Analytic Approximate Solution of the Extended Blasius Equation with Temperature-Dependent Viscosity
Abstract An explicit approximate solution is obtained for the extended Blasius equation subject to its well-known classical boundary conditions, where the viscosity coefficient is assumed to be positive and temperature-dependent, which arises in several important boundary layer problems in fluid dyn...
Ausführliche Beschreibung
Autor*in: |
Khanfer, Ammar [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of nonlinear mathematical physics - Abingdon, Oxon : Taylor & Francis, 1994, 30(2022), 1 vom: 05. Okt., Seite 287-302 |
---|---|
Übergeordnetes Werk: |
volume:30 ; year:2022 ; number:1 ; day:05 ; month:10 ; pages:287-302 |
Links: |
---|
DOI / URN: |
10.1007/s44198-022-00084-3 |
---|
Katalog-ID: |
SPR049611097 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR049611097 | ||
003 | DE-627 | ||
005 | 20230323105008.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230323s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s44198-022-00084-3 |2 doi | |
035 | |a (DE-627)SPR049611097 | ||
035 | |a (SPR)s44198-022-00084-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Khanfer, Ammar |e verfasserin |0 (orcid)0000-0003-4011-8049 |4 aut | |
245 | 1 | 0 | |a Analytic Approximate Solution of the Extended Blasius Equation with Temperature-Dependent Viscosity |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Abstract An explicit approximate solution is obtained for the extended Blasius equation subject to its well-known classical boundary conditions, where the viscosity coefficient is assumed to be positive and temperature-dependent, which arises in several important boundary layer problems in fluid dynamics. This problem extends a previous problem by Cortell (Appl Math Comput 170:706–710, 2005) when the viscosity is constant, in which a numerical solution was obtained. A comparison with other numerical solutions demonstrates that our approximate solution shows an enhancement over some of the existing numerical techniques. Moreover, highly accurate estimates for the skin-friction were calculated and found to be in good agreement with the numerical values obtained by Howarth (Proc R Soc A: Math Phys Eng Sci 164(919):547–579, 1938), Töpfer (Z Math Phys 60:397–398, 1912), and Cortell [34] when the viscosity is equal to 1, and when it is equal to 2. | ||
650 | 4 | |a Blasius equation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Approximate solution |7 (dpeaa)DE-He213 | |
650 | 4 | |a Dynamic viscosity |7 (dpeaa)DE-He213 | |
650 | 4 | |a Skin friction coefficient |7 (dpeaa)DE-He213 | |
700 | 1 | |a Bougoffa, Lazhar |4 aut | |
700 | 1 | |a Bougouffa, Smail |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of nonlinear mathematical physics |d Abingdon, Oxon : Taylor & Francis, 1994 |g 30(2022), 1 vom: 05. Okt., Seite 287-302 |w (DE-627)325293635 |w (DE-600)2034956-7 |x 1776-0852 |7 nnns |
773 | 1 | 8 | |g volume:30 |g year:2022 |g number:1 |g day:05 |g month:10 |g pages:287-302 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s44198-022-00084-3 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 30 |j 2022 |e 1 |b 05 |c 10 |h 287-302 |
author_variant |
a k ak l b lb s b sb |
---|---|
matchkey_str |
article:17760852:2022----::nltcprxmtsltootexeddlsueutowttmea |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s44198-022-00084-3 doi (DE-627)SPR049611097 (SPR)s44198-022-00084-3-e DE-627 ger DE-627 rakwb eng Khanfer, Ammar verfasserin (orcid)0000-0003-4011-8049 aut Analytic Approximate Solution of the Extended Blasius Equation with Temperature-Dependent Viscosity 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract An explicit approximate solution is obtained for the extended Blasius equation subject to its well-known classical boundary conditions, where the viscosity coefficient is assumed to be positive and temperature-dependent, which arises in several important boundary layer problems in fluid dynamics. This problem extends a previous problem by Cortell (Appl Math Comput 170:706–710, 2005) when the viscosity is constant, in which a numerical solution was obtained. A comparison with other numerical solutions demonstrates that our approximate solution shows an enhancement over some of the existing numerical techniques. Moreover, highly accurate estimates for the skin-friction were calculated and found to be in good agreement with the numerical values obtained by Howarth (Proc R Soc A: Math Phys Eng Sci 164(919):547–579, 1938), Töpfer (Z Math Phys 60:397–398, 1912), and Cortell [34] when the viscosity is equal to 1, and when it is equal to 2. Blasius equation (dpeaa)DE-He213 Approximate solution (dpeaa)DE-He213 Dynamic viscosity (dpeaa)DE-He213 Skin friction coefficient (dpeaa)DE-He213 Bougoffa, Lazhar aut Bougouffa, Smail aut Enthalten in Journal of nonlinear mathematical physics Abingdon, Oxon : Taylor & Francis, 1994 30(2022), 1 vom: 05. Okt., Seite 287-302 (DE-627)325293635 (DE-600)2034956-7 1776-0852 nnns volume:30 year:2022 number:1 day:05 month:10 pages:287-302 https://dx.doi.org/10.1007/s44198-022-00084-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 30 2022 1 05 10 287-302 |
