A deep learning-based conditional system health index method to reduce the uncertainty of remaining useful life prediction

Abstract Many recent data-driven studies have used sensor profile data for prognostics and health management (PHM). However, existing data-driven PHM techniques are vulnerable to three types of uncertainty: sensor noise inherent to the sensor profile data, uncertainty regarding the current health st...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Jang, Jaeyeon [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Health index

Prognostics and health management

Remaining useful life

Stacked denoising autoencoder

Uncertainty management

Anmerkung:

© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Soft Computing - Springer-Verlag, 2003, 27(2022), 7 vom: 09. Nov., Seite 3641-3654

Übergeordnetes Werk:

volume:27 ; year:2022 ; number:7 ; day:09 ; month:11 ; pages:3641-3654

Links:

Volltext

DOI / URN:

10.1007/s00500-022-07625-4

Katalog-ID:

SPR049589431

Nicht das Richtige dabei?

Schreiben Sie uns!