RETRACTED ARTICLE: How Have the COVID-19 Pandemic and Market Sentiment Affected the FX Market? Evidence from Statistical Models and Deep Learning Algorithms
Abstract This paper attempts to investigate the impact of the COVID-19 pandemic and market sentiment on the dynamics of USD/JPY, GBP/USD, and USD/CNY. We compose the market sentiment variable and incorporate the newly confirmed COVID-19 cases and sentiment variable into the traditional exchange rate...
Ausführliche Beschreibung
Autor*in: |
Luo, Hang (Robin) [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of computational intelligence systems - Springer Netherlands, 2008, 16(2023), 1 vom: 25. Feb. |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2023 ; number:1 ; day:25 ; month:02 |
Links: |
---|
DOI / URN: |
10.1007/s44196-023-00194-w |
---|
Katalog-ID: |
SPR049466585 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR049466585 | ||
003 | DE-627 | ||
005 | 20240328072214.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s44196-023-00194-w |2 doi | |
035 | |a (DE-627)SPR049466585 | ||
035 | |a (SPR)s44196-023-00194-w-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Luo, Hang (Robin) |e verfasserin |0 (orcid)0000-0002-2492-4983 |4 aut | |
245 | 1 | 0 | |a RETRACTED ARTICLE: How Have the COVID-19 Pandemic and Market Sentiment Affected the FX Market? Evidence from Statistical Models and Deep Learning Algorithms |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Abstract This paper attempts to investigate the impact of the COVID-19 pandemic and market sentiment on the dynamics of USD/JPY, GBP/USD, and USD/CNY. We compose the market sentiment variable and incorporate the newly confirmed COVID-19 cases and sentiment variable into the traditional exchange rate forecasting model. We find that confirmed COVID-19 cases and sentiment variables in the US, Japan, UK, and China in the period of January 23rd, 2020 to September 14th, 2021 are significant in explaining the bilateral exchange rate movement. Recurrent neural network (RNN) and long short-term memory (LSTM) models outperform the other deep learning models and vector autoregressive (VAR) model in forecasting the bilateral exchange rate movement during the COVID-19 pandemic period. Further analysis using high-frequency intraday data and ensemble models shows that ensemble models significantly improve the accuracy of exchange rate prediction, as they are better at coping with the nonlinear and nonstationary features of exchange rate time series. | ||
650 | 4 | |a COVID-19 |7 (dpeaa)DE-He213 | |
650 | 4 | |a Deep learning |7 (dpeaa)DE-He213 | |
650 | 4 | |a Ensemble model |7 (dpeaa)DE-He213 | |
650 | 4 | |a Exchange rate |7 (dpeaa)DE-He213 | |
650 | 4 | |a Sentiment |7 (dpeaa)DE-He213 | |
700 | 1 | |a Luo, Xiaoyu |4 aut | |
700 | 1 | |a Gu, Shuhao |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of computational intelligence systems |d Springer Netherlands, 2008 |g 16(2023), 1 vom: 25. Feb. |w (DE-627)777781514 |w (DE-600)2754752-8 |x 1875-6883 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2023 |g number:1 |g day:25 |g month:02 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s44196-023-00194-w |z kostenfrei |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 2023 |e 1 |b 25 |c 02 |
author_variant |
h r l hr hrl x l xl s g sg |
---|---|
matchkey_str |
article:18756883:2023----::erceatceohvteoi1pneiadaktetmnafcetexaktvdnermttsi |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s44196-023-00194-w doi (DE-627)SPR049466585 (SPR)s44196-023-00194-w-e DE-627 ger DE-627 rakwb eng 004 VZ Luo, Hang (Robin) verfasserin (orcid)0000-0002-2492-4983 aut RETRACTED ARTICLE: How Have the COVID-19 Pandemic and Market Sentiment Affected the FX Market? Evidence from Statistical Models and Deep Learning Algorithms 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract This paper attempts to investigate the impact of the COVID-19 pandemic and market sentiment on the dynamics of USD/JPY, GBP/USD, and USD/CNY. We compose the market sentiment variable and incorporate the newly confirmed COVID-19 cases and sentiment variable into the traditional exchange rate forecasting model. We find that confirmed COVID-19 cases and sentiment variables in the US, Japan, UK, and China in the period of January 23rd, 2020 to September 14th, 2021 are significant in