spelling |
10.1007/s44198-022-00084-3 doi (DE-627)SPR049611097 (SPR)s44198-022-00084-3-e DE-627 ger DE-627 rakwb eng Khanfer, Ammar verfasserin (orcid)0000-0003-4011-8049 aut Analytic Approximate Solution of the Extended Blasius Equation with Temperature-Dependent Viscosity 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract An explicit approximate solution is obtained for the extended Blasius equation subject to its well-known classical boundary conditions, where the viscosity coefficient is assumed to be positive and temperature-dependent, which arises in several important boundary layer problems in fluid dynamics. This problem extends a previous problem by Cortell (Appl Math Comput 170:706–710, 2005) when the viscosity is constant, in which a numerical solution was obtained. A comparison with other numerical solutions demonstrates that our approximate solution shows an enhancement over some of the existing numerical techniques. Moreover, highly accurate estimates for the skin-friction were calculated and found to be in good agreement with the numerical values obtained by Howarth (Proc R Soc A: Math Phys Eng Sci 164(919):547–579, 1938), Töpfer (Z Math Phys 60:397–398, 1912), and Cortell [34] when the viscosity is equal to 1, and when it is equal to 2. Blasius equation (dpeaa)DE-He213 Approximate solution (dpeaa)DE-He213 Dynamic viscosity (dpeaa)DE-He213 Skin friction coefficient (dpeaa)DE-He213 Bougoffa, Lazhar aut Bougouffa, Smail aut Enthalten in Journal of nonlinear mathematical physics Abingdon, Oxon : Taylor & Francis, 1994 30(2022), 1 vom: 05. Okt., Seite 287-302 (DE-627)325293635 (DE-600)2034956-7 1776-0852 nnns volume:30 year:2022 number:1 day:05 month:10 pages:287-302 https://dx.doi.org/10.1007/s44198-022-00084-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 30 2022 1 05 10 287-302 |
allfields_unstemmed |
10.1007/s44198-022-00084-3 doi (DE-627)SPR049611097 (SPR)s44198-022-00084-3-e DE-627 ger DE-627 rakwb eng Khanfer, Ammar verfasserin (orcid)0000-0003-4011-8049 aut Analytic Approximate Solution of the Extended Blasius Equation with Temperature-Dependent Viscosity 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract An explicit approximate solution is obtained for the extended Blasius equation subject to its well-known classical boundary conditions, where the viscosity coefficient is assumed to be positive and temperature-dependent, which arises in several important boundary layer problems in fluid dynamics. This problem extends a previous problem by Cortell (Appl Math Comput 170:706–710, 2005) when the viscosity is constant, in which a numerical solution was obtained. A comparison with other numerical solutions demonstrates that our approximate solution shows an enhancement over some of the existing numerical techniques. Moreover, highly accurate estimates for the skin-friction were calculated and found to be in good agreement with the numerical values obtained by Howarth (Proc R Soc A: Math Phys Eng Sci 164(919):547–579, 1938), Töpfer (Z Math Phys 60:397–398, 1912), and Cortell [34] when the viscosity is equal to 1, and when it is equal to 2. Blasius equation (dpeaa)DE-He213 Approximate solution (dpeaa)DE-He213 Dynamic viscosity (dpeaa)DE-He213 Skin friction coefficient (dpeaa)DE-He213 Bougoffa, Lazhar aut Bougouffa, Smail aut Enthalten in Journal of nonlinear mathematical physics Abingdon, Oxon : Taylor & Francis, 1994 30(2022), 1 vom: 05. Okt., Seite 287-302 (DE-627)325293635 (DE-600)2034956-7 1776-0852 nnns volume:30 year:2022 number:1 day:05 month:10 pages:287-302 https://dx.doi.org/10.1007/s44198-022-00084-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 30 2022 1 05 10 287-302 |
allfieldsGer |
10.1007/s44198-022-00084-3 doi (DE-627)SPR049611097 (SPR)s44198-022-00084-3-e DE-627 ger DE-627 rakwb eng Khanfer, Ammar verfasserin (orcid)0000-0003-4011-8049 aut Analytic Approximate Solution of the Extended Blasius Equation with Temperature-Dependent Viscosity 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract An explicit approximate solution is obtained for the extended Blasius equation subject to its well-known classical boundary conditions, where the viscosity coefficient is assumed to be positive and temperature-dependent, which arises in several important boundary layer problems in fluid dynamics. This problem extends a previous problem by Cortell (Appl Math Comput 170:706–710, 2005) when the viscosity is constant, in which a numerical solution was obtained. A comparison with other numerical solutions demonstrates that our approximate solution shows an enhancement over some of the existing numerical techniques. Moreover, highly accurate estimates for the skin-friction were calculated