Optimal design and cost analysis of water distribution networks based on pressure-dependent leakage using NSGA-II
Abstract Leakage from water distribution networks (WDNs) is inevitable. Therefore, during design a WDN, engineers add a percentage of each nodal water demand as leakage discharge to total node demand. The amount of leakage depends on the pressure, which is not known at the design stage. Considering...
Ausführliche Beschreibung
Autor*in: |
Ghobadian, Rasool [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Applied water science - Berlin : Springer, 2011, 13(2023), 4 vom: 06. März |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:4 ; day:06 ; month:03 |
Links: |
---|
DOI / URN: |
10.1007/s13201-023-01888-4 |
---|
Katalog-ID: |
SPR049565818 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR049565818 | ||
003 | DE-627 | ||
005 | 20230510064808.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230307s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s13201-023-01888-4 |2 doi | |
035 | |a (DE-627)SPR049565818 | ||
035 | |a (SPR)s13201-023-01888-4-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Ghobadian, Rasool |e verfasserin |0 (orcid)0000-0003-2552-1649 |4 aut | |
245 | 1 | 0 | |a Optimal design and cost analysis of water distribution networks based on pressure-dependent leakage using NSGA-II |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Abstract Leakage from water distribution networks (WDNs) is inevitable. Therefore, during design a WDN, engineers add a percentage of each nodal water demand as leakage discharge to total node demand. The amount of leakage depends on the pressure, which is not known at the design stage. Considering a constant percentage of node demand in lieu of its leakage makes the problem worse. In this study, the effect of leakage on the optimal WDN design was investigated by developing the matrix form of the gradient algorithm while accounting for leakage using the pressure-dependent model. Non-dominated genetic algorithm version II (NSGA-II) was used as the optimization engine with two objectives which includes minimizing the network construction cost and minimizing the total network pressure deficiency. Two well-known two- and three-loop WDNs in literature were studied. The results indicated that the pressure-dependent leakage varies between 12.9 and 29.44% of the node demand while the network construction cost stays the same if compared with the fixed percentage leakage model, and the construction cost would increase by 17–31%, if leakage is not accounted for. This is expected the optimized diameters and hydraulic characteristics of the networks being affected by the leakage calculation method. | ||
650 | 4 | |a Drinking water distribution network |7 (dpeaa)DE-He213 | |
650 | 4 | |a NSGA-II method |7 (dpeaa)DE-He213 | |
650 | 4 | |a Pressure-dependent leakage |7 (dpeaa)DE-He213 | |
650 | 4 | |a Optimal design |7 (dpeaa)DE-He213 | |
650 | 4 | |a Least-cost analysis |7 (dpeaa)DE-He213 | |
700 | 1 | |a Mohammadi, Kamran |0 (orcid)0000-0002-8300-8547 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied water science |d Berlin : Springer, 2011 |g 13(2023), 4 vom: 06. März |w (DE-627)64730242X |w (DE-600)2594789-8 |x 2190-5495 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:4 |g day:06 |g month:03 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s13201-023-01888-4 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 4 |b 06 |c 03 |
author_variant |
r g rg k m km |
---|---|
matchkey_str |
article:21905495:2023----::piadsgadotnlssfaedsrbtontokbsdnrsuee |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s13201-023-01888-4 doi (DE-627)SPR049565818 (SPR)s13201-023-01888-4-e DE-627 ger DE-627 rakwb eng Ghobadian, Rasool verfasserin (orcid)0000-0003-2552-1649 aut Optimal design and cost analysis of water distribution networks based on pressure-dependent leakage using NSGA-II 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract Leakage from water distribution networks (WDNs) is inevitable. Therefore, during design a WDN, engineers add a percentage of each nodal water demand as leakage discharge to total node demand. The amount of leakage depends on the pressure, which is not known at the design stage. Considering a constant percentage of node demand in lieu of its leakage makes the problem worse. In this study, the effect of leakage on the optimal WDN design was investigated by developing the matrix form of the gradient algorithm while accounting for leakage using the pressure-dependent model. Non-dominated genetic algorithm version II (NSGA-II) was used as the optimization engine with two objectives which includes minimizing the network construction cost and minimizing the total