explaining the bilateral exchange rate movement. Recurrent neural network (RNN) and long short-term memory (LSTM) models outperform the other deep learning models and vector autoregressive (VAR) model in forecasting the bilateral exchange rate movement during the COVID-19 pandemic period. Further analysis using high-frequency intraday data and ensemble models shows that ensemble models significantly improve the accuracy of exchange rate prediction, as they are better at coping with the nonlinear and nonstationary features of exchange rate time series. COVID-19 (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Ensemble model (dpeaa)DE-He213 Exchange rate (dpeaa)DE-He213 Sentiment (dpeaa)DE-He213 Luo, Xiaoyu aut Gu, Shuhao aut Enthalten in International journal of computational intelligence systems Springer Netherlands, 2008 16(2023), 1 vom: 25. Feb. (DE-627)777781514 (DE-600)2754752-8 1875-6883 nnns volume:16 year:2023 number:1 day:25 month:02 https://dx.doi.org/10.1007/s44196-023-00194-w kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2023 1 25 02 |
spelling |
10.1007/s44196-023-00194-w doi (DE-627)SPR049466585 (SPR)s44196-023-00194-w-e DE-627 ger DE-627 rakwb eng 004 VZ Luo, Hang (Robin) verfasserin (orcid)0000-0002-2492-4983 aut RETRACTED ARTICLE: How Have the COVID-19 Pandemic and Market Sentiment Affected the FX Market? Evidence from Statistical Models and Deep Learning Algorithms 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract This paper attempts to investigate the impact of the COVID-19 pandemic and market sentiment on the dynamics of USD/JPY, GBP/USD, and USD/CNY. We compose the market sentiment variable and incorporate the newly confirmed COVID-19 cases and sentiment variable into the traditional exchange rate forecasting model. We find that confirmed COVID-19 cases and sentiment variables in the US, Japan, UK, and China in the period of January 23rd, 2020 to September 14th, 2021 are significant in explaining the bilateral exchange rate movement. Recurrent neural network (RNN) and long short-term memory (LSTM) models outperform the other deep learning models and vector autoregressive (VAR) model in forecasting the bilateral exchange rate movement during the COVID-19 pandemic period. Further analysis using high-frequency intraday data and ensemble models shows that ensemble models significantly improve the accuracy of exchange rate prediction, as they are better at coping with the nonlinear and nonstationary features of exchange rate time series. COVID-19 (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Ensemble model (dpeaa)DE-He213 Exchange rate (dpeaa)DE-He213 Sentiment (dpeaa)DE-He213 Luo, Xiaoyu aut Gu, Shuhao aut Enthalten in International journal of computational intelligence systems Springer Netherlands, 2008 16(2023), 1 vom: 25. Feb. (DE-627)777781514 (DE-600)2754752-8 1875-6883 nnns volume:16 year:2023 number:1 day:25 month:02 https://dx.doi.org/10.1007/s44196-023-00194-w kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2023 1 25 02 |
allfields_unstemmed |
10.1007/s44196-023-00194-w doi (DE-627)SPR049466585 (SPR)s44196-023-00194-w-e DE-627 ger DE-627 rakwb eng 004 VZ Luo, Hang (Robin) verfasserin (orcid)0000-0002-2492-4983 aut RETRACTED ARTICLE: How Have the COVID-19 Pandemic and Market Sentiment Affected the FX Market? Evidence from Statistical Models and Deep Learning Algorithms 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract This paper attempts to investigate the impact of the COVID-19 pandemic and market sentiment on the dynamics of USD/JPY, GBP/USD, and USD/CNY. We compose the market sentiment variable and incorporate the newly confirmed COVID-19 cases and sentiment variable into the traditional exchange rate forecasting model. We find that confirmed COVID-19 cases and sentiment variables in the US, Japan, UK, and China in the period of January 23rd, 2020 to September 14th, 2021 are significant in explaining the bilateral exchange rate movement. Recurrent neural network (RNN) and long short-term memory (LSTM) models outperform the other deep learning models and vector autoregressive (VAR) model in forecasting the bilateral exchange rate movement during the COVID-19 pandemic period. Further analysis using high-frequency intraday data and ensemble models shows that ensemble models significantly improve the