and found to be in good agreement with the numerical values obtained by Howarth (Proc R Soc A: Math Phys Eng Sci 164(919):547–579, 1938), Töpfer (Z Math Phys 60:397–398, 1912), and Cortell [34] when the viscosity is equal to 1, and when it is equal to 2. Blasius equation (dpeaa)DE-He213 Approximate solution (dpeaa)DE-He213 Dynamic viscosity (dpeaa)DE-He213 Skin friction coefficient (dpeaa)DE-He213 Bougoffa, Lazhar aut Bougouffa, Smail aut Enthalten in Journal of nonlinear mathematical physics Abingdon, Oxon : Taylor & Francis, 1994 30(2022), 1 vom: 05. Okt., Seite 287-302 (DE-627)325293635 (DE-600)2034956-7 1776-0852 nnns volume:30 year:2022 number:1 day:05 month:10 pages:287-302 https://dx.doi.org/10.1007/s44198-022-00084-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 30 2022 1 05 10 287-302 |
allfieldsSound |
10.1007/s44198-022-00084-3 doi (DE-627)SPR049611097 (SPR)s44198-022-00084-3-e DE-627 ger DE-627 rakwb eng Khanfer, Ammar verfasserin (orcid)0000-0003-4011-8049 aut Analytic Approximate Solution of the Extended Blasius Equation with Temperature-Dependent Viscosity 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract An explicit approximate solution is obtained for the extended Blasius equation subject to its well-known classical boundary conditions, where the viscosity coefficient is assumed to be positive and temperature-dependent, which arises in several important boundary layer problems in fluid dynamics. This problem extends a previous problem by Cortell (Appl Math Comput 170:706–710, 2005) when the viscosity is constant, in which a numerical solution was obtained. A comparison with other numerical solutions demonstrates that our approximate solution shows an enhancement over some of the existing numerical techniques. Moreover, highly accurate estimates for the skin-friction were calculated and found to be in good agreement with the numerical values obtained by Howarth (Proc R Soc A: Math Phys Eng Sci 164(919):547–579, 1938), Töpfer (Z Math Phys 60:397–398, 1912), and Cortell [34] when the viscosity is equal to 1, and when it is equal to 2. Blasius equation (dpeaa)DE-He213 Approximate solution (dpeaa)DE-He213 Dynamic viscosity (dpeaa)DE-He213 Skin friction coefficient (dpeaa)DE-He213 Bougoffa, Lazhar aut Bougouffa, Smail aut Enthalten in Journal of nonlinear mathematical physics Abingdon, Oxon : Taylor & Francis, 1994 30(2022), 1 vom: 05. Okt., Seite 287-302 (DE-627)325293635 (DE-600)2034956-7 1776-0852 nnns volume:30 year:2022 number:1 day:05 month:10 pages:287-302 https://dx.doi.org/10.1007/s44198-022-00084-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 30 2022 1 05 10 287-302 |
language |
English |
source |
Enthalten in Journal of nonlinear mathematical physics 30(2022), 1 vom: 05. Okt., Seite 287-302 volume:30 year:2022 number:1 day:05 month:10 pages:287-302 |
sourceStr |
Enthalten in Journal of nonlinear mathematical physics 30(2022), 1 vom: 05. Okt., Seite 287-302 volume:30 year:2022 number:1 day:05 month:10 pages:287-302 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Blasius equation Approximate solution Dynamic viscosity Skin friction coefficient |
isfreeaccess_bool |
true |
container_title |
Journal of nonlinear mathematical physics |
authorswithroles_txt_mv |
Khanfer, Ammar @@aut@@ Bougoffa, Lazhar @@aut@@ Bougouffa, Smail @@aut@@ |
publishDateDaySort_date |
2022-10-05T00:00:00Z |
hierarchy_top_id |
325293635 |
id |
SPR049611097 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR049611097</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323105008.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230323s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s44198-022-00084-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049611097</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s44198-022-00084-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khanfer, Ammar</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4011-8049</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analytic Approximate Solution of the Extended Blasius Equation with Temperature-Dependent Viscosity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract An explicit approximate solution is obtained for the extended Blasius equation subject to its well-known classical boundary conditions, where the viscosity coefficient is assumed to be positive and temperature-dependent, which arises in several important boundary layer problems in fluid dynamics. This problem extends a previous problem by Cortell (Appl Math Comput 170:706–710, 2005) when the viscosity is constant, in which a numerical solution was obtained. A comparison with other numerical solutions demonstrates that our approximate solution shows an enhancement over some of the existing numerical techniques. Moreover, highly accurate estimates for the skin-friction were calculated and found to be in good agreement with the numerical values obtained by Howarth (Proc R Soc A: Math Phys Eng Sci 164(919):547–579, 1938), Töpfer (Z Math Phys 60:397–398, 1912), and Cortell [34] when the viscosity is equal to 1, and when it is equal to 2.