misc Liquid-phase adsorption misc Reactive yellow dye misc Wastewater treatment |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of environmental science and technology |
hierarchy_parent_id |
510463398 |
hierarchy_top_title |
International journal of environmental science and technology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)510463398 (DE-600)2230399-6 |
title |
Carbon-based nanohybrid fabricated in-situ and boosted the adsorption of anionic reactive yellow dye |
ctrlnum |
(DE-627)SPR049428217 (SPR)s13762-022-04061-7-e |
title_full |
Carbon-based nanohybrid fabricated in-situ and boosted the adsorption of anionic reactive yellow dye |
author_sort |
Fathy, N. A. |
journal |
International journal of environmental science and technology |
journalStr |
International journal of environmental science and technology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
293 |
author_browse |
Fathy, N. A. El-Shafey, S. |
container_volume |
20 |
format_se |
Elektronische Aufsätze |
author-letter |
Fathy, N. A. |
doi_str_mv |
10.1007/s13762-022-04061-7 |
normlink |
(ORCID)0000-0002-6522-1053 |
normlink_prefix_str_mv |
(orcid)0000-0002-6522-1053 |
title_sort |
carbon-based nanohybrid fabricated in-situ and boosted the adsorption of anionic reactive yellow dye |
title_auth |
Carbon-based nanohybrid fabricated in-situ and boosted the adsorption of anionic reactive yellow dye |
abstract |
Abstract The purpose of this research is to report a unique manipulation of producing carbon nanotubes/carbon xerogel (CNTs/CX) hybrid loaded with bimetallic catalysts of Fe–Ni via one-step chemical vapor deposition (CVD) of camphor. Active bimetallic catalysts were formed during carbonization of resorcinol–formaldehyde xerogel at 800 °C to form carbon xerogel (CX); meanwhile, the carbon gas was librated from camphor at 220 °C for 45 min. CX and CNTs/CX samples were analyzed using measurements of transmission electron microscope (TEM), X-ray diffraction tool (XRD) and Fourier transform infrared spectroscopy (FTIR). Further, the liquid-phase adsorption of a reactive yellow 160 (RY160) dye on CX and CNTs/CX samples and thermodynamic studies were investigated. TEM and XRD results revealed the formation of carbon nodules in CX combined with bundles of CNTs having outer diameters ranged from 40 to 80 nm in CNTs/CX. Adsorption of RY160 dye was highly relied on pH, temperature, initial dye concentration and contact time. Through kinetic modeling, pseudo-second-order kinetic model expressed closely the experimental data of RY160 adsorption. Equilibrium adsorption studies declared that the Freundlich model is the better with adsorption of RY160 on CNTs/CX due to it has heterogeneous surface character resulting from combination of CX and CNTs. Langmuir adsorption capacity ($ q_{L} $, mg/g) values exhibited that CNTs/CX sample have a superior adsorption of RY160 dye which were reached to 167 mg/g than that by CX ($ q_{L} $ = 125 mg/g). Thereof, the produced CX and CNTs/CX samples present higher removal capacity and can be employed successfully for RY160 dye removal from a textile wastewater. © The Author(s) 2022 |
abstractGer |
Abstract The purpose of this research is to report a unique manipulation of producing carbon nanotubes/carbon xerogel (CNTs/CX) hybrid loaded with bimetallic catalysts of Fe–Ni via one-step chemical vapor deposition (CVD) of camphor. Active bimetallic catalysts were formed during carbonization of resorcinol–formaldehyde xerogel at 800 °C to form carbon xerogel (CX); meanwhile, the carbon gas was librated from camphor at 220 °C for 45 min. CX and CNTs/CX samples were analyzed using measurements of transmission electron microscope (TEM), X-ray diffraction tool (XRD) and Fourier transform infrared spectroscopy (FTIR). Further, the liquid-phase adsorption of a reactive yellow 160 (RY160) dye on CX and CNTs/CX samples and thermodynamic studies were investigated. TEM and XRD results revealed the formation of carbon nodules in CX combined with bundles of CNTs having outer diameters ranged from 40 to 80 nm in CNTs/CX. Adsorption of RY160 dye was highly relied on pH, temperature, initial dye concentration and contact time. Through kinetic modeling, pseudo-second-order kinetic model expressed closely the experimental data of RY160 adsorption. Equilibrium adsorption studies declared that the Freundlich model is the better with adsorption of RY160 on CNTs/CX due to it has heterogeneous surface character resulting from combination of CX and CNTs. Langmuir adsorption capacity ($ q_{L} $, mg/g) values exhibited that CNTs/CX sample have a superior adsorption of RY160 dye which were reached to 167 mg/g than that by CX ($ q_{L} $ = 125 mg/g). Thereof, the produced CX and CNTs/CX samples present higher removal capacity and can be employed successfully for RY160 dye removal from a textile wastewater. © The Author(s) 2022 |
abstract_unstemmed |