accuracy of exchange rate prediction, as they are better at coping with the nonlinear and nonstationary features of exchange rate time series. COVID-19 (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Ensemble model (dpeaa)DE-He213 Exchange rate (dpeaa)DE-He213 Sentiment (dpeaa)DE-He213 Luo, Xiaoyu aut Gu, Shuhao aut Enthalten in International journal of computational intelligence systems Springer Netherlands, 2008 16(2023), 1 vom: 25. Feb. (DE-627)777781514 (DE-600)2754752-8 1875-6883 nnns volume:16 year:2023 number:1 day:25 month:02 https://dx.doi.org/10.1007/s44196-023-00194-w kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2023 1 25 02 |
allfieldsGer |
10.1007/s44196-023-00194-w doi (DE-627)SPR049466585 (SPR)s44196-023-00194-w-e DE-627 ger DE-627 rakwb eng 004 VZ Luo, Hang (Robin) verfasserin (orcid)0000-0002-2492-4983 aut RETRACTED ARTICLE: How Have the COVID-19 Pandemic and Market Sentiment Affected the FX Market? Evidence from Statistical Models and Deep Learning Algorithms 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract This paper attempts to investigate the impact of the COVID-19 pandemic and market sentiment on the dynamics of USD/JPY, GBP/USD, and USD/CNY. We compose the market sentiment variable and incorporate the newly confirmed COVID-19 cases and sentiment variable into the traditional exchange rate forecasting model. We find that confirmed COVID-19 cases and sentiment variables in the US, Japan, UK, and China in the period of January 23rd, 2020 to September 14th, 2021 are significant in explaining the bilateral exchange rate movement. Recurrent neural network (RNN) and long short-term memory (LSTM) models outperform the other deep learning models and vector autoregressive (VAR) model in forecasting the bilateral exchange rate movement during the COVID-19 pandemic period. Further analysis using high-frequency intraday data and ensemble models shows that ensemble models significantly improve the accuracy of exchange rate prediction, as they are better at coping with the nonlinear and nonstationary features of exchange rate time series. COVID-19 (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Ensemble model (dpeaa)DE-He213 Exchange rate (dpeaa)DE-He213 Sentiment (dpeaa)DE-He213 Luo, Xiaoyu aut Gu, Shuhao aut Enthalten in International journal of computational intelligence systems Springer Netherlands, 2008 16(2023), 1 vom: 25. Feb. (DE-627)777781514 (DE-600)2754752-8 1875-6883 nnns volume:16 year:2023 number:1 day:25 month:02 https://dx.doi.org/10.1007/s44196-023-00194-w kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2023 1 25 02 |
allfieldsSound |
10.1007/s44196-023-00194-w doi (DE-627)SPR049466585 (SPR)s44196-023-00194-w-e DE-627 ger DE-627 rakwb eng 004 VZ Luo, Hang (Robin) verfasserin (orcid)0000-0002-2492-4983 aut RETRACTED ARTICLE: How Have the COVID-19 Pandemic and Market Sentiment Affected the FX Market? Evidence from Statistical Models and Deep Learning Algorithms 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract This paper attempts to investigate the impact of the COVID-19 pandemic and market sentiment on the dynamics of USD/JPY, GBP/USD, and USD/CNY. We compose the market sentiment variable and incorporate the newly confirmed COVID-19 cases and sentiment variable into the traditional exchange rate forecasting model. We find that confirmed COVID-19 cases and sentiment variables in the US, Japan, UK, and China in the period of January 23rd, 2020 to September 14th, 2021 are significant in explaining the bilateral exchange rate movement. Recurrent neural network (RNN) and long short-term memory (LSTM) models outperform the other deep learning models and vector autoregressive (VAR) model in forecasting the bilateral exchange rate movement during the COVID-19 pandemic period. Further analysis using high-frequency intraday data and ensemble models shows that ensemble models significantly improve the accuracy of exchange rate prediction, as they are better at coping with the nonlinear and nonstationary features of exchange rate time series. COVID-19 (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Ensemble model (dpeaa)DE-He213 Exchange rate (dpeaa)DE-He213 Sentiment (dpeaa)DE-He213 Luo, Xiaoyu aut Gu, Shuhao aut Enthalten in International journal of computational intelligence systems Springer Netherlands, 2008 16(2023), 1 vom: 25. Feb. (DE-627)777781514 (DE-600)2754752-8 1875-6883 nnns volume:16 year:2023 number:1 day:25 month:02 https://dx.doi.org/10.1007/s44196-023-00194-w kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2023 1 25 02 |