network pressure deficiency. Two well-known two- and three-loop WDNs in literature were studied. The results indicated that the pressure-dependent leakage varies between 12.9 and 29.44% of the node demand while the network construction cost stays the same if compared with the fixed percentage leakage model, and the construction cost would increase by 17–31%, if leakage is not accounted for. This is expected the optimized diameters and hydraulic characteristics of the networks being affected by the leakage calculation method. Drinking water distribution network (dpeaa)DE-He213 NSGA-II method (dpeaa)DE-He213 Pressure-dependent leakage (dpeaa)DE-He213 Optimal design (dpeaa)DE-He213 Least-cost analysis (dpeaa)DE-He213 Mohammadi, Kamran (orcid)0000-0002-8300-8547 aut Enthalten in Applied water science Berlin : Springer, 2011 13(2023), 4 vom: 06. März (DE-627)64730242X (DE-600)2594789-8 2190-5495 nnns volume:13 year:2023 number:4 day:06 month:03 https://dx.doi.org/10.1007/s13201-023-01888-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 4 06 03 |
spelling |
10.1007/s13201-023-01888-4 doi (DE-627)SPR049565818 (SPR)s13201-023-01888-4-e DE-627 ger DE-627 rakwb eng Ghobadian, Rasool verfasserin (orcid)0000-0003-2552-1649 aut Optimal design and cost analysis of water distribution networks based on pressure-dependent leakage using NSGA-II 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract Leakage from water distribution networks (WDNs) is inevitable. Therefore, during design a WDN, engineers add a percentage of each nodal water demand as leakage discharge to total node demand. The amount of leakage depends on the pressure, which is not known at the design stage. Considering a constant percentage of node demand in lieu of its leakage makes the problem worse. In this study, the effect of leakage on the optimal WDN design was investigated by developing the matrix form of the gradient algorithm while accounting for leakage using the pressure-dependent model. Non-dominated genetic algorithm version II (NSGA-II) was used as the optimization engine with two objectives which includes minimizing the network construction cost and minimizing the total network pressure deficiency. Two well-known two- and three-loop WDNs in literature were studied. The results indicated that the pressure-dependent leakage varies between 12.9 and 29.44% of the node demand while the network construction cost stays the same if compared with the fixed percentage leakage model, and the construction cost would increase by 17–31%, if leakage is not accounted for. This is expected the optimized diameters and hydraulic characteristics of the networks being affected by the leakage calculation method. Drinking water distribution network (dpeaa)DE-He213 NSGA-II method (dpeaa)DE-He213 Pressure-dependent leakage (dpeaa)DE-He213 Optimal design (dpeaa)DE-He213 Least-cost analysis (dpeaa)DE-He213 Mohammadi, Kamran (orcid)0000-0002-8300-8547 aut Enthalten in Applied water science Berlin : Springer, 2011 13(2023), 4 vom: 06. März (DE-627)64730242X (DE-600)2594789-8 2190-5495 nnns volume:13 year:2023 number:4 day:06 month:03 https://dx.doi.org/10.1007/s13201-023-01888-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 4 06 03 |
allfields_unstemmed |
10.1007/s13201-023-01888-4 doi (DE-627)SPR049565818 (SPR)s13201-023-01888-4-e DE-627 ger DE-627 rakwb eng Ghobadian, Rasool verfasserin (orcid)0000-0003-2552-1649 aut Optimal design and cost analysis of water distribution networks based on pressure-dependent leakage using NSGA-II 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract Leakage from water distribution networks (WDNs) is inevitable. Therefore, during design a WDN, engineers add a percentage of each nodal water demand as leakage discharge to total node demand. The amount of leakage depends on the pressure, which is not known at the design stage. Considering a constant percentage of node demand in lieu of its leakage makes the problem worse. In this study, the effect of leakage on the optimal WDN design was investigated by developing the matrix form of the gradient algorithm while accounting for leakage using the pressure-dependent model. Non-dominated genetic algorithm version II (NSGA-II) was used as the optimization engine with two objectives which includes minimizing the network construction cost and minimizing the total network pressure deficiency. Two well-known two- and three-loop WDNs in literature were studied. The results indicated that the pressure-dependent leakage varies between 12.9 and 29.44% of the node demand while the network construction cost stays the same if compared with the fixed percentage leakage model, and the construction cost would increase by 17–31%, if leakage is not accounted for. This is expected the optimized diameters and hydraulic characteristics of the networks being affected by the leakage calculation method. Drinking water distribution network (dpeaa)DE-He213 NSGA-II method (dpeaa)DE-He213 Pressure-dependent leakage (dpeaa)DE-He213 Optimal design (dpeaa)DE-He213 Least-cost analysis (dpeaa)DE-He213 Mohammadi, Kamran (orcid)0000-0002-8300-8547 aut Enthalten in Applied water science Berlin : Springer, 2011 13(2023), 4 vom: 06. März (DE-627)64730242X (DE-600)2594789-8 2190-5495 nnns volume:13 year:2023 number:4 day:06 month:03 https://dx.doi.org/10.1007/s13201-023-01888-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 4 06 03 |
