Computational coherent Raman scattering imaging: breaking physical barriers by fusion of advanced instrumentation and data science
Abstract Coherent Raman scattering (CRS) microscopy is a chemical imaging modality that provides contrast based on intrinsic biomolecular vibrations. To date, endeavors on instrumentation have advanced CRS into a powerful analytical tool for studies of cell functions and in situ clinical diagnosis....
Ausführliche Beschreibung
Autor*in: |
Lin, Haonan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: eLight - [Singapore] : Springer Singapore, 2021, 3(2023), 1 vom: 20. März |
---|---|
Übergeordnetes Werk: |
volume:3 ; year:2023 ; number:1 ; day:20 ; month:03 |
Links: |
---|
DOI / URN: |
10.1186/s43593-022-00038-8 |
---|
Katalog-ID: |
SPR049747118 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR049747118 | ||
003 | DE-627 | ||
005 | 20230323113633.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230323s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s43593-022-00038-8 |2 doi | |
035 | |a (DE-627)SPR049747118 | ||
035 | |a (SPR)s43593-022-00038-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Lin, Haonan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Computational coherent Raman scattering imaging: breaking physical barriers by fusion of advanced instrumentation and data science |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Abstract Coherent Raman scattering (CRS) microscopy is a chemical imaging modality that provides contrast based on intrinsic biomolecular vibrations. To date, endeavors on instrumentation have advanced CRS into a powerful analytical tool for studies of cell functions and in situ clinical diagnosis. Nevertheless, the small cross-section of Raman scattering sets up a physical boundary for the design space of a CRS system, which trades off speed, signal fidelity and spectral bandwidth. The synergistic combination of instrumentation and computational approaches offers a way to break the trade-off. In this review, we first introduce coherent Raman scattering and recent instrumentation developments, then discuss current computational CRS imaging methods, including compressive micro-spectroscopy, computational volumetric imaging, as well as machine learning algorithms that improve system performance and decipher chemical information. We foresee a constant permeation of computational concepts and algorithms to push the capability boundary of CRS microscopy. | ||
650 | 4 | |a Coherent anti-Stokes Raman scattering |7 (dpeaa)DE-He213 | |
650 | 4 | |a Stimulated Raman scattering |7 (dpeaa)DE-He213 | |
650 | 4 | |a Computational imaging |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hyperspectral imaging |7 (dpeaa)DE-He213 | |
650 | 4 | |a Deep learning |7 (dpeaa)DE-He213 | |
700 | 1 | |a Cheng, Ji-Xin |0 (orcid)0000-0002-5607-6683 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t eLight |d [Singapore] : Springer Singapore, 2021 |g 3(2023), 1 vom: 20. März |w (DE-627)176201291X |w (DE-600)3075589-X |x 2662-8643 |7 nnns |
773 | 1 | 8 | |g volume:3 |g year:2023 |g number:1 |g day:20 |g month:03 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s43593-022-00038-8 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 3 |j 2023 |e 1 |b 20 |c 03 |
author_variant |
h l hl j x c jxc |
---|---|
matchkey_str |
article:26628643:2023----::opttoachrnrmncteigmgnbeknpyiabrirbfsooavne |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1186/s43593-022-00038-8 doi (DE-627)SPR049747118 (SPR)s43593-022-00038-8-e DE-627 ger DE-627 rakwb eng Lin, Haonan verfasserin aut Computational coherent Raman scattering imaging: breaking physical barriers by fusion of advanced instrumentation and data science 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract Coherent Raman scattering (CRS) microscopy is a chemical imaging modality that provides contrast based on intrinsic biomolecular vibrations. To date, endeavors on instrumentation have advanced CRS into a powerful analytical tool for studies of cell functions and in situ clinical diagnosis. Nevertheless, the small cross-section of Raman scattering sets up a physical boundary for the design space of a CRS system, which trades off speed, signal fidelity and spectral bandwidth. The synergistic combination of instrumentation and computational approaches offers a way to break the trade-off. In this review, we first introduce coherent Raman scattering and recent instrumentation developments, then discuss current computational CRS imaging methods, including compressive micro-spectroscopy, computational volumetric imaging, as well as machine learning algorithms that improve system performance and decipher chemical information. We foresee a constant permeation of computational concepts and algorithms to push the capability boundary of CRS microscopy. Coherent anti-Stokes Raman scattering (dpeaa)DE-He213 Stimulated Raman scattering (dpeaa)DE-He213 Computational imaging (dpeaa)DE-He213 Hyperspectral imaging (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Cheng, Ji-Xin (orcid)0000-0002-5607-6683 aut Enthalten in eLight [Singapore] : Springer Singapore, 2021 3(2023), 1 vom: 20. März (DE-627)176201291X (DE-600)3075589-X 2662-8643 nnns volume:3 year:2023 number:1 day:20 month:03 https://dx.doi.org/10.1186/s43593-022-00038-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2023 1 20 03 |