Abstract The purpose of this research is to report a unique manipulation of producing carbon nanotubes/carbon xerogel (CNTs/CX) hybrid loaded with bimetallic catalysts of Fe–Ni via one-step chemical vapor deposition (CVD) of camphor. Active bimetallic catalysts were formed during carbonization of resorcinol–formaldehyde xerogel at 800 °C to form carbon xerogel (CX); meanwhile, the carbon gas was librated from camphor at 220 °C for 45 min. CX and CNTs/CX samples were analyzed using measurements of transmission electron microscope (TEM), X-ray diffraction tool (XRD) and Fourier transform infrared spectroscopy (FTIR). Further, the liquid-phase adsorption of a reactive yellow 160 (RY160) dye on CX and CNTs/CX samples and thermodynamic studies were investigated. TEM and XRD results revealed the formation of carbon nodules in CX combined with bundles of CNTs having outer diameters ranged from 40 to 80 nm in CNTs/CX. Adsorption of RY160 dye was highly relied on pH, temperature, initial dye concentration and contact time. Through kinetic modeling, pseudo-second-order kinetic model expressed closely the experimental data of RY160 adsorption. Equilibrium adsorption studies declared that the Freundlich model is the better with adsorption of RY160 on CNTs/CX due to it has heterogeneous surface character resulting from combination of CX and CNTs. Langmuir adsorption capacity ($ q_{L} $, mg/g) values exhibited that CNTs/CX sample have a superior adsorption of RY160 dye which were reached to 167 mg/g than that by CX ($ q_{L} $ = 125 mg/g). Thereof, the produced CX and CNTs/CX samples present higher removal capacity and can be employed successfully for RY160 dye removal from a textile wastewater. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Carbon-based nanohybrid fabricated in-situ and boosted the adsorption of anionic reactive yellow dye |
url |
https://dx.doi.org/10.1007/s13762-022-04061-7 |
remote_bool |
true |
author2 |
El-Shafey, S. |
author2Str |
El-Shafey, S. |
ppnlink |
510463398 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s13762-022-04061-7 |
up_date |
2024-07-04T00:46:05.018Z |
_version_ |
1803607306425860096 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR049428217</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510060646.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13762-022-04061-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049428217</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13762-022-04061-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fathy, N. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6522-1053</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Carbon-based nanohybrid fabricated in-situ and boosted the adsorption of anionic reactive yellow dye</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The purpose of this research is to report a unique manipulation of producing carbon nanotubes/carbon xerogel (CNTs/CX) hybrid loaded with bimetallic catalysts of Fe–Ni via one-step chemical vapor deposition (CVD) of camphor. Active bimetallic catalysts were formed during carbonization of resorcinol–formaldehyde xerogel at 800 °C to form carbon xerogel (CX); meanwhile, the carbon gas was librated from camphor at 220 °C for 45 min. CX and CNTs/CX samples were analyzed using measurements of transmission electron microscope (TEM), X-ray diffraction tool (XRD) and Fourier transform infrared spectroscopy (FTIR). Further, the liquid-phase adsorption of a reactive yellow 160 (RY160) dye on CX and CNTs/CX samples and thermodynamic studies were investigated. TEM and XRD results revealed the formation of carbon nodules in CX combined with bundles of CNTs having outer diameters ranged from 40 to 80 nm in CNTs/CX. Adsorption of RY160 dye was highly relied on pH, temperature, initial dye concentration and contact time. Through kinetic modeling, pseudo-second-order kinetic model expressed closely the experimental data of RY160 adsorption. Equilibrium adsorption studies declared that the Freundlich model is the better with adsorption of RY160 on CNTs/CX due to it has heterogeneous surface character resulting from combination of CX and CNTs. Langmuir adsorption capacity ($ q_{L} $, mg/g) values exhibited that CNTs/CX sample have a superior adsorption of RY160 dye which were reached to 167 mg/g than that by CX ($ q_{L} $ = 125 mg/g). Thereof, the produced CX and CNTs/CX samples present higher removal capacity and can be employed successfully for RY160 dye removal from a textile wastewater.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon nanotubes/Carbon xerogels nanohybrid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liquid-phase adsorption</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reactive yellow dye</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wastewater treatment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">El-Shafey, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of environmental science and technology</subfield><subfield code="d">Tehran : Islamic Azad University, 2004</subfield><subfield code="g">20(2022), 1 vom: 30. März, Seite 293-306</subfield><subfield code="w">(DE-627)510463398</subfield><subfield code="w">(DE-600)2230399-6</subfield><subfield code="x">1735-2630</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:30</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:293-306</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13762-022-04061-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">30</subfield><subfield code="c">03</subfield><subfield code="h">293-306</subfield></datafield></record></collection>
|
score |
7.4007807 |