Coupling analysis and vibration control of vehicle vertical vibration and pitching vibration
Abstract The decoupling analysis of vertical vibration and pitching vibration is the basis of improving vehicle comfort performance and realizing vehicle body vibration control. In order to study the coupling behavior of vehicle body vibration, the vibration characteristics of the suspension and the...
Ausführliche Beschreibung
Autor*in: |
Zou, Xiaojun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: SN applied sciences - [Cham] : Springer International Publishing, 2019, 5(2023), 3 vom: 24. Feb. |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2023 ; number:3 ; day:24 ; month:02 |
Links: |
---|
DOI / URN: |
10.1007/s42452-023-05288-w |
---|
Katalog-ID: |
SPR049480243 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR049480243 | ||
003 | DE-627 | ||
005 | 20230510064037.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s42452-023-05288-w |2 doi | |
035 | |a (DE-627)SPR049480243 | ||
035 | |a (SPR)s42452-023-05288-w-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Zou, Xiaojun |e verfasserin |0 (orcid)0000-0002-6955-2810 |4 aut | |
245 | 1 | 0 | |a Coupling analysis and vibration control of vehicle vertical vibration and pitching vibration |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Abstract The decoupling analysis of vertical vibration and pitching vibration is the basis of improving vehicle comfort performance and realizing vehicle body vibration control. In order to study the coupling behavior of vehicle body vibration, the vibration characteristics of the suspension and the body are analyzed through mathematical modeling and vibration tests. The research shows that the vibration characteristics of the front and rear suspensions are the key factors affecting the coupling between the vertical vibration and the pitching vibration. By controlling the difference ξ between the square of the rotating radius of the body and the product of the distance from the center of mass to the front and rear axles, the correlation between front and rear suspension vibration and the coupling of the body vibration can be reduced effectively. Through the reasonable matching of front and rear suspension stiffness, the ξ value can be reduced effectively. The research results provide a theoretical basis and reference for mastering the coupling mechanism between vertical vibration and pitching vibration and for the body vibration control. | ||
520 | |a Article highlights The coupling model of vehicle vertical vibration and pitching vibration is established, and the mechanism and key influencing factors of the coupling vibration are revealed.A test method for vehicle coupled vibration identification is presented.In order to reduce the coupling vibration of vehicle, the stiffness matching method and analysis process are presented. | ||
650 | 4 | |a Vertical vibration |7 (dpeaa)DE-He213 | |
650 | 4 | |a Pitching vibration |7 (dpeaa)DE-He213 | |
650 | 4 | |a Coupling |7 (dpeaa)DE-He213 | |
650 | 4 | |a Optimization |7 (dpeaa)DE-He213 | |
700 | 1 | |a Zhang, Bao |4 aut | |
700 | 1 | |a Yin, Guodong |4 aut | |
700 | 1 | |a Wang, Hongnan |4 aut | |
773 | 0 | 8 | |i Enthalten in |t SN applied sciences |d [Cham] : Springer International Publishing, 2019 |g 5(2023), 3 vom: 24. Feb. |w (DE-627)103761139X |w (DE-600)2947292-1 |x 2523-3971 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2023 |g number:3 |g day:24 |g month:02 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s42452-023-05288-w |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 5 |j 2023 |e 3 |b 24 |c 02 |
author_variant |
x z xz b z bz g y gy h w hw |
---|---|
matchkey_str |
article:25233971:2023----::opignlssnvbainotoovhceetclirto |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s42452-023-05288-w doi (DE-627)SPR049480243 (SPR)s42452-023-05288-w-e DE-627 ger DE-627 rakwb eng Zou, Xiaojun verfasserin (orcid)0000-0002-6955-2810 aut Coupling analysis and vibration control of vehicle vertical vibration and pitching vibration 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract The decoupling analysis of vertical vibration and pitching vibration is the basis of improving vehicle comfort performance and realizing vehicle body vibration control. In order to study the coupling behavior of vehicle body vibration, the vibration characteristics of the suspension and the body are analyzed through mathematical modeling and vibration tests. The research shows that the vibration characteristics of the front and rear suspensions are the key factors affecting the coupling between the vertical vibration and the pitching vibration. By controlling the difference ξ between the square of the rotating radius of the body and the product of the distance from the center of mass to the front and rear axles, the correlation between front and rear suspension vibration and the coupling of the body vibration can be reduced effectively. Through the reasonable matching