Enhanced Efficiency of In Vitro Rootstock Micro-propagation Using Silica-Based Nanoparticles and Plant Growth Regulators in Myrobalan 29C (Prunus cerasifera L.)
Abstract Different experiments were conducted to establish and optimize an efficient in vitro micropropagation protocol for Myrobalan 29C rootstocks. Disinfection of initial explants with AgNPs (2.5%) reduced the needed amount of NaClO (5.0%) by half. The highest rates of induced active buds were ob...
Ausführliche Beschreibung
Autor*in: |
Khafri, Asieh Zare [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of plant growth regulation - New York, NY : Springer, 1982, 42(2022), 3 vom: 23. März, Seite 1457-1471 |
---|---|
Übergeordnetes Werk: |
volume:42 ; year:2022 ; number:3 ; day:23 ; month:03 ; pages:1457-1471 |
Links: |
---|
DOI / URN: |
10.1007/s00344-022-10631-3 |
---|
Katalog-ID: |
SPR049765582 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR049765582 | ||
003 | DE-627 | ||
005 | 20230323113740.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230323s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00344-022-10631-3 |2 doi | |
035 | |a (DE-627)SPR049765582 | ||
035 | |a (SPR)s00344-022-10631-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Khafri, Asieh Zare |e verfasserin |4 aut | |
245 | 1 | 0 | |a Enhanced Efficiency of In Vitro Rootstock Micro-propagation Using Silica-Based Nanoparticles and Plant Growth Regulators in Myrobalan 29C (Prunus cerasifera L.) |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 | ||
520 | |a Abstract Different experiments were conducted to establish and optimize an efficient in vitro micropropagation protocol for Myrobalan 29C rootstocks. Disinfection of initial explants with AgNPs (2.5%) reduced the needed amount of NaClO (5.0%) by half. The highest rates of induced active buds were obtained in the DKW (90.63%), MS (86.67%), modified MS (82.22%), and WPM (78.15%) culture media supplemented with BAP (2.22 μmol $ L^{−1} $) + $ GA_{3} $ (2.88 μmol $ L^{−1} $) + IBA (0.05 μmol $ L^{−1} $) + Fe-EDDHA (228.72 μmol $ L^{−1} $). The highest quality of the proliferated shoots (5.0) was also achieved using DKW medium. Inclusion of $ GA_{3} $ (5.76 μmol $ L^{−1} $), Fe-EDDHA (114.36–228.72 μmol $ L^{−1} $), or BAP (2.22 μmol $ L^{−1} $) were also able to enhance the rate of shoot multiplication. Compared to the agar-solidified culture system, the established shoots proliferated more efficiently when immersed by bioreactor in the liquid DKW culture medium on a regular basis. Exogenous application of silica-based nanoparticles (NPs) including the chemically synthesized silica NPs ($ TSiO_{2} $ NPs, 1.0 ppm), rice husk derived biogenic silica NPs ($ RSiO_{2} $ NPs, 10.0 ppm), or amine modified silica NPs ($ ASiO_{2} $ NPs, 10.0 ppm) to the multiplication medium increased the number of regenerated lateral shoots by 520%, 360%, and 349%, respectively. Proliferated shoots with well-developed root system were obtained from the rooting medium supplemented with 19.68 μmol $ L^{−1} $ IBA. Our results indicated that the rootstocks of Myrobalan 29C could be efficiently propagated under in vitro condition providing proper culture medium and optimal concentrations of additives and plant growth regulators were adopted. | ||
650 | 4 | |a Bioreactor |7 (dpeaa)DE-He213 | |
650 | 4 | |a Micro-propagation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Plant growth regulator |7 (dpeaa)DE-He213 | |
650 | 4 | |a Silica-based nanoparticles |7 (dpeaa)DE-He213 | |
700 | 1 | |a Zarghami, Reza |4 aut | |
700 | 1 | |a Ma’mani, Leila |4 aut | |
700 | 1 | |a Ahmadi, Behzad |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of plant growth regulation |d New York, NY : Springer, 1982 |g 42(2022), 3 vom: 23. März, Seite 1457-1471 |w (DE-627)254630448 |w (DE-600)1462091-1 |x 1435-8107 |7 nnns |