spelling |
10.1186/s43593-022-00038-8 doi (DE-627)SPR049747118 (SPR)s43593-022-00038-8-e DE-627 ger DE-627 rakwb eng Lin, Haonan verfasserin aut Computational coherent Raman scattering imaging: breaking physical barriers by fusion of advanced instrumentation and data science 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract Coherent Raman scattering (CRS) microscopy is a chemical imaging modality that provides contrast based on intrinsic biomolecular vibrations. To date, endeavors on instrumentation have advanced CRS into a powerful analytical tool for studies of cell functions and in situ clinical diagnosis. Nevertheless, the small cross-section of Raman scattering sets up a physical boundary for the design space of a CRS system, which trades off speed, signal fidelity and spectral bandwidth. The synergistic combination of instrumentation and computational approaches offers a way to break the trade-off. In this review, we first introduce coherent Raman scattering and recent instrumentation developments, then discuss current computational CRS imaging methods, including compressive micro-spectroscopy, computational volumetric imaging, as well as machine learning algorithms that improve system performance and decipher chemical information. We foresee a constant permeation of computational concepts and algorithms to push the capability boundary of CRS microscopy. Coherent anti-Stokes Raman scattering (dpeaa)DE-He213 Stimulated Raman scattering (dpeaa)DE-He213 Computational imaging (dpeaa)DE-He213 Hyperspectral imaging (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Cheng, Ji-Xin (orcid)0000-0002-5607-6683 aut Enthalten in eLight [Singapore] : Springer Singapore, 2021 3(2023), 1 vom: 20. März (DE-627)176201291X (DE-600)3075589-X 2662-8643 nnns volume:3 year:2023 number:1 day:20 month:03 https://dx.doi.org/10.1186/s43593-022-00038-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2023 1 20 03 |
allfields_unstemmed |
10.1186/s43593-022-00038-8 doi (DE-627)SPR049747118 (SPR)s43593-022-00038-8-e DE-627 ger DE-627 rakwb eng Lin, Haonan verfasserin aut Computational coherent Raman scattering imaging: breaking physical barriers by fusion of advanced instrumentation and data science 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract Coherent Raman scattering (CRS) microscopy is a chemical imaging modality that provides contrast based on intrinsic biomolecular vibrations. To date, endeavors on instrumentation have advanced CRS into a powerful analytical tool for studies of cell functions and in situ clinical diagnosis. Nevertheless, the small cross-section of Raman scattering sets up a physical boundary for the design space of a CRS system, which trades off speed, signal fidelity and spectral bandwidth. The synergistic combination of instrumentation and computational approaches offers a way to break the trade-off. In this review, we first introduce coherent Raman scattering and recent instrumentation developments, then discuss current computational CRS imaging methods, including compressive micro-spectroscopy, computational volumetric imaging, as well as machine learning algorithms that improve system performance and decipher chemical information. We foresee a constant permeation of computational concepts and algorithms to push the capability boundary of CRS microscopy. Coherent anti-Stokes Raman scattering (dpeaa)DE-He213 Stimulated Raman scattering (dpeaa)DE-He213 Computational imaging (dpeaa)DE-He213 Hyperspectral imaging (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Cheng, Ji-Xin (orcid)0000-0002-5607-6683 aut Enthalten in eLight [Singapore] : Springer Singapore, 2021 3(2023), 1 vom: 20. März (DE-627)176201291X (DE-600)3075589-X 2662-8643 nnns volume:3 year:2023 number:1 day:20 month:03 https://dx.doi.org/10.1186/s43593-022-00038-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2023 1 20 03 |
allfieldsGer |
10.1186/s43593-022-00038-8 doi (DE-627)SPR049747118 (SPR)s43593-022-00038-8-e DE-627 ger DE-627 rakwb eng Lin, Haonan verfasserin aut Computational coherent Raman scattering imaging: breaking physical barriers by fusion of advanced instrumentation and data science 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract Coherent Raman scattering (CRS) microscopy is a chemical imaging modality that provides contrast based on intrinsic biomolecular vibrations. To date, endeavors on instrumentation have advanced CRS into a powerful analytical tool for studies of cell functions and in situ clinical diagnosis. Nevertheless, the small cross-section of Raman scattering sets up a physical boundary for the design space of a CRS system, which trades off speed, signal fidelity and spectral bandwidth. The synergistic combination of instrumentation and computational approaches offers a way to break the trade-off. In this review, we first introduce