of front and rear suspension stiffness, the ξ value can be reduced effectively. The research results provide a theoretical basis and reference for mastering the coupling mechanism between vertical vibration and pitching vibration and for the body vibration control. Article highlights The coupling model of vehicle vertical vibration and pitching vibration is established, and the mechanism and key influencing factors of the coupling vibration are revealed.A test method for vehicle coupled vibration identification is presented.In order to reduce the coupling vibration of vehicle, the stiffness matching method and analysis process are presented. Vertical vibration (dpeaa)DE-He213 Pitching vibration (dpeaa)DE-He213 Coupling (dpeaa)DE-He213 Optimization (dpeaa)DE-He213 Zhang, Bao aut Yin, Guodong aut Wang, Hongnan aut Enthalten in SN applied sciences [Cham] : Springer International Publishing, 2019 5(2023), 3 vom: 24. Feb. (DE-627)103761139X (DE-600)2947292-1 2523-3971 nnns volume:5 year:2023 number:3 day:24 month:02 https://dx.doi.org/10.1007/s42452-023-05288-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 3 24 02 |
spelling |
10.1007/s42452-023-05288-w doi (DE-627)SPR049480243 (SPR)s42452-023-05288-w-e DE-627 ger DE-627 rakwb eng Zou, Xiaojun verfasserin (orcid)0000-0002-6955-2810 aut Coupling analysis and vibration control of vehicle vertical vibration and pitching vibration 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract The decoupling analysis of vertical vibration and pitching vibration is the basis of improving vehicle comfort performance and realizing vehicle body vibration control. In order to study the coupling behavior of vehicle body vibration, the vibration characteristics of the suspension and the body are analyzed through mathematical modeling and vibration tests. The research shows that the vibration characteristics of the front and rear suspensions are the key factors affecting the coupling between the vertical vibration and the pitching vibration. By controlling the difference ξ between the square of the rotating radius of the body and the product of the distance from the center of mass to the front and rear axles, the correlation between front and rear suspension vibration and the coupling of the body vibration can be reduced effectively. Through the reasonable matching of front and rear suspension stiffness, the ξ value can be reduced effectively. The research results provide a theoretical basis and reference for mastering the coupling mechanism between vertical vibration and pitching vibration and for the body vibration control. Article highlights The coupling model of vehicle vertical vibration and pitching vibration is established, and the mechanism and key influencing factors of the coupling vibration are revealed.A test method for vehicle coupled vibration identification is presented.In order to reduce the coupling vibration of vehicle, the stiffness matching method and analysis process are presented. Vertical vibration (dpeaa)DE-He213 Pitching vibration (dpeaa)DE-He213 Coupling (dpeaa)DE-He213 Optimization (dpeaa)DE-He213 Zhang, Bao aut Yin, Guodong aut Wang, Hongnan aut Enthalten in SN applied sciences [Cham] : Springer International Publishing, 2019 5(2023), 3 vom: 24. Feb. (DE-627)103761139X (DE-600)2947292-1 2523-3971 nnns volume:5 year:2023 number:3 day:24 month:02 https://dx.doi.org/10.1007/s42452-023-05288-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 3 24 02 |
allfields_unstemmed |
10.1007/s42452-023-05288-w doi (DE-627)SPR049480243 (SPR)s42452-023-05288-w-e DE-627 ger DE-627 rakwb eng Zou, Xiaojun verfasserin (orcid)0000-0002-6955-2810 aut Coupling analysis and vibration control of vehicle vertical vibration and pitching vibration 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract The decoupling analysis of vertical vibration and pitching vibration is the basis of improving vehicle comfort performance and realizing vehicle body vibration control. In order to study the coupling behavior of vehicle body vibration, the vibration characteristics of the suspension and the body are analyzed through mathematical modeling and vibration tests. The research shows that the vibration characteristics of the front and rear suspensions are the key factors affecting the coupling between the vertical vibration and the pitching vibration. By controlling the difference ξ between the square of the rotating radius of the body and the product of the distance from the center of mass to the front and rear axles, the correlation between front and rear suspension vibration and the coupling of the body vibration can be reduced effectively. Through the reasonable matching of front and rear suspension stiffness, the ξ value can be reduced effectively. The research results provide a theoretical basis and reference for mastering the coupling mechanism between vertical vibration and pitching vibration and for the body vibration control. Article highlights The coupling model