773 | 1 | 8 | |g volume:42 |g year:2022 |g number:3 |g day:23 |g month:03 |g pages:1457-1471 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00344-022-10631-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 42 |j 2022 |e 3 |b 23 |c 03 |h 1457-1471 |
author_variant |
a z k az azk r z rz l m lm b a ba |
---|---|
matchkey_str |
article:14358107:2022----::nacdfiinyfnirrosokirpoaainsnslcbsdaoatceadlngotrglt |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s00344-022-10631-3 doi (DE-627)SPR049765582 (SPR)s00344-022-10631-3-e DE-627 ger DE-627 rakwb eng Khafri, Asieh Zare verfasserin aut Enhanced Efficiency of In Vitro Rootstock Micro-propagation Using Silica-Based Nanoparticles and Plant Growth Regulators in Myrobalan 29C (Prunus cerasifera L.) 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Different experiments were conducted to establish and optimize an efficient in vitro micropropagation protocol for Myrobalan 29C rootstocks. Disinfection of initial explants with AgNPs (2.5%) reduced the needed amount of NaClO (5.0%) by half. The highest rates of induced active buds were obtained in the DKW (90.63%), MS (86.67%), modified MS (82.22%), and WPM (78.15%) culture media supplemented with BAP (2.22 μmol $ L^{−1} $) + $ GA_{3} $ (2.88 μmol $ L^{−1} $) + IBA (0.05 μmol $ L^{−1} $) + Fe-EDDHA (228.72 μmol $ L^{−1} $). The highest quality of the proliferated shoots (5.0) was also achieved using DKW medium. Inclusion of $ GA_{3} $ (5.76 μmol $ L^{−1} $), Fe-EDDHA (114.36–228.72 μmol $ L^{−1} $), or BAP (2.22 μmol $ L^{−1} $) were also able to enhance the rate of shoot multiplication. Compared to the agar-solidified culture system, the established shoots proliferated more efficiently when immersed by bioreactor in the liquid DKW culture medium on a regular basis. Exogenous application of silica-based nanoparticles (NPs) including the chemically synthesized silica NPs ($ TSiO_{2} $ NPs, 1.0 ppm), rice husk derived biogenic silica NPs ($ RSiO_{2} $ NPs, 10.0 ppm), or amine modified silica NPs ($ ASiO_{2} $ NPs, 10.0 ppm) to the multiplication medium increased the number of regenerated lateral shoots by 520%, 360%, and 349%, respectively. Proliferated shoots with well-developed root system were obtained from the rooting medium supplemented with 19.68 μmol $ L^{−1} $ IBA. Our results indicated that the rootstocks of Myrobalan 29C could be efficiently propagated under in vitro condition providing proper culture medium and optimal concentrations of additives and plant growth regulators were adopted. Bioreactor (dpeaa)DE-He213 Micro-propagation (dpeaa)DE-He213 Plant growth regulator (dpeaa)DE-He213 Silica-based nanoparticles (dpeaa)DE-He213 Zarghami, Reza aut Ma’mani, Leila aut Ahmadi, Behzad aut Enthalten in Journal of plant growth regulation New York, NY : Springer, 1982 42(2022), 3 vom: 23. März, Seite 1457-1471 (DE-627)254630448 (DE-600)1462091-1 1435-8107 nnns volume:42 year:2022 number:3 day:23 month:03 pages:1457-1471 https://dx.doi.org/10.1007/s00344-022-10631-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 42 2022 3 23 03 1457-1471 |
spelling |
10.1007/s00344-022-10631-3 doi (DE-627)SPR049765582 (SPR)s00344-022-10631-3-e DE-627 ger DE-627 rakwb eng Khafri, Asieh Zare verfasserin aut Enhanced Efficiency of In Vitro Rootstock Micro-propagation Using Silica-Based Nanoparticles and Plant Growth Regulators in Myrobalan 29C (Prunus cerasifera L.) 