allfieldsGer |
10.1007/s13201-023-01888-4 doi (DE-627)SPR049565818 (SPR)s13201-023-01888-4-e DE-627 ger DE-627 rakwb eng Ghobadian, Rasool verfasserin (orcid)0000-0003-2552-1649 aut Optimal design and cost analysis of water distribution networks based on pressure-dependent leakage using NSGA-II 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract Leakage from water distribution networks (WDNs) is inevitable. Therefore, during design a WDN, engineers add a percentage of each nodal water demand as leakage discharge to total node demand. The amount of leakage depends on the pressure, which is not known at the design stage. Considering a constant percentage of node demand in lieu of its leakage makes the problem worse. In this study, the effect of leakage on the optimal WDN design was investigated by developing the matrix form of the gradient algorithm while accounting for leakage using the pressure-dependent model. Non-dominated genetic algorithm version II (NSGA-II) was used as the optimization engine with two objectives which includes minimizing the network construction cost and minimizing the total network pressure deficiency. Two well-known two- and three-loop WDNs in literature were studied. The results indicated that the pressure-dependent leakage varies between 12.9 and 29.44% of the node demand while the network construction cost stays the same if compared with the fixed percentage leakage model, and the construction cost would increase by 17–31%, if leakage is not accounted for. This is expected the optimized diameters and hydraulic characteristics of the networks being affected by the leakage calculation method. Drinking water distribution network (dpeaa)DE-He213 NSGA-II method (dpeaa)DE-He213 Pressure-dependent leakage (dpeaa)DE-He213 Optimal design (dpeaa)DE-He213 Least-cost analysis (dpeaa)DE-He213 Mohammadi, Kamran (orcid)0000-0002-8300-8547 aut Enthalten in Applied water science Berlin : Springer, 2011 13(2023), 4 vom: 06. März (DE-627)64730242X (DE-600)2594789-8 2190-5495 nnns volume:13 year:2023 number:4 day:06 month:03 https://dx.doi.org/10.1007/s13201-023-01888-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 4 06 03 |
allfieldsSound |
10.1007/s13201-023-01888-4 doi (DE-627)SPR049565818 (SPR)s13201-023-01888-4-e DE-627 ger DE-627 rakwb eng Ghobadian, Rasool verfasserin (orcid)0000-0003-2552-1649 aut Optimal design and cost analysis of water distribution networks based on pressure-dependent leakage using NSGA-II 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract Leakage from water distribution networks (WDNs) is inevitable. Therefore, during design a WDN, engineers add a percentage of each nodal water demand as leakage discharge to total node demand. The amount of leakage depends on the pressure, which is not known at the design stage. Considering a constant percentage of node demand in lieu of its leakage makes the problem worse. In this study, the effect of leakage on the optimal WDN design was investigated by developing the matrix form of the gradient algorithm while accounting for leakage using the pressure-dependent model. Non-dominated genetic algorithm version II (NSGA-II) was used as the optimization engine with two objectives which includes minimizing the network construction cost and minimizing the total network pressure deficiency. Two well-known two- and three-loop WDNs in literature were studied. The results indicated that the pressure-dependent leakage varies between 12.9 and 29.44% of the node demand while the network construction cost stays the same if compared with the fixed percentage leakage model, and the construction cost would increase by 17–31%, if leakage is not accounted for. This is expected the optimized diameters and hydraulic characteristics of the networks being affected by the leakage calculation method. Drinking water distribution network (dpeaa)DE-He213 NSGA-II method (dpeaa)DE-He213 Pressure-dependent leakage (dpeaa)DE-He213 Optimal design (dpeaa)DE-He213 Least-cost analysis (dpeaa)DE-He213 Mohammadi, Kamran (orcid)0000-0002-8300-8547 aut Enthalten in Applied water science Berlin : Springer, 2011 13(2023), 4 vom: 06. März (DE-627)64730242X (DE-600)2594789-8 2190-5495 nnns volume:13 year:2023 number:4 day:06 month:03 https://dx.doi.org/10.1007/s13201-023-01888-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 4 06 03 |