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blasius equation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximate solution</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic viscosity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Skin friction coefficient</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bougoffa, Lazhar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bougouffa, Smail</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of nonlinear mathematical physics</subfield><subfield code="d">Abingdon, Oxon : Taylor & Francis, 1994</subfield><subfield code="g">30(2022), 1 vom: 05. Okt., Seite 287-302</subfield><subfield code="w">(DE-627)325293635</subfield><subfield code="w">(DE-600)2034956-7</subfield><subfield code="x">1776-0852</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:05</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:287-302</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s44198-022-00084-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">05</subfield><subfield code="c">10</subfield><subfield code="h">287-302</subfield></datafield></record></collection>
|
author |
Khanfer, Ammar |
spellingShingle |
Khanfer, Ammar misc Blasius equation misc Approximate solution misc Dynamic viscosity misc Skin friction coefficient Analytic Approximate Solution of the Extended Blasius Equation with Temperature-Dependent Viscosity |
authorStr |
Khanfer, Ammar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)325293635 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1776-0852 |
topic_title |
Analytic Approximate Solution of the Extended Blasius Equation with Temperature-Dependent Viscosity Blasius equation (dpeaa)DE-He213 Approximate solution (dpeaa)DE-He213 Dynamic viscosity (dpeaa)DE-He213 Skin friction coefficient (dpeaa)DE-He213 |
topic |
misc Blasius equation misc Approximate solution misc Dynamic viscosity misc Skin friction coefficient |
topic_unstemmed |
misc Blasius equation misc Approximate solution misc Dynamic viscosity misc Skin friction coefficient |
topic_browse |
misc Blasius equation misc Approximate solution misc Dynamic viscosity misc Skin friction coefficient |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of nonlinear mathematical physics |
hierarchy_parent_id |
325293635 |
hierarchy_top_title |
Journal of nonlinear mathematical physics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)325293635 (DE-600)2034956-7 |
title |
Analytic Approximate Solution of the Extended Blasius Equation with Temperature-Dependent Viscosity |
ctrlnum |
(DE-627)SPR049611097 (SPR)s44198-022-00084-3-e |
title_full |
Analytic Approximate Solution of the Extended Blasius Equation with Temperature-Dependent Viscosity |
author_sort |
Khanfer, Ammar |
journal |
Journal of nonlinear mathematical physics |
journalStr |
Journal of nonlinear mathematical physics |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
287 |
author_browse |
Khanfer, Ammar Bougoffa, Lazhar Bougouffa, Smail |
container_volume |
30 |
format_se |
Elektronische Aufsätze |
author-letter |
Khanfer, Ammar |
doi_str_mv |
10.1007/s44198-022-00084-3 |
normlink |
(ORCID)0000-0003-4011-8049 |
normlink_prefix_str_mv |
(orcid)0000-0003-4011-8049 |
title_sort |
analytic approximate solution of the extended blasius equation with temperature-dependent viscosity |
title_auth |
Analytic Approximate Solution of the Extended Blasius Equation with Temperature-Dependent Viscosity |
abstract |
Abstract An explicit approximate solution is obtained for the extended Blasius equation subject to its well-known classical boundary conditions, where the viscosity coefficient is assumed to be positive and temperature-dependent, which arises in several important boundary layer problems in fluid dynamics. This problem extends a previous problem by Cortell (Appl Math Comput 170:706–710, 2005) when the viscosity is constant, in which a numerical solution was obtained. A comparison with other numerical solutions demonstrates that our approximate solution shows an enhancement over some of the existing numerical techniques. Moreover, highly accurate estimates for the skin-friction were calculated and found to be in good agreement with the numerical values obtained by Howarth (Proc R Soc A: Math Phys Eng Sci 164(919):547–579, 1938), Töpfer (Z Math Phys 60:397–398, 1912), and Cortell [34] when the viscosity is equal to 1, and when it is equal to 2. © The Author(s) 2022 |
abstractGer |