of vehicle vertical vibration and pitching vibration is established, and the mechanism and key influencing factors of the coupling vibration are revealed.A test method for vehicle coupled vibration identification is presented.In order to reduce the coupling vibration of vehicle, the stiffness matching method and analysis process are presented. Vertical vibration (dpeaa)DE-He213 Pitching vibration (dpeaa)DE-He213 Coupling (dpeaa)DE-He213 Optimization (dpeaa)DE-He213 Zhang, Bao aut Yin, Guodong aut Wang, Hongnan aut Enthalten in SN applied sciences [Cham] : Springer International Publishing, 2019 5(2023), 3 vom: 24. Feb. (DE-627)103761139X (DE-600)2947292-1 2523-3971 nnns volume:5 year:2023 number:3 day:24 month:02 https://dx.doi.org/10.1007/s42452-023-05288-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 3 24 02 |
allfieldsGer |
10.1007/s42452-023-05288-w doi (DE-627)SPR049480243 (SPR)s42452-023-05288-w-e DE-627 ger DE-627 rakwb eng Zou, Xiaojun verfasserin (orcid)0000-0002-6955-2810 aut Coupling analysis and vibration control of vehicle vertical vibration and pitching vibration 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract The decoupling analysis of vertical vibration and pitching vibration is the basis of improving vehicle comfort performance and realizing vehicle body vibration control. In order to study the coupling behavior of vehicle body vibration, the vibration characteristics of the suspension and the body are analyzed through mathematical modeling and vibration tests. The research shows that the vibration characteristics of the front and rear suspensions are the key factors affecting the coupling between the vertical vibration and the pitching vibration. By controlling the difference ξ between the square of the rotating radius of the body and the product of the distance from the center of mass to the front and rear axles, the correlation between front and rear suspension vibration and the coupling of the body vibration can be reduced effectively. Through the reasonable matching of front and rear suspension stiffness, the ξ value can be reduced effectively. The research results provide a theoretical basis and reference for mastering the coupling mechanism between vertical vibration and pitching vibration and for the body vibration control. Article highlights The coupling model of vehicle vertical vibration and pitching vibration is established, and the mechanism and key influencing factors of the coupling vibration are revealed.A test method for vehicle coupled vibration identification is presented.In order to reduce the coupling vibration of vehicle, the stiffness matching method and analysis process are presented. Vertical vibration (dpeaa)DE-He213 Pitching vibration (dpeaa)DE-He213 Coupling (dpeaa)DE-He213 Optimization (dpeaa)DE-He213 Zhang, Bao aut Yin, Guodong aut Wang, Hongnan aut Enthalten in SN applied sciences [Cham] : Springer International Publishing, 2019 5(2023), 3 vom: 24. Feb. (DE-627)103761139X (DE-600)2947292-1 2523-3971 nnns volume:5 year:2023 number:3 day:24 month:02 https://dx.doi.org/10.1007/s42452-023-05288-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 3 24 02 |
allfieldsSound |
10.1007/s42452-023-05288-w doi (DE-627)SPR049480243 (SPR)s42452-023-05288-w-e DE-627 ger DE-627 rakwb eng Zou, Xiaojun verfasserin (orcid)0000-0002-6955-2810 aut Coupling analysis and vibration control of vehicle vertical vibration and pitching vibration 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract The decoupling analysis of vertical vibration and pitching vibration is the basis of improving vehicle comfort performance and realizing vehicle body vibration control. In order to study the coupling behavior of vehicle body vibration, the vibration characteristics of the suspension and the body are analyzed through mathematical modeling and vibration tests. The research shows that the vibration characteristics of the front and rear suspensions are the key factors affecting the coupling between the vertical vibration and the pitching vibration. By controlling the difference ξ between the square of the rotating radius of the body and the product of the distance from the center of mass to the front and rear axles, the correlation between front and rear suspension vibration and the coupling of the body vibration can be reduced effectively. Through the reasonable matching of front and rear suspension stiffness, the ξ value can be reduced effectively. The research results provide a theoretical basis and reference for mastering the coupling mechanism between vertical vibration and pitching vibration and for the body vibration control. Article highlights The coupling model of vehicle vertical vibration and pitching vibration is established, and the mechanism and key influencing factors of the coupling vibration are revealed.A test method for vehicle coupled vibration identification is presented.In order to reduce the coupling vibration of vehicle, the stiffness matching method and analysis process are presented. Vertical vibration (dpeaa)DE-He213 Pitching vibration (dpeaa)DE-He213 Coupling (dpeaa)DE-He213 Optimization (dpeaa)DE-He213 Zhang, Bao aut Yin, Guodong aut Wang, Hongnan aut Enthalten in SN applied sciences [Cham] : Springer International Publishing, 2019 5(2023), 3 vom: 24. Feb. (DE-627)103761139X (DE-600)2947292-1 2523-3971 nnns volume:5 year:2023 number:3 day:24 month:02 https://dx.doi.org/10.1007/s42452-023-05288-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 3 24 02 |
