Soybean Yield and Soil Physical Properties as Affected by Long-Term Tillage Systems and Liming in Southern Brazil
Abstract Conservation agriculture (CA) is an important aspect of the sustainable management of soybean [Glycine max (L.) Merrill] in production systems. This work evaluated the effects of soil management systems (SMS) combined with liming performed in 1986 and in 2008 on soil physical properties and...
Ausführliche Beschreibung
Autor*in: |
Silva, Sérgio Ricardo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of plant production - [Cham] : Springer International Publishing, 2007, 17(2022), 1 vom: 03. Nov., Seite 65-79 |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2022 ; number:1 ; day:03 ; month:11 ; pages:65-79 |
Links: |
---|
DOI / URN: |
10.1007/s42106-022-00217-0 |
---|
Katalog-ID: |
SPR04944185X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR04944185X | ||
003 | DE-627 | ||
005 | 20230510063856.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s42106-022-00217-0 |2 doi | |
035 | |a (DE-627)SPR04944185X | ||
035 | |a (SPR)s42106-022-00217-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Silva, Sérgio Ricardo |e verfasserin |0 (orcid)0000-0001-6951-8324 |4 aut | |
245 | 1 | 0 | |a Soybean Yield and Soil Physical Properties as Affected by Long-Term Tillage Systems and Liming in Southern Brazil |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract Conservation agriculture (CA) is an important aspect of the sustainable management of soybean [Glycine max (L.) Merrill] in production systems. This work evaluated the effects of soil management systems (SMS) combined with liming performed in 1986 and in 2008 on soil physical properties and soybean yield. The study used data from the 2008/09 until the 2015/16 soybean crop seasons from a long-term experiment settled in 1986 in Passo Fundo, southern Brazil. A split-plot design was used with the SMS as the main plots arranged in randomized blocks, and the cropping systems as the sub-plots randomized within SMS. The experiment evaluated the effects of four annually performed SMS: no-tillage (NT) and reduced-tillage (RT) (i.e. two CA systems), disk ploughing + disk harrowing (DPD) and moldboard ploughing + disk harrowing (MPD) [i.e. two conventional tillage (CT) systems]. Soil bulk density ($ ρ_{s} $) and total, micro and macro porosities ($ φ_{total} $, $ φ_{micro} $ and $ φ_{macro} $) were evaluated in 2008 and in 2016 in the 0‒2.5 cm ($ L_{0 − 2.5} $) and 10‒12.5 cm ($ L_{10 − 12.5} $) soil layers. After 22 years of the beginning of the experiment and compared with the undisturbed soil (from a native forest area near to the experiment), all SMS increased $ ρ_{s} $ by an average of 28% in the $ L_{0 − 2.5} $ and 25% in the $ L_{10 − 12.5} $, decreased $ φ_{total} $ by 13% (except for NT) in the $ L_{0 − 2.5} $ and 17% in the $ L_{10 − 12.5} $, and decreased $ φ_{macro} $ by 36% in the $ L_{10 − 12.5} $; moreover the CT systems decreased $ φ_{micro} $ by 8.7% and 8.1% in the $ L_{0 − 2.5} $ and $ L_{10 − 12.5} $, respectively. At the end of this 22-year period, in the $ L_{0 − 2.5} $, $ ρ_{s} $ increased by 6% from NT to RT, and by 11% from NT to CT systems; $ φ_{total} $ decreased by 4%, and $ φ_{micro} $ increased by 9% from NT to the other SMS. From 2008 to 2016, liming combined with each SMS modified soil properties in distinct manners: the combination increased $ ρ_{s} $ by 6% in NT ($ L_{0 − 2.5} $) and 5% in MPD ($ L_{10 − 12.5} $), decreased $ φ_{total} $ by 4% in MPD ($ L_{10 − 12.5} $), increased $ φ_{micro} $ in all SMS by an average of 6% ($ L_{10 − 12.5} $), and reduced $ φ_{macro} $ by an average of 24% in CT systems ($ L_{10 − 12.5} $). Soybean yield was more variable as function of growing season (average from 1866 to 4449 kg $ ha^{− 1} $) as compared to SMS treatment [average from 3088 kg $ ha^{− 1} $ (DPD) to 3276 kg $ ha^{− 1} $ (NT)]. Considering a global analysis of the eight crop seasons, soybean yield in NT was on average 6% greater than that of DPD, but NT grain yield was similar to RT and MPD systems. No-tillage favored soybean yield in higher yielding environments, while DPD had the greatest soybean yield and adaptability in lower yielding environments. These findings suggest that the NT system outperformed the other SMS by providing greater or similar soybean yields and being the least harmful to soil physical quality as compared to the undisturbed soil. | ||
650 | 4 | |a No-tillage system |7 (dpeaa)DE-He213 | |
650 | 4 | |a Conservation agriculture |7 (dpeaa)DE-He213 | |
650 | 4 | |a Conventional tillage systems |7 (dpeaa)DE-He213 | |
650 | 4 | |a Soil bulk density |7 (dpeaa)DE-He213 | |
650 | 4 | |a Soil porosity |7 (dpeaa)DE-He213 | |
700 | 1 | |a dos Santos, Henrique Pereira |0 (orcid)0000-0002-7587-7398 |4 aut | |
700 | 1 | |a Lollato, Rômulo Pisa |0 (orcid)0000-0001-8615-0074 |4 aut | |
700 | 1 | |a Santi, Anderson |0 (orcid)0000-0003-3524-2694 |4 aut | |
700 | 1 | |a Fontaneli, Renato Serena |0 (orcid)0000-0002-1970-4791 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of plant production |d [Cham] : Springer International Publishing, 2007 |g 17(2022), 1 vom: 03. Nov., Seite 65-79 |w (DE-627)529090082 |w (DE-600)2299088-4 |x 1735-6814 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2022 |g number:1 |g day:03 |g month:11 |g pages:65-79 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s42106-022-00217-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_266 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 17 |j 2022 |e 1 |b 03 |c 11 |h 65-79 |
author_variant |
s r s sr srs s h p d shp shpd r p l rp rpl a s as r s f rs rsf |
---|---|
matchkey_str |