coherent Raman scattering and recent instrumentation developments, then discuss current computational CRS imaging methods, including compressive micro-spectroscopy, computational volumetric imaging, as well as machine learning algorithms that improve system performance and decipher chemical information. We foresee a constant permeation of computational concepts and algorithms to push the capability boundary of CRS microscopy. Coherent anti-Stokes Raman scattering (dpeaa)DE-He213 Stimulated Raman scattering (dpeaa)DE-He213 Computational imaging (dpeaa)DE-He213 Hyperspectral imaging (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Cheng, Ji-Xin (orcid)0000-0002-5607-6683 aut Enthalten in eLight [Singapore] : Springer Singapore, 2021 3(2023), 1 vom: 20. März (DE-627)176201291X (DE-600)3075589-X 2662-8643 nnns volume:3 year:2023 number:1 day:20 month:03 https://dx.doi.org/10.1186/s43593-022-00038-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2023 1 20 03 |
allfieldsSound |
10.1186/s43593-022-00038-8 doi (DE-627)SPR049747118 (SPR)s43593-022-00038-8-e DE-627 ger DE-627 rakwb eng Lin, Haonan verfasserin aut Computational coherent Raman scattering imaging: breaking physical barriers by fusion of advanced instrumentation and data science 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract Coherent Raman scattering (CRS) microscopy is a chemical imaging modality that provides contrast based on intrinsic biomolecular vibrations. To date, endeavors on instrumentation have advanced CRS into a powerful analytical tool for studies of cell functions and in situ clinical diagnosis. Nevertheless, the small cross-section of Raman scattering sets up a physical boundary for the design space of a CRS system, which trades off speed, signal fidelity and spectral bandwidth. The synergistic combination of instrumentation and computational approaches offers a way to break the trade-off. In this review, we first introduce coherent Raman scattering and recent instrumentation developments, then discuss current computational CRS imaging methods, including compressive micro-spectroscopy, computational volumetric imaging, as well as machine learning algorithms that improve system performance and decipher chemical information. We foresee a constant permeation of computational concepts and algorithms to push the capability boundary of CRS microscopy. Coherent anti-Stokes Raman scattering (dpeaa)DE-He213 Stimulated Raman scattering (dpeaa)DE-He213 Computational imaging (dpeaa)DE-He213 Hyperspectral imaging (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Cheng, Ji-Xin (orcid)0000-0002-5607-6683 aut Enthalten in eLight [Singapore] : Springer Singapore, 2021 3(2023), 1 vom: 20. März (DE-627)176201291X (DE-600)3075589-X 2662-8643 nnns volume:3 year:2023 number:1 day:20 month:03 https://dx.doi.org/10.1186/s43593-022-00038-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2023 1 20 03 |
language |
English |
source |
Enthalten in eLight 3(2023), 1 vom: 20. März volume:3 year:2023 number:1 day:20 month:03 |
sourceStr |
Enthalten in eLight 3(2023), 1 vom: 20. März volume:3 year:2023 number:1 day:20 month:03 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Coherent anti-Stokes Raman scattering Stimulated Raman scattering Computational imaging Hyperspectral imaging Deep learning |
isfreeaccess_bool |
true |
container_title |
eLight |
authorswithroles_txt_mv |
Lin, Haonan @@aut@@ Cheng, Ji-Xin @@aut@@ |
publishDateDaySort_date |
2023-03-20T00:00:00Z |
hierarchy_top_id |
176201291X |
id |
SPR049747118 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR049747118</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323113633.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230323s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s43593-022-00038-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049747118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s43593-022-00038-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lin, Haonan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational coherent Raman scattering imaging: breaking physical barriers by fusion of advanced instrumentation and data science</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Coherent Raman scattering (CRS) microscopy is a chemical imaging modality that provides contrast based on intrinsic biomolecular vibrations. To date, endeavors on instrumentation have advanced CRS into a powerful analytical tool for studies of cell functions and in situ clinical diagnosis. Nevertheless, the small cross-section of Raman scattering sets up a physical boundary for the design space of a CRS system, which trades off speed, signal fidelity and spectral bandwidth. The synergistic combination of instrumentation and computational approaches offers a way to break the trade-off. In this review, we first introduce coherent Raman scattering and recent instrumentation developments, then discuss current computational CRS imaging methods, including compressive micro-spectroscopy, computational volumetric imaging, as well as machine learning algorithms that improve system