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Different experiments were conducted to establish and optimize an efficient in vitro micropropagation protocol for Myrobalan 29C rootstocks. Disinfection of initial explants with AgNPs (2.5%) reduced the needed amount of NaClO (5.0%) by half. The highest rates of induced active buds were obtained in the DKW (90.63%), MS (86.67%), modified MS (82.22%), and WPM (78.15%) culture media supplemented with BAP (2.22 μmol $ L^{−1} $) + $ GA_{3} $ (2.88 μmol $ L^{−1} $) + IBA (0.05 μmol $ L^{−1} $) + Fe-EDDHA (228.72 μmol $ L^{−1} $). The highest quality of the proliferated shoots (5.0) was also achieved using DKW medium. Inclusion of $ GA_{3} $ (5.76 μmol $ L^{−1} $), Fe-EDDHA (114.36–228.72 μmol $ L^{−1} $), or BAP (2.22 μmol $ L^{−1} $) were also able to enhance the rate of shoot multiplication. Compared to the agar-solidified culture system, the established shoots proliferated more efficiently when immersed by bioreactor in the liquid DKW culture medium on a regular basis. Exogenous application of silica-based nanoparticles (NPs) including the chemically synthesized silica NPs ($ TSiO_{2} $ NPs, 1.0 ppm), rice husk derived biogenic silica NPs ($ RSiO_{2} $ NPs, 10.0 ppm), or amine modified silica NPs ($ ASiO_{2} $ NPs, 10.0 ppm) to the multiplication medium increased the number of regenerated lateral shoots by 520%, 360%, and 349%, respectively. Proliferated shoots with well-developed root system were obtained from the rooting medium supplemented with 19.68 μmol $ L^{−1} $ IBA. Our results indicated that the rootstocks of Myrobalan 29C could be efficiently propagated under in vitro condition providing proper culture medium and optimal concentrations of additives and plant growth regulators were adopted. Bioreactor (dpeaa)DE-He213 Micro-propagation (dpeaa)DE-He213 Plant growth regulator (dpeaa)DE-He213 Silica-based nanoparticles (dpeaa)DE-He213 Zarghami, Reza aut Ma’mani, Leila aut Ahmadi, Behzad aut Enthalten in Journal of plant growth regulation New York, NY : Springer, 1982 42(2022), 3 vom: 23. März, Seite 1457-1471 (DE-627)254630448 (DE-600)1462091-1 1435-8107 nnns volume:42 year:2022 number:3 day:23 month:03 pages:1457-1471 https://dx.doi.org/10.1007/s00344-022-10631-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 42 2022 3 23 03 1457-1471 |
allfields_unstemmed |
10.1007/s00344-022-10631-3 doi (DE-627)SPR049765582 (SPR)s00344-022-10631-3-e DE-627 ger DE-627 rakwb eng Khafri, Asieh Zare verfasserin aut Enhanced Efficiency of In Vitro Rootstock Micro-propagation Using Silica-Based Nanoparticles and Plant Growth Regulators in Myrobalan 29C (Prunus cerasifera L.) 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Different experiments were conducted to establish and optimize an efficient in vitro micropropagation protocol for Myrobalan 29C rootstocks. Disinfection of initial explants with AgNPs (2.5%) reduced the needed amount of NaClO (5.0%) by half. The highest rates of induced active buds were obtained in the DKW (90.63%), MS (86.67%), modified MS (82.22%), and WPM (78.15%) culture media supplemented with BAP (2.22 μmol $ L^{−1} $) + $ GA_{3} $ (2.88 μmol $ L^{−1} $) + IBA (0.05 μmol $ L^{−1} $) + Fe-EDDHA (228.72 μmol $ L^{−1} $). The highest quality of the proliferated shoots (5.0) was also achieved using DKW medium. Inclusion of $ GA_{3} $ (5.76 μmol $ L^{−1} $), Fe-EDDHA (114.36–228.72 μmol $ L^{−1} $), or BAP (2.22 μmol $ L^{−1} $) were also able to enhance the rate of shoot multiplication. Compared to the agar-solidified culture system, the established shoots proliferated more efficiently when immersed by bioreactor in the liquid DKW culture medium on a regular basis. Exogenous application of silica-based nanoparticles (NPs) including the chemically synthesized silica NPs ($ TSiO_{2} $ NPs, 1.0 ppm), rice husk derived biogenic silica NPs ($ RSiO_{2} $ NPs, 10.0 ppm), or amine modified silica NPs ($ ASiO_{2} $ NPs, 10.0 ppm) to the multiplication medium increased the number of regenerated lateral shoots by 520%, 