language |
English |
source |
Enthalten in International journal of computational intelligence systems 16(2023), 1 vom: 25. Feb. volume:16 year:2023 number:1 day:25 month:02 |
sourceStr |
Enthalten in International journal of computational intelligence systems 16(2023), 1 vom: 25. Feb. volume:16 year:2023 number:1 day:25 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
COVID-19 Deep learning Ensemble model Exchange rate Sentiment |
dewey-raw |
004 |
isfreeaccess_bool |
true |
container_title |
International journal of computational intelligence systems |
authorswithroles_txt_mv |
Luo, Hang (Robin) @@aut@@ Luo, Xiaoyu @@aut@@ Gu, Shuhao @@aut@@ |
publishDateDaySort_date |
2023-02-25T00:00:00Z |
hierarchy_top_id |
777781514 |
dewey-sort |
14 |
id |
SPR049466585 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR049466585</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240328072214.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s44196-023-00194-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049466585</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s44196-023-00194-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Luo, Hang (Robin)</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2492-4983</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">RETRACTED ARTICLE: How Have the COVID-19 Pandemic and Market Sentiment Affected the FX Market? Evidence from Statistical Models and Deep Learning Algorithms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper attempts to investigate the impact of the COVID-19 pandemic and market sentiment on the dynamics of USD/JPY, GBP/USD, and USD/CNY. We compose the market sentiment variable and incorporate the newly confirmed COVID-19 cases and sentiment variable into the traditional exchange rate forecasting model. We find that confirmed COVID-19 cases and sentiment variables in the US, Japan, UK, and China in the period of January 23rd, 2020 to September 14th, 2021 are significant in explaining the bilateral exchange rate movement. Recurrent neural network (RNN) and long short-term memory (LSTM) models outperform the other deep learning models and vector autoregressive (VAR) model in forecasting the bilateral exchange rate movement during the COVID-19 pandemic period. Further analysis using high-frequency intraday data and ensemble models shows that ensemble models significantly improve the accuracy of exchange rate prediction, as they are better at coping with the nonlinear and nonstationary features of exchange rate time series.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COVID-19</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ensemble model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exchange rate</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sentiment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Xiaoyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gu, Shuhao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of computational intelligence systems</subfield><subfield code="d">Springer Netherlands, 2008</subfield><subfield code="g">16(2023), 1 vom: 25. Feb.</subfield><subfield code="w">(DE-627)777781514</subfield><subfield code="w">(DE-600)2754752-8</subfield><subfield code="x">1875-6883</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:25</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s44196-023-00194-w</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">25</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Luo, Hang (Robin) |
spellingShingle |
Luo, Hang (Robin) ddc 004 misc COVID-19 misc Deep learning misc Ensemble model misc Exchange rate misc Sentiment RETRACTED ARTICLE: How Have the COVID-19 Pandemic and Market Sentiment Affected the FX Market? Evidence from Statistical Models and Deep Learning Algorithms |
authorStr |
Luo, Hang (Robin) |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)777781514 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1875-6883 |
topic_title |