performance and decipher chemical information. We foresee a constant permeation of computational concepts and algorithms to push the capability boundary of CRS microscopy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coherent anti-Stokes Raman scattering</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stimulated Raman scattering</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational imaging</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperspectral imaging</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Ji-Xin</subfield><subfield code="0">(orcid)0000-0002-5607-6683</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">eLight</subfield><subfield code="d">[Singapore] : Springer Singapore, 2021</subfield><subfield code="g">3(2023), 1 vom: 20. März</subfield><subfield code="w">(DE-627)176201291X</subfield><subfield code="w">(DE-600)3075589-X</subfield><subfield code="x">2662-8643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:20</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s43593-022-00038-8</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">20</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
author |
Lin, Haonan |
spellingShingle |
Lin, Haonan misc Coherent anti-Stokes Raman scattering misc Stimulated Raman scattering misc Computational imaging misc Hyperspectral imaging misc Deep learning Computational coherent Raman scattering imaging: breaking physical barriers by fusion of advanced instrumentation and data science |
authorStr |
Lin, Haonan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)176201291X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2662-8643 |
topic_title |
Computational coherent Raman scattering imaging: breaking physical barriers by fusion of advanced instrumentation and data science Coherent anti-Stokes Raman scattering (dpeaa)DE-He213 Stimulated Raman scattering (dpeaa)DE-He213 Computational imaging (dpeaa)DE-He213 Hyperspectral imaging (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 |
topic |
misc Coherent anti-Stokes Raman scattering misc Stimulated Raman scattering misc Computational imaging misc Hyperspectral imaging misc Deep learning |
topic_unstemmed |
misc Coherent anti-Stokes Raman scattering misc Stimulated Raman scattering misc Computational imaging misc Hyperspectral imaging misc Deep learning |
topic_browse |
misc Coherent anti-Stokes Raman scattering misc Stimulated Raman scattering misc Computational imaging misc Hyperspectral imaging misc Deep learning |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
eLight |
hierarchy_parent_id |
176201291X |
hierarchy_top_title |
eLight |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)176201291X (DE-600)3075589-X |
title |
Computational coherent Raman scattering imaging: breaking physical barriers by fusion of advanced instrumentation and data science |
ctrlnum |
(DE-627)SPR049747118 (SPR)s43593-022-00038-8-e |
title_full |
Computational coherent Raman scattering imaging: breaking physical barriers by fusion of advanced instrumentation and data science |
author_sort |
Lin, Haonan |
journal |
eLight |
journalStr |
eLight |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Lin, Haonan Cheng, Ji-Xin |
container_volume |
3 |
format_se |
Elektronische Aufsätze |
author-letter |
Lin, Haonan |
doi_str_mv |
10.1186/s43593-022-00038-8 |
normlink |
(ORCID)0000-0002-5607-6683 |
normlink_prefix_str_mv |
(orcid)0000-0002-5607-6683 |
title_sort |
computational coherent raman scattering imaging: breaking physical barriers by fusion of advanced instrumentation and data science |
title_auth |
Computational coherent Raman scattering imaging: breaking physical barriers by fusion of advanced instrumentation and data science |
abstract |
Abstract Coherent Raman scattering (CRS) microscopy is a chemical imaging modality that provides contrast based on intrinsic biomolecular vibrations. To date, endeavors on instrumentation have advanced CRS into a powerful analytical tool for studies of cell functions and in situ clinical diagnosis. Nevertheless, the small cross-section of Raman scattering sets up a physical boundary for the design space of a CRS system, which trades off speed, signal fidelity and spectral bandwidth. The synergistic combination of instrumentation and computational approaches offers a way to break the trade-off. In this review, we first introduce coherent Raman scattering and recent instrumentation developments, then discuss current computational CRS imaging methods, including compressive micro-spectroscopy, computational volumetric imaging, as well as machine learning algorithms that improve system performance and decipher chemical information. We foresee a constant permeation of computational concepts and algorithms to push the capability boundary of CRS microscopy. © The Author(s) 2023 |
abstractGer |