language |
English |
source |
Enthalten in SN applied sciences 5(2023), 3 vom: 24. Feb. volume:5 year:2023 number:3 day:24 month:02 |
sourceStr |
Enthalten in SN applied sciences 5(2023), 3 vom: 24. Feb. volume:5 year:2023 number:3 day:24 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Vertical vibration Pitching vibration Coupling Optimization |
isfreeaccess_bool |
true |
container_title |
SN applied sciences |
authorswithroles_txt_mv |
Zou, Xiaojun @@aut@@ Zhang, Bao @@aut@@ Yin, Guodong @@aut@@ Wang, Hongnan @@aut@@ |
publishDateDaySort_date |
2023-02-24T00:00:00Z |
hierarchy_top_id |
103761139X |
id |
SPR049480243 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR049480243</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510064037.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s42452-023-05288-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049480243</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42452-023-05288-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zou, Xiaojun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6955-2810</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Coupling analysis and vibration control of vehicle vertical vibration and pitching vibration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The decoupling analysis of vertical vibration and pitching vibration is the basis of improving vehicle comfort performance and realizing vehicle body vibration control. In order to study the coupling behavior of vehicle body vibration, the vibration characteristics of the suspension and the body are analyzed through mathematical modeling and vibration tests. The research shows that the vibration characteristics of the front and rear suspensions are the key factors affecting the coupling between the vertical vibration and the pitching vibration. By controlling the difference ξ between the square of the rotating radius of the body and the product of the distance from the center of mass to the front and rear axles, the correlation between front and rear suspension vibration and the coupling of the body vibration can be reduced effectively. Through the reasonable matching of front and rear suspension stiffness, the ξ value can be reduced effectively. The research results provide a theoretical basis and reference for mastering the coupling mechanism between vertical vibration and pitching vibration and for the body vibration control.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Article highlights The coupling model of vehicle vertical vibration and pitching vibration is established, and the mechanism and key influencing factors of the coupling vibration are revealed.A test method for vehicle coupled vibration identification is presented.In order to reduce the coupling vibration of vehicle, the stiffness matching method and analysis process are presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vertical vibration</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pitching vibration</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coupling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Bao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, Guodong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Hongnan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">SN applied sciences</subfield><subfield code="d">[Cham] : Springer International Publishing, 2019</subfield><subfield code="g">5(2023), 3 vom: 24. Feb.</subfield><subfield code="w">(DE-627)103761139X</subfield><subfield code="w">(DE-600)2947292-1</subfield><subfield code="x">2523-3971</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3</subfield><subfield code="g">day:24</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s42452-023-05288-w</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2023</subfield><subfield code="e">3</subfield><subfield code="b">24</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Zou, Xiaojun |
spellingShingle |
Zou, Xiaojun misc Vertical vibration misc Pitching vibration misc Coupling misc Optimization Coupling analysis and vibration control of vehicle vertical vibration and pitching vibration |
authorStr |
Zou, Xiaojun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)103761139X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2523-3971 |
topic_title |
Coupling analysis and vibration control of vehicle vertical vibration and pitching vibration Vertical vibration (dpeaa)DE-He213 Pitching vibration (dpeaa)DE-He213 Coupling (dpeaa)DE-He213 Optimization (dpeaa)DE-He213 |