language |
English |
source |
Enthalten in Applied water science 13(2023), 4 vom: 06. März volume:13 year:2023 number:4 day:06 month:03 |
sourceStr |
Enthalten in Applied water science 13(2023), 4 vom: 06. März volume:13 year:2023 number:4 day:06 month:03 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Drinking water distribution network NSGA-II method Pressure-dependent leakage Optimal design Least-cost analysis |
isfreeaccess_bool |
true |
container_title |
Applied water science |
authorswithroles_txt_mv |
Ghobadian, Rasool @@aut@@ Mohammadi, Kamran @@aut@@ |
publishDateDaySort_date |
2023-03-06T00:00:00Z |
hierarchy_top_id |
64730242X |
id |
SPR049565818 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR049565818</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510064808.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13201-023-01888-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049565818</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13201-023-01888-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ghobadian, Rasool</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2552-1649</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimal design and cost analysis of water distribution networks based on pressure-dependent leakage using NSGA-II</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Leakage from water distribution networks (WDNs) is inevitable. Therefore, during design a WDN, engineers add a percentage of each nodal water demand as leakage discharge to total node demand. The amount of leakage depends on the pressure, which is not known at the design stage. Considering a constant percentage of node demand in lieu of its leakage makes the problem worse. In this study, the effect of leakage on the optimal WDN design was investigated by developing the matrix form of the gradient algorithm while accounting for leakage using the pressure-dependent model. Non-dominated genetic algorithm version II (NSGA-II) was used as the optimization engine with two objectives which includes minimizing the network construction cost and minimizing the total network pressure deficiency. Two well-known two- and three-loop WDNs in literature were studied. The results indicated that the pressure-dependent leakage varies between 12.9 and 29.44% of the node demand while the network construction cost stays the same if compared with the fixed percentage leakage model, and the construction cost would increase by 17–31%, if leakage is not accounted for. This is expected the optimized diameters and hydraulic characteristics of the networks being affected by the leakage calculation method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drinking water distribution network</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NSGA-II method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pressure-dependent leakage</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimal design</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Least-cost analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mohammadi, Kamran</subfield><subfield code="0">(orcid)0000-0002-8300-8547</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied water science</subfield><subfield code="d">Berlin : Springer, 2011</subfield><subfield code="g">13(2023), 4 vom: 06. März</subfield><subfield code="w">(DE-627)64730242X</subfield><subfield code="w">(DE-600)2594789-8</subfield><subfield code="x">2190-5495</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4</subfield><subfield code="g">day:06</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13201-023-01888-4</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">4</subfield><subfield code="b">06</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
author |
Ghobadian, Rasool |
spellingShingle |
Ghobadian, Rasool misc Drinking water distribution network misc NSGA-II method misc Pressure-dependent leakage misc Optimal design misc Least-cost analysis Optimal design and cost analysis of water distribution networks based on pressure-dependent leakage using NSGA-II |
authorStr |
Ghobadian, Rasool |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)64730242X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2190-5495 |
topic_title |
Optimal design and cost analysis of water distribution networks based on pressure-dependent leakage using NSGA-II Drinking water distribution network (dpeaa)DE-He213 NSGA-II method (dpeaa)DE-He213 Pressure-dependent leakage (dpeaa)DE-He213 Optimal design (dpeaa)DE-He213 Least-cost analysis (dpeaa)DE-He213 |