article:17356814:2022----::obayednsipyiapoeteaafceblntrtlaeytma |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s42106-022-00217-0 doi (DE-627)SPR04944185X (SPR)s42106-022-00217-0-e DE-627 ger DE-627 rakwb eng Silva, Sérgio Ricardo verfasserin (orcid)0000-0001-6951-8324 aut Soybean Yield and Soil Physical Properties as Affected by Long-Term Tillage Systems and Liming in Southern Brazil 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Conservation agriculture (CA) is an important aspect of the sustainable management of soybean [Glycine max (L.) Merrill] in production systems. This work evaluated the effects of soil management systems (SMS) combined with liming performed in 1986 and in 2008 on soil physical properties and soybean yield. The study used data from the 2008/09 until the 2015/16 soybean crop seasons from a long-term experiment settled in 1986 in Passo Fundo, southern Brazil. A split-plot design was used with the SMS as the main plots arranged in randomized blocks, and the cropping systems as the sub-plots randomized within SMS. The experiment evaluated the effects of four annually performed SMS: no-tillage (NT) and reduced-tillage (RT) (i.e. two CA systems), disk ploughing + disk harrowing (DPD) and moldboard ploughing + disk harrowing (MPD) [i.e. two conventional tillage (CT) systems]. Soil bulk density ($ ρ_{s} $) and total, micro and macro porosities ($ φ_{total} $, $ φ_{micro} $ and $ φ_{macro} $) were evaluated in 2008 and in 2016 in the 0‒2.5 cm ($ L_{0 − 2.5} $) and 10‒12.5 cm ($ L_{10 − 12.5} $) soil layers. After 22 years of the beginning of the experiment and compared with the undisturbed soil (from a native forest area near to the experiment), all SMS increased $ ρ_{s} $ by an average of 28% in the $ L_{0 − 2.5} $ and 25% in the $ L_{10 − 12.5} $, decreased $ φ_{total} $ by 13% (except for NT) in the $ L_{0 − 2.5} $ and 17% in the $ L_{10 − 12.5} $, and decreased $ φ_{macro} $ by 36% in the $ L_{10 − 12.5} $; moreover the CT systems decreased $ φ_{micro} $ by 8.7% and 8.1% in the $ L_{0 − 2.5} $ and $ L_{10 − 12.5} $, respectively. At the end of this 22-year period, in the $ L_{0 − 2.5} $, $ ρ_{s} $ increased by 6% from NT to RT, and by 11% from NT to CT systems; $ φ_{total} $ decreased by 4%, and $ φ_{micro} $ increased by 9% from NT to the other SMS. From 2008 to 2016, liming combined with each SMS modified soil properties in distinct manners: the combination increased $ ρ_{s} $ by 6% in NT ($ L_{0 − 2.5} $) and 5% in MPD ($ L_{10 − 12.5} $), decreased $ φ_{total} $ by 4% in MPD ($ L_{10 − 12.5} $), increased $ φ_{micro} $ in all SMS by an average of 6% ($ L_{10 − 12.5} $), and reduced $ φ_{macro} $ by an average of 24% in CT systems ($ L_{10 − 12.5} $). Soybean yield was more variable as function of growing season (average from 1866 to 4449 kg $ ha^{− 1} $) as compared to SMS treatment [average from 3088 kg $ ha^{− 1} $ (DPD) to 3276 kg $ ha^{− 1} $ (NT)]. Considering a global analysis of the eight crop seasons, soybean yield in NT was on average 6% greater than that of DPD, but NT grain yield was similar to RT and MPD systems. No-tillage favored soybean yield in higher yielding environments, while DPD had the greatest soybean yield and adaptability in lower yielding environments. These findings suggest that the NT system outperformed the other SMS by providing greater or similar soybean yields and being the least harmful to soil physical quality as compared to the undisturbed soil. No-tillage system (dpeaa)DE-He213 Conservation agriculture (dpeaa)DE-He213 Conventional tillage systems (dpeaa)DE-He213 Soil bulk density (dpeaa)DE-He213 Soil porosity (dpeaa)DE-He213 dos Santos, Henrique Pereira (orcid)0000-0002-7587-7398 aut Lollato, Rômulo Pisa (orcid)0000-0001-8615-0074 aut Santi, Anderson (orcid)0000-0003-3524-2694 aut Fontaneli, Renato Serena (orcid)0000-0002-1970-4791 aut Enthalten in International journal of plant production [Cham] : Springer International Publishing, 2007 17(2022), 1 vom: 03. Nov., Seite 65-79 (DE-627)529090082 (DE-600)2299088-4 1735-6814 nnns volume:17 year:2022 number:1 day:03 month:11 pages:65-79 https://dx.doi.org/10.1007/s42106-022-00217-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 17 2022 1 03 11 65-79 |
spelling |
10.1007/s42106-022-00217-0 doi (DE-627)SPR04944185X (SPR)s42106-022-00217-0-e DE-627 ger DE-627 rakwb eng Silva, Sérgio Ricardo verfasserin (orcid)0000-0001-6951-8324 aut Soybean Yield and Soil Physical Properties as Affected by Long-Term Tillage Systems and Liming in Southern Brazil 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Conservation agriculture (CA) is an important aspect of the sustainable management of soybean [Glycine max (L.) Merrill] in production systems. This work evaluated the effects of soil management systems (SMS) combined with liming performed in 1986 and in 2008 on soil physical properties and soybean yield. The study used data from the 2008/09 until the 2015/16 soybean crop seasons from a long-term experiment settled in 1986 in Passo Fundo, southern Brazil. A split-plot design was used with the SMS as the main plots arranged in randomized blocks, and the cropping systems as the sub-plots randomized within SMS. The experiment evaluated the effects of four annually performed SMS: no-tillage (NT) and reduced-tillage (RT) (i.e. two CA systems), disk ploughing + disk harrowing (DPD) and moldboard ploughing + disk harrowing (MPD) [i.e. two conventional tillage (CT) systems]. Soil bulk density ($ ρ_{s} $) and total, micro and macro porosities ($ φ_{total} $, $ φ_{micro} $ and $ φ_{macro} $) were evaluated in 2008 and in 2016 in the 0‒2.5 cm ($ L_{0 − 2.5} $) and 10‒12.5 cm ($ L_{10 − 12.5} $) soil layers. After 22 years of the beginning of the experiment and compared with the undisturbed soil (from a native forest area near to the experiment), all SMS increased $ ρ_{s} $ by an average of 28% in the $ L_{0 − 2.5} $ and 25% in the $ L_{10 − 12.5} $, decreased $ φ_{total} $ by 13% (except for NT) in the $ L_{0 − 2.5} $ and 17% in the $ L_{10 − 12.5} $, and decreased $ φ_{macro} $ by 36% in the $ L_{10 − 12.5} $; moreover the CT systems decreased $ φ_{micro} $ by 8.7% and 8.1% in the $ L_{0 − 2.5} $ and $ L_{10 − 12.5} $, respectively. At the end of this 22-year period, in the $ L_{0 − 2.5} $, $ ρ_{s} $ increased by 6% from NT to RT, and by 11% from NT to CT systems; $ φ_{total} $ decreased by 4%, and $ φ_{micro} $ increased by 9% from NT to the other SMS. From 2008 to 2016, liming combined with each SMS modified soil properties in distinct manners: the combination increased $ ρ_{s} $ by 6% in NT ($ L_{0 − 2.5} $) and 5% in MPD ($ L_{10 − 12.5} $), decreased $ φ_{total} $ by 4% in MPD ($ L_{10 − 12.5} $), increased $ φ_{micro} $ in all SMS by an average of 6% ($ L_{10 − 12.5} $), and reduced $ φ_{macro} $ by an average of 24% in CT systems ($ L_{10 − 12.5} $). Soybean yield was more variable as function of growing season (average from 1866 to 4449 kg $ ha^{− 1} $) as compared to SMS treatment [average from 3088 kg $ ha^{− 1} $ (DPD) to 3276 kg $ ha^{− 1} $ (NT)]. Considering a global analysis of the eight crop seasons, soybean yield in NT was on average 6% greater than that of DPD, but NT grain yield was similar to RT and MPD systems. No-tillage favored soybean yield in higher yielding environments, while DPD had the greatest soybean yield and adaptability in lower yielding environments. These findings suggest that the NT system outperformed the other SMS by providing greater or similar soybean yields and being the least harmful to soil physical quality as compared to the undisturbed soil. No-tillage system (dpeaa)DE-He213 Conservation agriculture (dpeaa)DE-He213 Conventional tillage systems (dpeaa)DE-He213 Soil bulk density (dpeaa)DE-He213 Soil porosity (dpeaa)DE-He213 dos Santos, Henrique Pereira (orcid)0000-0002-7587-7398 aut Lollato, Rômulo Pisa (orcid)0000-0001-8615-0074 aut Santi, Anderson (orcid)0000-0003-3524-2694 aut Fontaneli, Renato Serena (orcid)0000-0002-1970-4791 aut Enthalten in International journal of plant production [Cham] : Springer International Publishing, 2007 17(2022), 1 vom: 03. Nov., Seite 65-79 (DE-627)529090082 (DE-600)2299088-4 1735-6814 nnns volume:17 year:2022 number:1 day:03 month:11 pages:65-79 https://dx.doi.org/10.1007/s42106-022-00217-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 17 2022 1 03 11 65-79 |
allfields_unstemmed |
10.1007/s42106-022-00217-0 doi (DE-627)SPR04944185X (SPR)s42106-022-00217-0-e DE-627 ger DE-627 rakwb eng Silva, Sérgio Ricardo verfasserin (orcid)0000-0001-6951-8324 aut Soybean Yield and Soil Physical Properties as Affected by Long-Term Tillage Systems and Liming in Southern Brazil 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Conservation agriculture (CA) is an important aspect of the sustainable management of soybean [Glycine max (L.) Merrill] in production systems. This work evaluated the effects of soil management systems (SMS) combined with liming performed in 1986 and in 2008 on soil physical properties and soybean yield. The study used data from the 2008/09 until the 2015/16 soybean crop seasons from a long-term experiment settled in 1986 in Passo Fundo, southern Brazil. A split-plot design was used with the SMS as the main plots arranged in randomized blocks, and the cropping systems as the sub-plots randomized within SMS. The experiment evaluated the effects of four annually performed SMS: no-tillage (NT) and reduced-tillage (RT) (i.e. two CA systems), disk ploughing + disk harrowing (DPD) and moldboard ploughing + disk harrowing (MPD) [i.e. two conventional tillage (CT) systems]. Soil bulk density ($ ρ_{s} $) and total, micro and macro porosities ($ φ_{total} $, $ φ_{micro} $ and $ φ_{macro} $) were evaluated in 2008 and in 2016 in the 0‒2.5 cm ($ L_{0 − 2.5} $) and 10‒12.5 cm ($ L_{10 − 12.5} $) soil layers. After 22 years of the beginning of the experiment and compared with the undisturbed soil (from a native forest area near to the experiment), all SMS increased $ ρ_{s} $ by an average of 28% in the $ L_{0 − 2.5} $ and 25% in the $ L_{10 − 12.5} $, decreased $ φ_{total} $ by 13% (except for NT) in the $ L_{0 − 2.5} $ and 17% in the $ L_{10 − 12.5} $, and decreased $ φ_{macro} $ by 36% in the $ L_{10 − 12.5} $; moreover the CT systems decreased $ φ_{micro} $ by 8.7% and 8.1% in the $ L_{0 − 2.5} $ and $ L_{10 − 12.5} $, respectively. At the end of this 22-year period, in the $ L_{0 − 2.5} $, $ ρ_{s} $ increased by 6% from NT to RT, and by 11% from NT to CT systems; $ φ_{total} $ decreased by 4%, and $ φ_{micro} $ increased by 9% from NT to the other SMS. From 2008 to 2016, liming combined with each SMS modified soil properties in distinct manners: the combination increased $ ρ_{s} $ by 6% in NT ($ L_{0 − 2.5} $) and 5% in MPD ($ L_{10 − 12.5} $), decreased $ φ_{total} $ by 4% in MPD ($ L_{10 − 12.5} $), increased $ φ_{micro} $ in all SMS by an average of 6% ($ L_{10 − 12.5} $), and reduced $ φ_{macro} $ by an average of 24% in CT systems ($ L_{10 − 12.5} $). Soybean yield was more variable as function of growing season (average from 1866 to 4449 kg $ ha^{− 1} $) as compared to SMS treatment [average from 3088 kg $ ha^{− 1} $ (DPD) to 3276 kg $ ha^{− 1} $ (NT)]. Considering a global analysis of the eight crop seasons, soybean yield in NT was on average 6% greater than that of DPD, but NT grain yield was similar to RT and MPD systems. No-tillage favored soybean yield in higher yielding environments, while DPD had the greatest soybean yield and adaptability in lower yielding environments. These findings suggest that the NT system outperformed the other SMS by providing greater or similar soybean yields and being the least harmful to soil physical quality as compared to the undisturbed soil. No-tillage system (dpeaa)DE-He213 Conservation agriculture (dpeaa)DE-He213 Conventional tillage systems (dpeaa)DE-He213 Soil bulk density (dpeaa)DE-He213 Soil porosity (dpeaa)DE-He213 dos Santos, Henrique Pereira (orcid)0000-0002-7587-7398 aut Lollato, Rômulo Pisa (orcid)0000-0001-8615-0074 aut Santi, Anderson (orcid)0000-0003-3524-2694 aut Fontaneli, Renato Serena (orcid)0000-0002-1970-4791 aut Enthalten in International journal of plant production [Cham] : Springer International Publishing, 2007 17(2022), 1 vom: 03. Nov., Seite 65-79 (DE-627)529090082 (DE-600)2299088-4 1735-6814 nnns volume:17 year:2022 number:1 day:03 month:11 pages:65-79 https://dx.doi.org/10.1007/s42106-022-00217-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 17 2022 1 03 11 65-79 |
allfieldsGer |