Abstract An explicit approximate solution is obtained for the extended Blasius equation subject to its well-known classical boundary conditions, where the viscosity coefficient is assumed to be positive and temperature-dependent, which arises in several important boundary layer problems in fluid dynamics. This problem extends a previous problem by Cortell (Appl Math Comput 170:706–710, 2005) when the viscosity is constant, in which a numerical solution was obtained. A comparison with other numerical solutions demonstrates that our approximate solution shows an enhancement over some of the existing numerical techniques. Moreover, highly accurate estimates for the skin-friction were calculated and found to be in good agreement with the numerical values obtained by Howarth (Proc R Soc A: Math Phys Eng Sci 164(919):547–579, 1938), Töpfer (Z Math Phys 60:397–398, 1912), and Cortell [34] when the viscosity is equal to 1, and when it is equal to 2. © The Author(s) 2022 |
abstract_unstemmed |
Abstract An explicit approximate solution is obtained for the extended Blasius equation subject to its well-known classical boundary conditions, where the viscosity coefficient is assumed to be positive and temperature-dependent, which arises in several important boundary layer problems in fluid dynamics. This problem extends a previous problem by Cortell (Appl Math Comput 170:706–710, 2005) when the viscosity is constant, in which a numerical solution was obtained. A comparison with other numerical solutions demonstrates that our approximate solution shows an enhancement over some of the existing numerical techniques. Moreover, highly accurate estimates for the skin-friction were calculated and found to be in good agreement with the numerical values obtained by Howarth (Proc R Soc A: Math Phys Eng Sci 164(919):547–579, 1938), Töpfer (Z Math Phys 60:397–398, 1912), and Cortell [34] when the viscosity is equal to 1, and when it is equal to 2. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Analytic Approximate Solution of the Extended Blasius Equation with Temperature-Dependent Viscosity |
url |
https://dx.doi.org/10.1007/s44198-022-00084-3 |
remote_bool |
true |
author2 |
Bougoffa, Lazhar Bougouffa, Smail |
author2Str |
Bougoffa, Lazhar Bougouffa, Smail |
ppnlink |
325293635 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s44198-022-00084-3 |
up_date |
2024-07-04T01:32:47.566Z |
_version_ |
1803610245110431744 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR049611097</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323105008.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230323s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s44198-022-00084-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049611097</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s44198-022-00084-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khanfer, Ammar</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4011-8049</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analytic Approximate Solution of the Extended Blasius Equation with Temperature-Dependent Viscosity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract An explicit approximate solution is obtained for the extended Blasius equation subject to its well-known classical boundary conditions, where the viscosity coefficient is assumed to be positive and temperature-dependent, which arises in several important boundary layer problems in fluid dynamics. This problem extends a previous problem by Cortell (Appl Math Comput 170:706–710, 2005) when the viscosity is constant, in which a numerical solution was obtained. A comparison with other numerical solutions demonstrates that our approximate solution shows an enhancement over some of the existing numerical techniques. Moreover, highly accurate estimates for the skin-friction were calculated and found to be in good agreement with the numerical values obtained by Howarth (Proc R Soc A: Math Phys Eng Sci 164(919):547–579, 1938), Töpfer (Z Math Phys 60:397–398, 1912), and Cortell [34] when the viscosity is equal to 1, and when it is equal to 2.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blasius equation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximate solution</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic viscosity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Skin friction coefficient</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bougoffa, Lazhar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bougouffa, Smail</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of nonlinear mathematical physics</subfield><subfield code="d">Abingdon, Oxon : Taylor & Francis, 1994</subfield><subfield code="g">30(2022), 1 vom: 05. Okt., Seite 287-302</subfield><subfield code="w">(DE-627)325293635</subfield><subfield code="w">(DE-600)2034956-7</subfield><subfield code="x">1776-0852</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:05</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:287-302</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s44198-022-00084-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">05</subfield><subfield code="c">10</subfield><subfield code="h">287-302</subfield></datafield></record></collection>
|
score |
7.4021826 |