topic |
misc Vertical vibration misc Pitching vibration misc Coupling misc Optimization |
topic_unstemmed |
misc Vertical vibration misc Pitching vibration misc Coupling misc Optimization |
topic_browse |
misc Vertical vibration misc Pitching vibration misc Coupling misc Optimization |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
SN applied sciences |
hierarchy_parent_id |
103761139X |
hierarchy_top_title |
SN applied sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)103761139X (DE-600)2947292-1 |
title |
Coupling analysis and vibration control of vehicle vertical vibration and pitching vibration |
ctrlnum |
(DE-627)SPR049480243 (SPR)s42452-023-05288-w-e |
title_full |
Coupling analysis and vibration control of vehicle vertical vibration and pitching vibration |
author_sort |
Zou, Xiaojun |
journal |
SN applied sciences |
journalStr |
SN applied sciences |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Zou, Xiaojun Zhang, Bao Yin, Guodong Wang, Hongnan |
container_volume |
5 |
format_se |
Elektronische Aufsätze |
author-letter |
Zou, Xiaojun |
doi_str_mv |
10.1007/s42452-023-05288-w |
normlink |
(ORCID)0000-0002-6955-2810 |
normlink_prefix_str_mv |
(orcid)0000-0002-6955-2810 |
title_sort |
coupling analysis and vibration control of vehicle vertical vibration and pitching vibration |
title_auth |
Coupling analysis and vibration control of vehicle vertical vibration and pitching vibration |
abstract |
Abstract The decoupling analysis of vertical vibration and pitching vibration is the basis of improving vehicle comfort performance and realizing vehicle body vibration control. In order to study the coupling behavior of vehicle body vibration, the vibration characteristics of the suspension and the body are analyzed through mathematical modeling and vibration tests. The research shows that the vibration characteristics of the front and rear suspensions are the key factors affecting the coupling between the vertical vibration and the pitching vibration. By controlling the difference ξ between the square of the rotating radius of the body and the product of the distance from the center of mass to the front and rear axles, the correlation between front and rear suspension vibration and the coupling of the body vibration can be reduced effectively. Through the reasonable matching of front and rear suspension stiffness, the ξ value can be reduced effectively. The research results provide a theoretical basis and reference for mastering the coupling mechanism between vertical vibration and pitching vibration and for the body vibration control. Article highlights The coupling model of vehicle vertical vibration and pitching vibration is established, and the mechanism and key influencing factors of the coupling vibration are revealed.A test method for vehicle coupled vibration identification is presented.In order to reduce the coupling vibration of vehicle, the stiffness matching method and analysis process are presented. © The Author(s) 2023 |
abstractGer |
Abstract The decoupling analysis of vertical vibration and pitching vibration is the basis of improving vehicle comfort performance and realizing vehicle body vibration control. In order to study the coupling behavior of vehicle body vibration, the vibration characteristics of the suspension and the body are analyzed through mathematical modeling and vibration tests. The research shows that the vibration characteristics of the front and rear suspensions are the key factors affecting the coupling between the vertical vibration and the pitching vibration. By controlling the difference ξ between the square of the rotating radius of the body and the product of the distance from the center of mass to the front and rear axles, the correlation between front and rear suspension vibration and the coupling of the body vibration can be reduced effectively. Through the reasonable matching of front and rear suspension stiffness, the ξ value can be reduced effectively. The research results provide a theoretical basis and reference for mastering the coupling mechanism between vertical vibration and pitching vibration and for the body vibration control. Article highlights The coupling model of vehicle vertical vibration and pitching vibration is established, and the mechanism and key influencing factors of the coupling vibration are revealed.A test method for vehicle coupled vibration identification is presented.In order to reduce the coupling vibration of vehicle, the stiffness matching method and analysis process are presented. © The Author(s) 2023 |
abstract_unstemmed |