360%, and 349%, respectively. Proliferated shoots with well-developed root system were obtained from the rooting medium supplemented with 19.68 μmol $ L^{−1} $ IBA. Our results indicated that the rootstocks of Myrobalan 29C could be efficiently propagated under in vitro condition providing proper culture medium and optimal concentrations of additives and plant growth regulators were adopted. Bioreactor (dpeaa)DE-He213 Micro-propagation (dpeaa)DE-He213 Plant growth regulator (dpeaa)DE-He213 Silica-based nanoparticles (dpeaa)DE-He213 Zarghami, Reza aut Ma’mani, Leila aut Ahmadi, Behzad aut Enthalten in Journal of plant growth regulation New York, NY : Springer, 1982 42(2022), 3 vom: 23. März, Seite 1457-1471 (DE-627)254630448 (DE-600)1462091-1 1435-8107 nnns volume:42 year:2022 number:3 day:23 month:03 pages:1457-1471 https://dx.doi.org/10.1007/s00344-022-10631-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 42 2022 3 23 03 1457-1471 |
allfieldsGer |
10.1007/s00344-022-10631-3 doi (DE-627)SPR049765582 (SPR)s00344-022-10631-3-e DE-627 ger DE-627 rakwb eng Khafri, Asieh Zare verfasserin aut Enhanced Efficiency of In Vitro Rootstock Micro-propagation Using Silica-Based Nanoparticles and Plant Growth Regulators in Myrobalan 29C (Prunus cerasifera L.) 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Different experiments were conducted to establish and optimize an efficient in vitro micropropagation protocol for Myrobalan 29C rootstocks. Disinfection of initial explants with AgNPs (2.5%) reduced the needed amount of NaClO (5.0%) by half. The highest rates of induced active buds were obtained in the DKW (90.63%), MS (86.67%), modified MS (82.22%), and WPM (78.15%) culture media supplemented with BAP (2.22 μmol $ L^{−1} $) + $ GA_{3} $ (2.88 μmol $ L^{−1} $) + IBA (0.05 μmol $ L^{−1} $) + Fe-EDDHA (228.72 μmol $ L^{−1} $). The highest quality of the proliferated shoots (5.0) was also achieved using DKW medium. Inclusion of $ GA_{3} $ (5.76 μmol $ L^{−1} $), Fe-EDDHA (114.36–228.72 μmol $ L^{−1} $), or BAP (2.22 μmol $ L^{−1} $) were also able to enhance the rate of shoot multiplication. Compared to the agar-solidified culture system, the established shoots proliferated more efficiently when immersed by bioreactor in the liquid DKW culture medium on a regular basis. Exogenous application of silica-based nanoparticles (NPs) including the chemically synthesized silica NPs ($ TSiO_{2} $ NPs, 1.0 ppm), rice husk derived biogenic silica NPs ($ RSiO_{2} $ NPs, 10.0 ppm), or amine modified silica NPs ($ ASiO_{2} $ NPs, 10.0 ppm) to the multiplication medium increased the number of regenerated lateral shoots by 520%, 360%, and 349%, respectively. Proliferated shoots with well-developed root system were obtained from the rooting medium supplemented with 19.68 μmol $ L^{−1} $ IBA. Our results indicated that the rootstocks of Myrobalan 29C could be efficiently propagated under in vitro condition providing proper culture medium and optimal concentrations of additives and plant growth regulators were adopted. Bioreactor (dpeaa)DE-He213 Micro-propagation (dpeaa)DE-He213 Plant growth regulator (dpeaa)DE-He213 Silica-based nanoparticles (dpeaa)DE-He213 Zarghami, Reza aut Ma’mani, Leila aut Ahmadi, Behzad aut Enthalten in Journal of plant growth regulation New York, NY : Springer, 1982 42(2022), 3 vom: 23. März, Seite 1457-1471 (DE-627)254630448 (DE-600)1462091-1 1435-8107 nnns volume:42 year:2022 number:3 day:23 month:03 pages:1457-1471 https://dx.doi.org/10.1007/s00344-022-10631-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 42 2022 3 23 03 1457-1471 |
allfieldsSound |