topic |
misc Drinking water distribution network misc NSGA-II method misc Pressure-dependent leakage misc Optimal design misc Least-cost analysis |
topic_unstemmed |
misc Drinking water distribution network misc NSGA-II method misc Pressure-dependent leakage misc Optimal design misc Least-cost analysis |
topic_browse |
misc Drinking water distribution network misc NSGA-II method misc Pressure-dependent leakage misc Optimal design misc Least-cost analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied water science |
hierarchy_parent_id |
64730242X |
hierarchy_top_title |
Applied water science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)64730242X (DE-600)2594789-8 |
title |
Optimal design and cost analysis of water distribution networks based on pressure-dependent leakage using NSGA-II |
ctrlnum |
(DE-627)SPR049565818 (SPR)s13201-023-01888-4-e |
title_full |
Optimal design and cost analysis of water distribution networks based on pressure-dependent leakage using NSGA-II |
author_sort |
Ghobadian, Rasool |
journal |
Applied water science |
journalStr |
Applied water science |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Ghobadian, Rasool Mohammadi, Kamran |
container_volume |
13 |
format_se |
Elektronische Aufsätze |
author-letter |
Ghobadian, Rasool |
doi_str_mv |
10.1007/s13201-023-01888-4 |
normlink |
(ORCID)0000-0003-2552-1649 (ORCID)0000-0002-8300-8547 |
normlink_prefix_str_mv |
(orcid)0000-0003-2552-1649 (orcid)0000-0002-8300-8547 |
title_sort |
optimal design and cost analysis of water distribution networks based on pressure-dependent leakage using nsga-ii |
title_auth |
Optimal design and cost analysis of water distribution networks based on pressure-dependent leakage using NSGA-II |
abstract |
Abstract Leakage from water distribution networks (WDNs) is inevitable. Therefore, during design a WDN, engineers add a percentage of each nodal water demand as leakage discharge to total node demand. The amount of leakage depends on the pressure, which is not known at the design stage. Considering a constant percentage of node demand in lieu of its leakage makes the problem worse. In this study, the effect of leakage on the optimal WDN design was investigated by developing the matrix form of the gradient algorithm while accounting for leakage using the pressure-dependent model. Non-dominated genetic algorithm version II (NSGA-II) was used as the optimization engine with two objectives which includes minimizing the network construction cost and minimizing the total network pressure deficiency. Two well-known two- and three-loop WDNs in literature were studied. The results indicated that the pressure-dependent leakage varies between 12.9 and 29.44% of the node demand while the network construction cost stays the same if compared with the fixed percentage leakage model, and the construction cost would increase by 17–31%, if leakage is not accounted for. This is expected the optimized diameters and hydraulic characteristics of the networks being affected by the leakage calculation method. © The Author(s) 2023 |
abstractGer |
Abstract Leakage from water distribution networks (WDNs) is inevitable. Therefore, during design a WDN, engineers add a percentage of each nodal water demand as leakage discharge to total node demand. The amount of leakage depends on the pressure, which is not known at the design stage. Considering a constant percentage of node demand in lieu of its leakage makes the problem worse. In this study, the effect of leakage on the optimal WDN design was investigated by developing the matrix form of the gradient algorithm while accounting for leakage using the pressure-dependent model. Non-dominated genetic algorithm version II (NSGA-II) was used as the optimization engine with two objectives which includes minimizing the network construction cost and minimizing the total network pressure deficiency. Two well-known two- and three-loop WDNs in literature were studied. The results indicated that the pressure-dependent leakage varies between 12.9 and 29.44% of the node demand while the network construction cost stays the same if compared with the fixed percentage leakage model, and the construction cost would increase by 17–31%, if leakage is not accounted for. This is expected the optimized diameters and hydraulic characteristics of the networks being affected by the leakage calculation method. © The Author(s) 2023 |
abstract_unstemmed |