10.1007/s42106-022-00217-0 doi (DE-627)SPR04944185X (SPR)s42106-022-00217-0-e DE-627 ger DE-627 rakwb eng Silva, Sérgio Ricardo verfasserin (orcid)0000-0001-6951-8324 aut Soybean Yield and Soil Physical Properties as Affected by Long-Term Tillage Systems and Liming in Southern Brazil 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Conservation agriculture (CA) is an important aspect of the sustainable management of soybean [Glycine max (L.) Merrill] in production systems. This work evaluated the effects of soil management systems (SMS) combined with liming performed in 1986 and in 2008 on soil physical properties and soybean yield. The study used data from the 2008/09 until the 2015/16 soybean crop seasons from a long-term experiment settled in 1986 in Passo Fundo, southern Brazil. A split-plot design was used with the SMS as the main plots arranged in randomized blocks, and the cropping systems as the sub-plots randomized within SMS. The experiment evaluated the effects of four annually performed SMS: no-tillage (NT) and reduced-tillage (RT) (i.e. two CA systems), disk ploughing + disk harrowing (DPD) and moldboard ploughing + disk harrowing (MPD) [i.e. two conventional tillage (CT) systems]. Soil bulk density ($ ρ_{s} $) and total, micro and macro porosities ($ φ_{total} $, $ φ_{micro} $ and $ φ_{macro} $) were evaluated in 2008 and in 2016 in the 0‒2.5 cm ($ L_{0 − 2.5} $) and 10‒12.5 cm ($ L_{10 − 12.5} $) soil layers. After 22 years of the beginning of the experiment and compared with the undisturbed soil (from a native forest area near to the experiment), all SMS increased $ ρ_{s} $ by an average of 28% in the $ L_{0 − 2.5} $ and 25% in the $ L_{10 − 12.5} $, decreased $ φ_{total} $ by 13% (except for NT) in the $ L_{0 − 2.5} $ and 17% in the $ L_{10 − 12.5} $, and decreased $ φ_{macro} $ by 36% in the $ L_{10 − 12.5} $; moreover the CT systems decreased $ φ_{micro} $ by 8.7% and 8.1% in the $ L_{0 − 2.5} $ and $ L_{10 − 12.5} $, respectively. At the end of this 22-year period, in the $ L_{0 − 2.5} $, $ ρ_{s} $ increased by 6% from NT to RT, and by 11% from NT to CT systems; $ φ_{total} $ decreased by 4%, and $ φ_{micro} $ increased by 9% from NT to the other SMS. From 2008 to 2016, liming combined with each SMS modified soil properties in distinct manners: the combination increased $ ρ_{s} $ by 6% in NT ($ L_{0 − 2.5} $) and 5% in MPD ($ L_{10 − 12.5} $), decreased $ φ_{total} $ by 4% in MPD ($ L_{10 − 12.5} $), increased $ φ_{micro} $ in all SMS by an average of 6% ($ L_{10 − 12.5} $), and reduced $ φ_{macro} $ by an average of 24% in CT systems ($ L_{10 − 12.5} $). Soybean yield was more variable as function of growing season (average from 1866 to 4449 kg $ ha^{− 1} $) as compared to SMS treatment [average from 3088 kg $ ha^{− 1} $ (DPD) to 3276 kg $ ha^{− 1} $ (NT)]. Considering a global analysis of the eight crop seasons, soybean yield in NT was on average 6% greater than that of DPD, but NT grain yield was similar to RT and MPD systems. No-tillage favored soybean yield in higher yielding environments, while DPD had the greatest soybean yield and adaptability in lower yielding environments. These findings suggest that the NT system outperformed the other SMS by providing greater or similar soybean yields and being the least harmful to soil physical quality as compared to the undisturbed soil. No-tillage system (dpeaa)DE-He213 Conservation agriculture (dpeaa)DE-He213 Conventional tillage systems (dpeaa)DE-He213 Soil bulk density (dpeaa)DE-He213 Soil porosity (dpeaa)DE-He213 dos Santos, Henrique Pereira (orcid)0000-0002-7587-7398 aut Lollato, Rômulo Pisa (orcid)0000-0001-8615-0074 aut Santi, Anderson (orcid)0000-0003-3524-2694 aut Fontaneli, Renato Serena (orcid)0000-0002-1970-4791 aut Enthalten in International journal of plant production [Cham] : Springer International Publishing, 2007 17(2022), 1 vom: 03. Nov., Seite 65-79 (DE-627)529090082 (DE-600)2299088-4 1735-6814 nnns volume:17 year:2022 number:1 day:03 month:11 pages:65-79 https://dx.doi.org/10.1007/s42106-022-00217-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 17 2022 1 03 11 65-79 |
allfieldsSound |
10.1007/s42106-022-00217-0 doi (DE-627)SPR04944185X (SPR)s42106-022-00217-0-e DE-627 ger DE-627 rakwb eng Silva, Sérgio Ricardo verfasserin (orcid)0000-0001-6951-8324 aut Soybean Yield and Soil Physical Properties as Affected by Long-Term Tillage Systems and Liming in Southern Brazil 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Conservation agriculture (CA) is an important aspect of the sustainable management of soybean [Glycine max (L.) Merrill] in production systems. This work evaluated the effects of soil management systems (SMS) combined with liming performed in 1986 and in 2008 on soil physical properties and soybean yield. The study used data from the 2008/09 until the 2015/16 soybean crop seasons from a long-term experiment settled in 1986 in Passo Fundo, southern Brazil. A split-plot design was used with the SMS as the main plots arranged in randomized blocks, and the cropping systems as the sub-plots randomized within SMS. The experiment evaluated the effects of four annually performed SMS: no-tillage (NT) and reduced-tillage (RT) (i.e. two CA systems), disk ploughing + disk harrowing (DPD) and moldboard ploughing + disk harrowing (MPD) [i.e. two conventional tillage (CT) systems]. Soil bulk density ($ ρ_{s} $) and total, micro and macro porosities ($ φ_{total} $, $ φ_{micro} $ and $ φ_{macro} $) were evaluated in 2008 and in 2016 in the 0‒2.5 cm ($ L_{0 − 2.5} $) and 10‒12.5 cm ($ L_{10 − 12.5} $) soil layers. After 22 years of the beginning of the experiment and compared with the undisturbed soil (from a native forest area near to the experiment), all SMS increased $ ρ_{s} $ by an average of 28% in the $ L_{0 − 2.5} $ and 25% in the $ L_{10 − 12.5} $, decreased $ φ_{total} $ by 13% (except for NT) in the $ L_{0 − 2.5} $ and 17% in the $ L_{10 − 12.5} $, and decreased $ φ_{macro} $ by 36% in the $ L_{10 − 12.5} $; moreover the CT systems decreased $ φ_{micro} $ by 8.7% and 8.1% in the $ L_{0 − 2.5} $ and $ L_{10 − 12.5} $, respectively. At the end of this 22-year period, in the $ L_{0 − 2.5} $, $ ρ_{s} $ increased by 6% from NT to RT, and by 11% from NT to CT systems; $ φ_{total} $ decreased by 4%, and $ φ_{micro} $ increased by 9% from NT to the other SMS. From 2008 to 2016, liming combined with each SMS modified soil properties in distinct manners: the combination increased $ ρ_{s} $ by 6% in NT ($ L_{0 − 2.5} $) and 5% in MPD ($ L_{10 − 12.5} $), decreased $ φ_{total} $ by 4% in MPD ($ L_{10 − 12.5} $), increased $ φ_{micro} $ in all SMS by an average of 6% ($ L_{10 − 12.5} $), and reduced $ φ_{macro} $ by an average of 24% in CT systems ($ L_{10 − 12.5} $). Soybean yield was more variable as function of growing season (average from 1866 to 4449 kg $ ha^{− 1} $) as compared to SMS treatment [average from 3088 kg $ ha^{− 1} $ (DPD) to 3276 kg $ ha^{− 1} $ (NT)]. Considering a global analysis of the eight crop seasons, soybean yield in NT was on average 6% greater than that of DPD, but NT grain yield was similar to