10.1007/s00344-022-10631-3 doi (DE-627)SPR049765582 (SPR)s00344-022-10631-3-e DE-627 ger DE-627 rakwb eng Khafri, Asieh Zare verfasserin aut Enhanced Efficiency of In Vitro Rootstock Micro-propagation Using Silica-Based Nanoparticles and Plant Growth Regulators in Myrobalan 29C (Prunus cerasifera L.) 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Different experiments were conducted to establish and optimize an efficient in vitro micropropagation protocol for Myrobalan 29C rootstocks. Disinfection of initial explants with AgNPs (2.5%) reduced the needed amount of NaClO (5.0%) by half. The highest rates of induced active buds were obtained in the DKW (90.63%), MS (86.67%), modified MS (82.22%), and WPM (78.15%) culture media supplemented with BAP (2.22 μmol $ L^{−1} $) + $ GA_{3} $ (2.88 μmol $ L^{−1} $) + IBA (0.05 μmol $ L^{−1} $) + Fe-EDDHA (228.72 μmol $ L^{−1} $). The highest quality of the proliferated shoots (5.0) was also achieved using DKW medium. Inclusion of $ GA_{3} $ (5.76 μmol $ L^{−1} $), Fe-EDDHA (114.36–228.72 μmol $ L^{−1} $), or BAP (2.22 μmol $ L^{−1} $) were also able to enhance the rate of shoot multiplication. Compared to the agar-solidified culture system, the established shoots proliferated more efficiently when immersed by bioreactor in the liquid DKW culture medium on a regular basis. Exogenous application of silica-based nanoparticles (NPs) including the chemically synthesized silica NPs ($ TSiO_{2} $ NPs, 1.0 ppm), rice husk derived biogenic silica NPs ($ RSiO_{2} $ NPs, 10.0 ppm), or amine modified silica NPs ($ ASiO_{2} $ NPs, 10.0 ppm) to the multiplication medium increased the number of regenerated lateral shoots by 520%, 360%, and 349%, respectively. Proliferated shoots with well-developed root system were obtained from the rooting medium supplemented with 19.68 μmol $ L^{−1} $ IBA. Our results indicated that the rootstocks of Myrobalan 29C could be efficiently propagated under in vitro condition providing proper culture medium and optimal concentrations of additives and plant growth regulators were adopted. Bioreactor (dpeaa)DE-He213 Micro-propagation (dpeaa)DE-He213 Plant growth regulator (dpeaa)DE-He213 Silica-based nanoparticles (dpeaa)DE-He213 Zarghami, Reza aut Ma’mani, Leila aut Ahmadi, Behzad aut Enthalten in Journal of plant growth regulation New York, NY : Springer, 1982 42(2022), 3 vom: 23. März, Seite 1457-1471 (DE-627)254630448 (DE-600)1462091-1 1435-8107 nnns volume:42 year:2022 number:3 day:23 month:03 pages:1457-1471 https://dx.doi.org/10.1007/s00344-022-10631-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 42 2022 3 23 03 1457-1471 |
language |
English |
source |
Enthalten in Journal of plant growth regulation 42(2022), 3 vom: 23. März, Seite 1457-1471 volume:42 year:2022 number:3 day:23 month:03 pages:1457-1471 |
sourceStr |
Enthalten in Journal of plant growth regulation 42(2022), 3 vom: 23. März, Seite 1457-1471 volume:42 year:2022 number:3 day:23 month:03 pages:1457-1471 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Bioreactor Micro-propagation Plant growth regulator Silica-based nanoparticles |
isfreeaccess_bool |
false |
container_title |
Journal of plant growth regulation |
authorswithroles_txt_mv |
Khafri, Asieh Zare @@aut@@ Zarghami, Reza @@aut@@ Ma’mani, Leila @@aut@@ Ahmadi, Behzad @@aut@@ |
publishDateDaySort_date |
2022-03-23T00:00:00Z |
hierarchy_top_id |
254630448 |
id |