004 VZ RETRACTED ARTICLE: How Have the COVID-19 Pandemic and Market Sentiment Affected the FX Market? Evidence from Statistical Models and Deep Learning Algorithms COVID-19 (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Ensemble model (dpeaa)DE-He213 Exchange rate (dpeaa)DE-He213 Sentiment (dpeaa)DE-He213 |
topic |
ddc 004 misc COVID-19 misc Deep learning misc Ensemble model misc Exchange rate misc Sentiment |
topic_unstemmed |
ddc 004 misc COVID-19 misc Deep learning misc Ensemble model misc Exchange rate misc Sentiment |
topic_browse |
ddc 004 misc COVID-19 misc Deep learning misc Ensemble model misc Exchange rate misc Sentiment |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of computational intelligence systems |
hierarchy_parent_id |
777781514 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
International journal of computational intelligence systems |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)777781514 (DE-600)2754752-8 |
title |
RETRACTED ARTICLE: How Have the COVID-19 Pandemic and Market Sentiment Affected the FX Market? Evidence from Statistical Models and Deep Learning Algorithms |
ctrlnum |
(DE-627)SPR049466585 (SPR)s44196-023-00194-w-e |
title_full |
RETRACTED ARTICLE: How Have the COVID-19 Pandemic and Market Sentiment Affected the FX Market? Evidence from Statistical Models and Deep Learning Algorithms |
author_sort |
Luo, Hang (Robin) |
journal |
International journal of computational intelligence systems |
journalStr |
International journal of computational intelligence systems |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Luo, Hang (Robin) Luo, Xiaoyu Gu, Shuhao |
container_volume |
16 |
class |
004 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Luo, Hang (Robin) |
doi_str_mv |
10.1007/s44196-023-00194-w |
normlink |
(ORCID)0000-0002-2492-4983 |
normlink_prefix_str_mv |
(orcid)0000-0002-2492-4983 |
dewey-full |
004 |
title_sort |
retracted article: how have the covid-19 pandemic and market sentiment affected the fx market? evidence from statistical models and deep learning algorithms |
title_auth |
RETRACTED ARTICLE: How Have the COVID-19 Pandemic and Market Sentiment Affected the FX Market? Evidence from Statistical Models and Deep Learning Algorithms |
abstract |
Abstract This paper attempts to investigate the impact of the COVID-19 pandemic and market sentiment on the dynamics of USD/JPY, GBP/USD, and USD/CNY. We compose the market sentiment variable and incorporate the newly confirmed COVID-19 cases and sentiment variable into the traditional exchange rate forecasting model. We find that confirmed COVID-19 cases and sentiment variables in the US, Japan, UK, and China in the period of January 23rd, 2020 to September 14th, 2021 are significant in explaining the bilateral exchange rate movement. Recurrent neural network (RNN) and long short-term memory (LSTM) models outperform the other deep learning models and vector autoregressive (VAR) model in forecasting the bilateral exchange rate movement during the COVID-19 pandemic period. Further analysis using high-frequency intraday data and ensemble models shows that ensemble models significantly improve the accuracy of exchange rate prediction, as they are better at coping with the nonlinear and nonstationary features of exchange rate time series. © The Author(s) 2023 |
abstractGer |
Abstract This paper attempts to investigate the impact of the COVID-19 pandemic and market sentiment on the dynamics of USD/JPY, GBP/USD, and USD/CNY. We compose the market sentiment variable and incorporate the newly confirmed COVID-19 cases and sentiment variable into the traditional exchange rate forecasting model. We find that confirmed COVID-19 cases and sentiment variables in the US, Japan, UK, and China in the period of January 23rd, 2020 to September 14th, 2021 are significant in explaining the bilateral exchange rate movement. Recurrent neural network (RNN) and long short-term memory (LSTM) models outperform the other deep learning models and vector autoregressive (VAR) model in forecasting the bilateral exchange rate movement during the COVID-19 pandemic period. Further analysis using high-frequency intraday data and ensemble models shows that ensemble models significantly improve the accuracy of exchange rate prediction, as they are better at coping with the nonlinear and nonstationary features of exchange rate time series. © The Author(s) 2023 |
abstract_unstemmed |