RT and MPD systems. No-tillage favored soybean yield in higher yielding environments, while DPD had the greatest soybean yield and adaptability in lower yielding environments. These findings suggest that the NT system outperformed the other SMS by providing greater or similar soybean yields and being the least harmful to soil physical quality as compared to the undisturbed soil. No-tillage system (dpeaa)DE-He213 Conservation agriculture (dpeaa)DE-He213 Conventional tillage systems (dpeaa)DE-He213 Soil bulk density (dpeaa)DE-He213 Soil porosity (dpeaa)DE-He213 dos Santos, Henrique Pereira (orcid)0000-0002-7587-7398 aut Lollato, Rômulo Pisa (orcid)0000-0001-8615-0074 aut Santi, Anderson (orcid)0000-0003-3524-2694 aut Fontaneli, Renato Serena (orcid)0000-0002-1970-4791 aut Enthalten in International journal of plant production [Cham] : Springer International Publishing, 2007 17(2022), 1 vom: 03. Nov., Seite 65-79 (DE-627)529090082 (DE-600)2299088-4 1735-6814 nnns volume:17 year:2022 number:1 day:03 month:11 pages:65-79 https://dx.doi.org/10.1007/s42106-022-00217-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 17 2022 1 03 11 65-79 |
language |
English |
source |
Enthalten in International journal of plant production 17(2022), 1 vom: 03. Nov., Seite 65-79 volume:17 year:2022 number:1 day:03 month:11 pages:65-79 |
sourceStr |
Enthalten in International journal of plant production 17(2022), 1 vom: 03. Nov., Seite 65-79 volume:17 year:2022 number:1 day:03 month:11 pages:65-79 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
No-tillage system Conservation agriculture Conventional tillage systems Soil bulk density Soil porosity |
isfreeaccess_bool |
false |
container_title |
International journal of plant production |
authorswithroles_txt_mv |
Silva, Sérgio Ricardo @@aut@@ dos Santos, Henrique Pereira @@aut@@ Lollato, Rômulo Pisa @@aut@@ Santi, Anderson @@aut@@ Fontaneli, Renato Serena @@aut@@ |
publishDateDaySort_date |
2022-11-03T00:00:00Z |
hierarchy_top_id |
529090082 |
id |
SPR04944185X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR04944185X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510063856.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s42106-022-00217-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR04944185X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42106-022-00217-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Silva, Sérgio Ricardo</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6951-8324</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Soybean Yield and Soil Physical Properties as Affected by Long-Term Tillage Systems and Liming in Southern Brazil</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Conservation agriculture (CA) is an important aspect of the sustainable management of soybean [Glycine max (L.) Merrill] in production systems. This work evaluated the effects of soil management systems (SMS) combined with liming performed in 1986 and in 2008 on soil physical properties and soybean yield. The study used data from the 2008/09 until the 2015/16 soybean crop seasons from a long-term experiment settled in 1986 in Passo Fundo, southern Brazil. A split-plot design was used with the SMS as the main plots arranged in randomized blocks, and the cropping systems as the sub-plots randomized within SMS. The experiment evaluated the effects of four annually performed SMS: no-tillage (NT) and reduced-tillage (RT) (i.e. two CA systems), disk ploughing + disk harrowing (DPD) and moldboard ploughing + disk harrowing (MPD) [i.e. two conventional tillage (CT) systems]. Soil bulk density ($ ρ_{s} $) and total, micro and macro porosities ($ φ_{total} $, $ φ_{micro} $ and $ φ_{macro} $) were evaluated in 2008 and in 2016 in the 0‒2.5 cm ($ L_{0 − 2.5} $) and 10‒12.5 cm ($ L_{10 − 12.5} $) soil layers. After 22 years of the beginning of the experiment and compared with the undisturbed soil (from a native forest area near to the experiment), all SMS increased $ ρ_{s} $ by an average of 28% in the $ L_{0 − 2.5} $ and 25% in the $ L_{10 − 12.5} $, decreased $ φ_{total} $ by 13% (except for NT) in the $ L_{0 − 2.5} $ and 17% in the $ L_{10 − 12.5} $, and decreased $ φ_{macro} $ by 36% in the $ L_{10 − 12.5} $; moreover the CT systems decreased $ φ_{micro} $ by 8.7% and 8.1% in the $ L_{0 − 2.5} $ and $ L_{10 − 12.5} $, respectively. At the end of this 22-year period, in the $ L_{0 − 2.5} $, $ ρ_{s} $ increased by 6% from NT to RT, and by 11% from NT to CT systems; $ φ_{total} $ decreased by 4%, and $ φ_{micro} $ increased by 9% from NT to the other SMS. From 2008 to 2016, liming combined with each SMS modified soil properties in distinct manners: the combination increased $ ρ_{s} $ by 6% in NT ($ L_{0 − 2.5} $) and 5% in MPD ($ L_{10 − 12.5} $), decreased $ φ_{total} $ by 4% in MPD ($ L_{10 − 12.5} $), increased $ φ_{micro} $ in all SMS by an average of 6% ($ L_{10 − 12.5} $), and reduced $ φ_{macro} $ by an average of 24% in CT systems ($ L_{10 − 12.5} $). Soybean yield was more variable as function of growing season (average from 1866 to 4449 kg $ ha^{− 1} $) as compared to SMS treatment [average from 3088 kg $ ha^{− 1} $ (DPD) to 3276 kg $ ha^{− 1} $ (NT)]. Considering a global analysis of the eight crop seasons, soybean yield in NT was on average 6% greater than that of DPD, but NT grain yield was similar to RT and MPD systems. No-tillage favored soybean yield in higher yielding environments, while DPD had the greatest soybean yield and adaptability in lower yielding environments. These findings suggest that the NT system outperformed the other SMS by providing greater or similar soybean yields and being the least harmful to soil physical quality as compared to the undisturbed soil.