Abstract The decoupling analysis of vertical vibration and pitching vibration is the basis of improving vehicle comfort performance and realizing vehicle body vibration control. In order to study the coupling behavior of vehicle body vibration, the vibration characteristics of the suspension and the body are analyzed through mathematical modeling and vibration tests. The research shows that the vibration characteristics of the front and rear suspensions are the key factors affecting the coupling between the vertical vibration and the pitching vibration. By controlling the difference ξ between the square of the rotating radius of the body and the product of the distance from the center of mass to the front and rear axles, the correlation between front and rear suspension vibration and the coupling of the body vibration can be reduced effectively. Through the reasonable matching of front and rear suspension stiffness, the ξ value can be reduced effectively. The research results provide a theoretical basis and reference for mastering the coupling mechanism between vertical vibration and pitching vibration and for the body vibration control. Article highlights The coupling model of vehicle vertical vibration and pitching vibration is established, and the mechanism and key influencing factors of the coupling vibration are revealed.A test method for vehicle coupled vibration identification is presented.In order to reduce the coupling vibration of vehicle, the stiffness matching method and analysis process are presented. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Coupling analysis and vibration control of vehicle vertical vibration and pitching vibration |
url |
https://dx.doi.org/10.1007/s42452-023-05288-w |
remote_bool |
true |
author2 |
Zhang, Bao Yin, Guodong Wang, Hongnan |
author2Str |
Zhang, Bao Yin, Guodong Wang, Hongnan |
ppnlink |
103761139X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s42452-023-05288-w |
up_date |
2024-07-04T00:59:08.584Z |
_version_ |
1803608128054362112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR049480243</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510064037.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s42452-023-05288-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049480243</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42452-023-05288-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zou, Xiaojun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6955-2810</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Coupling analysis and vibration control of vehicle vertical vibration and pitching vibration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The decoupling analysis of vertical vibration and pitching vibration is the basis of improving vehicle comfort performance and realizing vehicle body vibration control. In order to study the coupling behavior of vehicle body vibration, the vibration characteristics of the suspension and the body are analyzed through mathematical modeling and vibration tests. The research shows that the vibration characteristics of the front and rear suspensions are the key factors affecting the coupling between the vertical vibration and the pitching vibration. By controlling the difference ξ between the square of the rotating radius of the body and the product of the distance from the center of mass to the front and rear axles, the correlation between front and rear suspension vibration and the coupling of the body vibration can be reduced effectively. Through the reasonable matching of front and rear suspension stiffness, the ξ value can be reduced effectively. The research results provide a theoretical basis and reference for mastering the coupling mechanism between vertical vibration and pitching vibration and for the body vibration control.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Article highlights The coupling model of vehicle vertical vibration and pitching vibration is established, and the mechanism and key influencing factors of the coupling vibration are revealed.A test method for vehicle coupled vibration identification is presented.In order to reduce the coupling vibration of vehicle, the stiffness matching method and analysis process are presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vertical vibration</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pitching vibration</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coupling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Bao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, Guodong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Hongnan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">SN applied sciences</subfield><subfield code="d">[Cham] : Springer International Publishing, 2019</subfield><subfield code="g">5(2023), 3 vom: 24. Feb.</subfield><subfield code="w">(DE-627)103761139X</subfield><subfield code="w">(DE-600)2947292-1</subfield><subfield code="x">2523-3971</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3</subfield><subfield code="g">day:24</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s42452-023-05288-w</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2023</subfield><subfield code="e">3</subfield><subfield code="b">24</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.3993654 |