Abstract This paper attempts to investigate the impact of the COVID-19 pandemic and market sentiment on the dynamics of USD/JPY, GBP/USD, and USD/CNY. We compose the market sentiment variable and incorporate the newly confirmed COVID-19 cases and sentiment variable into the traditional exchange rate forecasting model. We find that confirmed COVID-19 cases and sentiment variables in the US, Japan, UK, and China in the period of January 23rd, 2020 to September 14th, 2021 are significant in explaining the bilateral exchange rate movement. Recurrent neural network (RNN) and long short-term memory (LSTM) models outperform the other deep learning models and vector autoregressive (VAR) model in forecasting the bilateral exchange rate movement during the COVID-19 pandemic period. Further analysis using high-frequency intraday data and ensemble models shows that ensemble models significantly improve the accuracy of exchange rate prediction, as they are better at coping with the nonlinear and nonstationary features of exchange rate time series. © The Author(s) 2023 |
collection_details |
SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
RETRACTED ARTICLE: How Have the COVID-19 Pandemic and Market Sentiment Affected the FX Market? Evidence from Statistical Models and Deep Learning Algorithms |
url |
https://dx.doi.org/10.1007/s44196-023-00194-w |
remote_bool |
true |
author2 |
Luo, Xiaoyu Gu, Shuhao |
author2Str |
Luo, Xiaoyu Gu, Shuhao |
ppnlink |
777781514 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s44196-023-00194-w |
up_date |
2024-07-04T00:55:35.361Z |
_version_ |
1803607904471744512 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR049466585</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240328072214.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s44196-023-00194-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049466585</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s44196-023-00194-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Luo, Hang (Robin)</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2492-4983</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">RETRACTED ARTICLE: How Have the COVID-19 Pandemic and Market Sentiment Affected the FX Market? Evidence from Statistical Models and Deep Learning Algorithms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper attempts to investigate the impact of the COVID-19 pandemic and market sentiment on the dynamics of USD/JPY, GBP/USD, and USD/CNY. We compose the market sentiment variable and incorporate the newly confirmed COVID-19 cases and sentiment variable into the traditional exchange rate forecasting model. We find that confirmed COVID-19 cases and sentiment variables in the US, Japan, UK, and China in the period of January 23rd, 2020 to September 14th, 2021 are significant in explaining the bilateral exchange rate movement. Recurrent neural network (RNN) and long short-term memory (LSTM) models outperform the other deep learning models and vector autoregressive (VAR) model in forecasting the bilateral exchange rate movement during the COVID-19 pandemic period. Further analysis using high-frequency intraday data and ensemble models shows that ensemble models significantly improve the accuracy of exchange rate prediction, as they are better at coping with the nonlinear and nonstationary features of exchange rate time series.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COVID-19</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ensemble model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exchange rate</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sentiment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Xiaoyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gu, Shuhao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of computational intelligence systems</subfield><subfield code="d">Springer Netherlands, 2008</subfield><subfield code="g">16(2023), 1 vom: 25. Feb.</subfield><subfield code="w">(DE-627)777781514</subfield><subfield code="w">(DE-600)2754752-8</subfield><subfield code="x">1875-6883</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:25</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s44196-023-00194-w</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">25</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.4020147 |