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">No-tillage system</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conservation agriculture</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conventional tillage systems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil bulk density</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil porosity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">dos Santos, Henrique Pereira</subfield><subfield code="0">(orcid)0000-0002-7587-7398</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lollato, Rômulo Pisa</subfield><subfield code="0">(orcid)0000-0001-8615-0074</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Santi, Anderson</subfield><subfield code="0">(orcid)0000-0003-3524-2694</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fontaneli, Renato Serena</subfield><subfield code="0">(orcid)0000-0002-1970-4791</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of plant production</subfield><subfield code="d">[Cham] : Springer International Publishing, 2007</subfield><subfield code="g">17(2022), 1 vom: 03. Nov., Seite 65-79</subfield><subfield code="w">(DE-627)529090082</subfield><subfield code="w">(DE-600)2299088-4</subfield><subfield code="x">1735-6814</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:03</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:65-79</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s42106-022-00217-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">03</subfield><subfield code="c">11</subfield><subfield code="h">65-79</subfield></datafield></record></collection>
|
author |
Silva, Sérgio Ricardo |
spellingShingle |
Silva, Sérgio Ricardo misc No-tillage system misc Conservation agriculture misc Conventional tillage systems misc Soil bulk density misc Soil porosity Soybean Yield and Soil Physical Properties as Affected by Long-Term Tillage Systems and Liming in Southern Brazil |
authorStr |
Silva, Sérgio Ricardo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)529090082 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1735-6814 |
topic_title |
Soybean Yield and Soil Physical Properties as Affected by Long-Term Tillage Systems and Liming in Southern Brazil No-tillage system (dpeaa)DE-He213 Conservation agriculture (dpeaa)DE-He213 Conventional tillage systems (dpeaa)DE-He213 Soil bulk density (dpeaa)DE-He213 Soil porosity (dpeaa)DE-He213 |
topic |
misc No-tillage system misc Conservation agriculture misc Conventional tillage systems misc Soil bulk density misc Soil porosity |
topic_unstemmed |
misc No-tillage system misc Conservation agriculture misc Conventional tillage systems misc Soil bulk density misc Soil porosity |
topic_browse |
misc No-tillage system misc Conservation agriculture misc Conventional tillage systems misc Soil bulk density misc Soil porosity |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of plant production |
hierarchy_parent_id |
529090082 |
hierarchy_top_title |
International journal of plant production |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)529090082 (DE-600)2299088-4 |
title |
Soybean Yield and Soil Physical Properties as Affected by Long-Term Tillage Systems and Liming in Southern Brazil |
ctrlnum |
(DE-627)SPR04944185X (SPR)s42106-022-00217-0-e |
title_full |
Soybean Yield and Soil Physical Properties as Affected by Long-Term Tillage Systems and Liming in Southern Brazil |
author_sort |
Silva, Sérgio Ricardo |
journal |
International journal of plant production |
journalStr |
International journal of plant production |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
65 |
author_browse |
Silva, Sérgio Ricardo dos Santos, Henrique Pereira Lollato, Rômulo Pisa Santi, Anderson Fontaneli, Renato Serena |
container_volume |
17 |
format_se |
Elektronische Aufsätze |
author-letter |
Silva, Sérgio Ricardo |
doi_str_mv |
10.1007/s42106-022-00217-0 |
normlink |
(ORCID)0000-0001-6951-8324 (ORCID)0000-0002-7587-7398 (ORCID)0000-0001-8615-0074 (ORCID)0000-0003-3524-2694 (ORCID)0000-0002-1970-4791 |
normlink_prefix_str_mv |
(orcid)0000-0001-6951-8324 (orcid)0000-0002-7587-7398 (orcid)0000-0001-8615-0074 (orcid)0000-0003-3524-2694 (orcid)0000-0002-1970-4791 |
title_sort |
soybean yield and soil physical properties as affected by long-term tillage systems and liming in southern brazil |
title_auth |
Soybean Yield and Soil Physical Properties as Affected by Long-Term Tillage Systems and Liming in Southern Brazil |
abstract |
Abstract Conservation agriculture (CA) is an important aspect of the sustainable management of soybean [Glycine max (L.) Merrill] in production systems. This work evaluated the effects of soil management systems (SMS) combined with liming performed in 1986 and in 2008 on soil physical properties and soybean yield. The study used data from the 2008/09 until the 2015/16 soybean crop seasons from a long-term experiment settled in 1986 in Passo Fundo, southern Brazil. A split-plot design was used with the SMS as the main plots arranged in randomized blocks, and the cropping systems as the sub-plots randomized within SMS. The experiment evaluated the effects of four annually performed SMS: no-tillage (NT) and reduced-tillage (RT) (i.e. two CA systems), disk ploughing + disk harrowing (DPD) and moldboard ploughing + disk harrowing (MPD) [i.e. two conventional tillage (CT) systems]. Soil bulk density ($ ρ_{s} $) and total, micro and macro porosities ($ φ_{total} $, $ φ_{micro} $ and $ φ_{macro} $) were evaluated in 2008 and in 2016 in the 0‒2.5 cm ($ L_{0 − 2.5} $) and 10‒12.5 cm ($ L_{10 − 12.5} $) soil layers. After 22 years of the beginning of the experiment and compared with the undisturbed soil (from a native forest area near to the experiment), all SMS increased $ ρ_{s} $ by an average of 28% in the $ L_{0 − 2.5} $ and 25% in the $ L_{10 − 12.5} $, decreased $ φ_{total} $ by 13% (except for NT) in the $ L_{0 − 2.5} $ and 17% in the $ L_{10 − 12.5} $, and decreased $ φ_{macro} $ by 36% in the $ L_{10 − 12.5} $; moreover the CT systems decreased $ φ_{micro} $ by 8.7% and 8.1% in the $ L_{0 − 2.5} $ and $ L_{10 − 12.5} $, respectively. At the end of this 22-year period, in the $ L_{0 − 2.5} $, $ ρ_{s} $ increased by 6% from NT to RT, and by 11% from NT to CT systems; $ φ_{total} $ decreased by 4%, and $ φ_{micro} $ increased by 9% from NT to the other SMS. From 2008 to 2016, liming combined with each SMS modified soil properties in distinct manners: the combination increased $ ρ_{s} $ by 6% in NT ($ L_{0 − 2.5} $) and 5% in MPD ($ L_{10 − 12.5} $), decreased $ φ_{total} $ by 4% in MPD ($ L_{10 − 12.5} $), increased $ φ_{micro} $ in all SMS by an average of 6% ($ L_{10 − 12.5} $), and reduced $ φ_{macro} $ by an average of 24% in CT systems ($ L_{10 − 12.5} $). Soybean yield was more variable as function of growing season (average from 1866 to 4449 kg $ ha^{− 1} $) as compared to SMS treatment [average from 3088 kg $ ha^{− 1} $ (DPD) to 3276 kg $ ha^{− 1} $ (NT)]. Considering a global analysis of the eight crop seasons, soybean yield in NT was on average 6% greater than that of DPD, but NT grain yield was similar to RT and MPD systems. No-tillage favored soybean yield in higher yielding environments, while DPD had the greatest soybean yield and adaptability in lower yielding environments. These findings suggest that the NT system outperformed the other SMS by providing greater or similar soybean yields and being the least harmful to soil physical quality as compared to the undisturbed soil. © Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract Conservation agriculture (CA) is an important aspect of the sustainable management of soybean [Glycine max (L.) Merrill] in production systems. This work evaluated the effects of soil management systems (SMS) combined with liming performed in 1986 and in 2008 on soil physical properties and soybean yield. The study used data from the 2008/09 until the 2015/16 soybean crop seasons from a long-term experiment settled in 1986 in Passo Fundo, southern Brazil. A split-plot design was used with the SMS as the main plots arranged in randomized blocks, and the cropping systems as the sub-plots randomized within SMS. The experiment evaluated the effects of four annually performed SMS: no-tillage (NT) and reduced-tillage (RT) (i.e. two CA systems), disk ploughing + disk harrowing (DPD) and moldboard ploughing + disk harrowing (MPD) [i.e. two conventional tillage (CT) systems]. Soil bulk density ($ ρ_{s} $) and total, micro and macro porosities ($ φ_{total} $, $ φ_{micro} $ and $ φ_{macro} $) were evaluated in 2008 and in 2016 in the 0‒2.5 cm ($ L_{0 − 2.5} $) and 10‒12.5 cm ($ L_{10 − 12.5} $) soil layers. After 22 years of the beginning of the experiment and compared with the undisturbed soil (from a native forest area near to the experiment), all SMS increased $ ρ_{s} $ by an average of 28% in the $ L_{0 − 2.5} $ and 25% in the $ L_{10 − 12.5} $, decreased $ φ_{total} $ by 13% (except for NT) in the $ L_{0 − 2.5} $ and 17% in the $ L_{10 − 12.5} $, and decreased $ φ_{macro} $ by 36% in the $ L_{10 − 12.5} $; moreover the CT systems decreased $ φ_{micro} $ by 8.7% and 8.1% in the $ L_{0 − 2.5} $ and $ L_{10 − 12.5} $, respectively. At the end of this 22-year period, in the $ L_{0 − 2.5} $, $ ρ_{s} $ increased by 6% from NT to RT, and by 11% from NT to CT systems; $ φ_{total} $ decreased by 4%, and $ φ_{micro} $ increased by 9% from NT to the other SMS. From 2008 to 2016, liming combined with each SMS modified soil properties in distinct manners: the combination increased $ ρ_{s} $ by 6% in NT ($ L_{0 − 2.5} $) and 5% in MPD ($ L_{10 − 12.5} $), decreased $ φ_{total} $ by 4% in MPD ($ L_{10 − 12.5} $), increased $ φ_{micro} $ in all SMS by an average of 6% ($ L_{10 − 12.5} $), and reduced $ φ_{macro} $ by an average of 24% in CT systems ($ L_{10 − 12.5} $). Soybean yield was more variable as function of growing season (average from 1866 to 4449 kg $ ha^{− 1} $) as compared to SMS treatment [average from 3088 kg $ ha^{− 1} $ (DPD) to 3276 kg $ ha^{− 1} $ (NT)]. Considering a global analysis of the eight crop seasons, soybean yield in NT was on average 6% greater than that of DPD, but NT grain yield was similar to RT and MPD systems. No-tillage favored soybean yield in higher yielding environments, while DPD had the greatest soybean yield and adaptability in lower yielding environments. These findings suggest that the NT system outperformed the other SMS by providing greater or similar soybean yields and being the least harmful to soil physical quality as compared to the undisturbed soil. © Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract Conservation agriculture (CA) is an important aspect of the sustainable management of soybean [Glycine max (L.) Merrill] in production systems. This work evaluated the effects of soil management systems (SMS) combined with liming performed in 1986 and in 2008 on soil physical properties and soybean yield. The study used data from the 2008/09 until the 2015/16 soybean crop seasons from a long-term experiment settled in 1986 in Passo Fundo, southern Brazil. A split-plot design was used with the SMS as the main plots arranged in randomized blocks, and the cropping systems as the sub-plots randomized within SMS. The experiment evaluated the effects of four annually performed SMS: no-tillage (NT) and reduced-tillage (RT) (i.e. two CA systems), disk ploughing + disk harrowing (DPD) and moldboard ploughing + disk harrowing (MPD) [i.e. two conventional tillage (CT) systems]. Soil bulk density ($ ρ_{s} $) and total, micro and macro porosities ($ φ_{total} $, $ φ_{micro} $ and $ φ_{macro} $) were evaluated in 2008 and in 2016 in the 0‒2.5 cm ($ L_{0 − 2.5} $) and 10‒12.5 cm ($ L_{10 − 12.5} $) soil layers. After 22 years of the beginning of the experiment and compared with the undisturbed soil (from a native forest area near to the experiment), all SMS increased $ ρ_{s} $ by an average of 28% in the $ L_{0 − 2.5} $ and 25% in the $ L_{10 − 12.5} $, decreased $ φ_{total} $ by 13% (except for NT) in the $ L_{0 − 2.5} $ and 17% in the $ L_{10 − 12.5} $, and decreased $ φ_{macro} $ by 36% in the $ L_{10 − 12.5} $; moreover the CT systems decreased $ φ_{micro} $ by 8.7% and 8.1% in the $ L_{0 − 2.5} $ and $ L_{10 − 12.5} $, respectively. At the end of this 22-year period, in the $ L_{0 − 2.5} $, $ ρ_{s} $ increased by 6% from NT to RT, and by 11% from NT to CT systems; $ φ_{total} $ decreased by 4%, and $ φ_{micro} $ increased by 9% from NT to the other SMS. From 2008 to 2016, liming combined with each SMS modified soil properties in distinct manners: the combination increased $ ρ_{s} $ by 6% in NT ($ L_{0 − 2.5} $) and 5% in MPD ($ L_{10 − 12.5} $), decreased $ φ_{total} $ by 4% in MPD ($ L_{10 − 12.5} $), increased $ φ_{micro} $ in all SMS by an average of 6% ($ L_{10 − 12.5} $), and reduced $ φ_{macro} $ by an average of 24% in CT systems ($ L_{10 − 12.5} $). Soybean yield was more variable as function of growing season (average from 1866 to 4449 kg $ ha^{− 1} $) as compared to SMS treatment [average from 3088 kg $ ha^{− 1} $ (DPD) to 3276 kg $ ha^{− 1} $ (NT)]. Considering a global analysis of the eight crop seasons, soybean yield in NT was on average 6% greater than that of DPD, but NT grain yield was similar to RT and MPD systems. No-tillage favored soybean yield in higher yielding environments, while DPD had the greatest soybean yield and adaptability in lower yielding environments. These findings suggest that the NT system outperformed the other SMS by providing greater or similar soybean yields and being the least harmful to soil physical quality as compared to the undisturbed soil. © Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Soybean Yield and Soil Physical Properties as Affected by Long-Term Tillage Systems and Liming in Southern Brazil |