Abstract Coherent Raman scattering (CRS) microscopy is a chemical imaging modality that provides contrast based on intrinsic biomolecular vibrations. To date, endeavors on instrumentation have advanced CRS into a powerful analytical tool for studies of cell functions and in situ clinical diagnosis. Nevertheless, the small cross-section of Raman scattering sets up a physical boundary for the design space of a CRS system, which trades off speed, signal fidelity and spectral bandwidth. The synergistic combination of instrumentation and computational approaches offers a way to break the trade-off. In this review, we first introduce coherent Raman scattering and recent instrumentation developments, then discuss current computational CRS imaging methods, including compressive micro-spectroscopy, computational volumetric imaging, as well as machine learning algorithms that improve system performance and decipher chemical information. We foresee a constant permeation of computational concepts and algorithms to push the capability boundary of CRS microscopy. © The Author(s) 2023 |
abstract_unstemmed |
Abstract Coherent Raman scattering (CRS) microscopy is a chemical imaging modality that provides contrast based on intrinsic biomolecular vibrations. To date, endeavors on instrumentation have advanced CRS into a powerful analytical tool for studies of cell functions and in situ clinical diagnosis. Nevertheless, the small cross-section of Raman scattering sets up a physical boundary for the design space of a CRS system, which trades off speed, signal fidelity and spectral bandwidth. The synergistic combination of instrumentation and computational approaches offers a way to break the trade-off. In this review, we first introduce coherent Raman scattering and recent instrumentation developments, then discuss current computational CRS imaging methods, including compressive micro-spectroscopy, computational volumetric imaging, as well as machine learning algorithms that improve system performance and decipher chemical information. We foresee a constant permeation of computational concepts and algorithms to push the capability boundary of CRS microscopy. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Computational coherent Raman scattering imaging: breaking physical barriers by fusion of advanced instrumentation and data science |
url |
https://dx.doi.org/10.1186/s43593-022-00038-8 |
remote_bool |
true |
author2 |
Cheng, Ji-Xin |
author2Str |
Cheng, Ji-Xin |
ppnlink |
176201291X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s43593-022-00038-8 |
up_date |
2024-07-04T02:07:29.227Z |
_version_ |
1803612427891245056 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR049747118</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323113633.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230323s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s43593-022-00038-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049747118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s43593-022-00038-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lin, Haonan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational coherent Raman scattering imaging: breaking physical barriers by fusion of advanced instrumentation and data science</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Coherent Raman scattering (CRS) microscopy is a chemical imaging modality that provides contrast based on intrinsic biomolecular vibrations. To date, endeavors on instrumentation have advanced CRS into a powerful analytical tool for studies of cell functions and in situ clinical diagnosis. Nevertheless, the small cross-section of Raman scattering sets up a physical boundary for the design space of a CRS system, which trades off speed, signal fidelity and spectral bandwidth. The synergistic combination of instrumentation and computational approaches offers a way to break the trade-off. In this review, we first introduce coherent Raman scattering and recent instrumentation developments, then discuss current computational CRS imaging methods, including compressive micro-spectroscopy, computational volumetric imaging, as well as machine learning algorithms that improve system performance and decipher chemical information. We foresee a constant permeation of computational concepts and algorithms to push the capability boundary of CRS microscopy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coherent anti-Stokes Raman scattering</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stimulated Raman scattering</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational imaging</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperspectral imaging</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Ji-Xin</subfield><subfield code="0">(orcid)0000-0002-5607-6683</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">eLight</subfield><subfield code="d">[Singapore] : Springer Singapore, 2021</subfield><subfield code="g">3(2023), 1 vom: 20. März</subfield><subfield code="w">(DE-627)176201291X</subfield><subfield code="w">(DE-600)3075589-X</subfield><subfield code="x">2662-8643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:20</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s43593-022-00038-8</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">20</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
score |
7.401991 |