Abstract Leakage from water distribution networks (WDNs) is inevitable. Therefore, during design a WDN, engineers add a percentage of each nodal water demand as leakage discharge to total node demand. The amount of leakage depends on the pressure, which is not known at the design stage. Considering a constant percentage of node demand in lieu of its leakage makes the problem worse. In this study, the effect of leakage on the optimal WDN design was investigated by developing the matrix form of the gradient algorithm while accounting for leakage using the pressure-dependent model. Non-dominated genetic algorithm version II (NSGA-II) was used as the optimization engine with two objectives which includes minimizing the network construction cost and minimizing the total network pressure deficiency. Two well-known two- and three-loop WDNs in literature were studied. The results indicated that the pressure-dependent leakage varies between 12.9 and 29.44% of the node demand while the network construction cost stays the same if compared with the fixed percentage leakage model, and the construction cost would increase by 17–31%, if leakage is not accounted for. This is expected the optimized diameters and hydraulic characteristics of the networks being affected by the leakage calculation method. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Optimal design and cost analysis of water distribution networks based on pressure-dependent leakage using NSGA-II |
url |
https://dx.doi.org/10.1007/s13201-023-01888-4 |
remote_bool |
true |
author2 |
Mohammadi, Kamran |
author2Str |
Mohammadi, Kamran |
ppnlink |
64730242X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s13201-023-01888-4 |
up_date |
2024-07-04T01:20:57.300Z |
_version_ |
1803609500342550528 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR049565818</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510064808.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13201-023-01888-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049565818</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13201-023-01888-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ghobadian, Rasool</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2552-1649</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimal design and cost analysis of water distribution networks based on pressure-dependent leakage using NSGA-II</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Leakage from water distribution networks (WDNs) is inevitable. Therefore, during design a WDN, engineers add a percentage of each nodal water demand as leakage discharge to total node demand. The amount of leakage depends on the pressure, which is not known at the design stage. Considering a constant percentage of node demand in lieu of its leakage makes the problem worse. In this study, the effect of leakage on the optimal WDN design was investigated by developing the matrix form of the gradient algorithm while accounting for leakage using the pressure-dependent model. Non-dominated genetic algorithm version II (NSGA-II) was used as the optimization engine with two objectives which includes minimizing the network construction cost and minimizing the total network pressure deficiency. Two well-known two- and three-loop WDNs in literature were studied. The results indicated that the pressure-dependent leakage varies between 12.9 and 29.44% of the node demand while the network construction cost stays the same if compared with the fixed percentage leakage model, and the construction cost would increase by 17–31%, if leakage is not accounted for. This is expected the optimized diameters and hydraulic characteristics of the networks being affected by the leakage calculation method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drinking water distribution network</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NSGA-II method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pressure-dependent leakage</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimal design</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Least-cost analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mohammadi, Kamran</subfield><subfield code="0">(orcid)0000-0002-8300-8547</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied water science</subfield><subfield code="d">Berlin : Springer, 2011</subfield><subfield code="g">13(2023), 4 vom: 06. März</subfield><subfield code="w">(DE-627)64730242X</subfield><subfield code="w">(DE-600)2594789-8</subfield><subfield code="x">2190-5495</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4</subfield><subfield code="g">day:06</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13201-023-01888-4</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">4</subfield><subfield code="b">06</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
score |
7.401932 |