url |
https://dx.doi.org/10.1007/s42106-022-00217-0 |
remote_bool |
true |
author2 |
dos Santos, Henrique Pereira Lollato, Rômulo Pisa Santi, Anderson Fontaneli, Renato Serena |
author2Str |
dos Santos, Henrique Pereira Lollato, Rômulo Pisa Santi, Anderson Fontaneli, Renato Serena |
ppnlink |
529090082 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s42106-022-00217-0 |
up_date |
2024-07-04T00:49:40.356Z |
_version_ |
1803607532238798848 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR04944185X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510063856.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s42106-022-00217-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR04944185X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42106-022-00217-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Silva, Sérgio Ricardo</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6951-8324</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Soybean Yield and Soil Physical Properties as Affected by Long-Term Tillage Systems and Liming in Southern Brazil</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Conservation agriculture (CA) is an important aspect of the sustainable management of soybean [Glycine max (L.) Merrill] in production systems. This work evaluated the effects of soil management systems (SMS) combined with liming performed in 1986 and in 2008 on soil physical properties and soybean yield. The study used data from the 2008/09 until the 2015/16 soybean crop seasons from a long-term experiment settled in 1986 in Passo Fundo, southern Brazil. A split-plot design was used with the SMS as the main plots arranged in randomized blocks, and the cropping systems as the sub-plots randomized within SMS. The experiment evaluated the effects of four annually performed SMS: no-tillage (NT) and reduced-tillage (RT) (i.e. two CA systems), disk ploughing + disk harrowing (DPD) and moldboard ploughing + disk harrowing (MPD) [i.e. two conventional tillage (CT) systems]. Soil bulk density ($ ρ_{s} $) and total, micro and macro porosities ($ φ_{total} $, $ φ_{micro} $ and $ φ_{macro} $) were evaluated in 2008 and in 2016 in the 0‒2.5 cm ($ L_{0 − 2.5} $) and 10‒12.5 cm ($ L_{10 − 12.5} $) soil layers. After 22 years of the beginning of the experiment and compared with the undisturbed soil (from a native forest area near to the experiment), all SMS increased $ ρ_{s} $ by an average of 28% in the $ L_{0 − 2.5} $ and 25% in the $ L_{10 − 12.5} $, decreased $ φ_{total} $ by 13% (except for NT) in the $ L_{0 − 2.5} $ and 17% in the $ L_{10 − 12.5} $, and decreased $ φ_{macro} $ by 36% in the $ L_{10 − 12.5} $; moreover the CT systems decreased $ φ_{micro} $ by 8.7% and 8.1% in the $ L_{0 − 2.5} $ and $ L_{10 − 12.5} $, respectively. At the end of this 22-year period, in the $ L_{0 − 2.5} $, $ ρ_{s} $ increased by 6% from NT to RT, and by 11% from NT to CT systems; $ φ_{total} $ decreased by 4%, and $ φ_{micro} $ increased by 9% from NT to the other SMS. From 2008 to 2016, liming combined with each SMS modified soil properties in distinct manners: the combination increased $ ρ_{s} $ by 6% in NT ($ L_{0 − 2.5} $) and 5% in MPD ($ L_{10 − 12.5} $), decreased $ φ_{total} $ by 4% in MPD ($ L_{10 − 12.5} $), increased $ φ_{micro} $ in all SMS by an average of 6% ($ L_{10 − 12.5} $), and reduced $ φ_{macro} $ by an average of 24% in CT systems ($ L_{10 − 12.5} $). Soybean yield was more variable as function of growing season (average from 1866 to 4449 kg $ ha^{− 1} $) as compared to SMS treatment [average from 3088 kg $ ha^{− 1} $ (DPD) to 3276 kg $ ha^{− 1} $ (NT)]. Considering a global analysis of the eight crop seasons, soybean yield in NT was on average 6% greater than that of DPD, but NT grain yield was similar to RT and MPD systems. No-tillage favored soybean yield in higher yielding environments, while DPD had the greatest soybean yield and adaptability in lower yielding environments. These findings suggest that the NT system outperformed the other SMS by providing greater or similar soybean yields and being the least harmful to soil physical quality as compared to the undisturbed soil.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">No-tillage system</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conservation agriculture</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conventional tillage systems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil bulk density</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil porosity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">dos Santos, Henrique Pereira</subfield><subfield code="0">(orcid)0000-0002-7587-7398</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lollato, Rômulo Pisa</subfield><subfield code="0">(orcid)0000-0001-8615-0074</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Santi, Anderson</subfield><subfield code="0">(orcid)0000-0003-3524-2694</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fontaneli, Renato Serena</subfield><subfield code="0">(orcid)0000-0002-1970-4791</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of plant production</subfield><subfield code="d">[Cham] : Springer International Publishing, 2007</subfield><subfield code="g">17(2022), 1 vom: 03. Nov., Seite 65-79</subfield><subfield code="w">(DE-627)529090082</subfield><subfield code="w">(DE-600)2299088-4</subfield><subfield code="x">1735-6814</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:03</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:65-79</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s42106-022-00217-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">03</subfield><subfield code="c">11</subfield><subfield code="h">65-79</subfield></datafield></record></collection>
|
score |
7.4017916 |