SPR049765582 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR049765582</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323113740.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230323s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00344-022-10631-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049765582</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00344-022-10631-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khafri, Asieh Zare</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhanced Efficiency of In Vitro Rootstock Micro-propagation Using Silica-Based Nanoparticles and Plant Growth Regulators in Myrobalan 29C (Prunus cerasifera L.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Different experiments were conducted to establish and optimize an efficient in vitro micropropagation protocol for Myrobalan 29C rootstocks. Disinfection of initial explants with AgNPs (2.5%) reduced the needed amount of NaClO (5.0%) by half. The highest rates of induced active buds were obtained in the DKW (90.63%), MS (86.67%), modified MS (82.22%), and WPM (78.15%) culture media supplemented with BAP (2.22 μmol $ L^{−1} $) + $ GA_{3} $ (2.88 μmol $ L^{−1} $) + IBA (0.05 μmol $ L^{−1} $) + Fe-EDDHA (228.72 μmol $ L^{−1} $). The highest quality of the proliferated shoots (5.0) was also achieved using DKW medium. Inclusion of $ GA_{3} $ (5.76 μmol $ L^{−1} $), Fe-EDDHA (114.36–228.72 μmol $ L^{−1} $), or BAP (2.22 μmol $ L^{−1} $) were also able to enhance the rate of shoot multiplication. Compared to the agar-solidified culture system, the established shoots proliferated more efficiently when immersed by bioreactor in the liquid DKW culture medium on a regular basis. Exogenous application of silica-based nanoparticles (NPs) including the chemically synthesized silica NPs ($ TSiO_{2} $ NPs, 1.0 ppm), rice husk derived biogenic silica NPs ($ RSiO_{2} $ NPs, 10.0 ppm), or amine modified silica NPs ($ ASiO_{2} $ NPs, 10.0 ppm) to the multiplication medium increased the number of regenerated lateral shoots by 520%, 360%, and 349%, respectively. Proliferated shoots with well-developed root system were obtained from the rooting medium supplemented with 19.68 μmol $ L^{−1} $ IBA. Our results indicated that the rootstocks of Myrobalan 29C could be efficiently propagated under in vitro condition providing proper culture medium and optimal concentrations of additives and plant growth regulators were adopted.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bioreactor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Micro-propagation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plant growth regulator</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silica-based nanoparticles</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zarghami, Reza</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma’mani, Leila</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ahmadi, Behzad</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of plant growth regulation</subfield><subfield code="d">New York, NY : Springer, 1982</subfield><subfield code="g">42(2022), 3 vom: 23. März, Seite 1457-1471</subfield><subfield code="w">(DE-627)254630448</subfield><subfield code="w">(DE-600)1462091-1</subfield><subfield code="x">1435-8107</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:42</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:23</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1457-1471</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00344-022-10631-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">42</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">23</subfield><subfield code="c">03</subfield><subfield code="h">1457-1471</subfield></datafield></record></collection>
|
author |
Khafri, Asieh Zare |
spellingShingle |
Khafri, Asieh Zare misc Bioreactor misc Micro-propagation misc Plant growth regulator misc Silica-based nanoparticles Enhanced Efficiency of In Vitro Rootstock Micro-propagation Using Silica-Based Nanoparticles and Plant Growth Regulators in Myrobalan 29C (Prunus cerasifera L.) |
authorStr |
Khafri, Asieh Zare |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)254630448 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1435-8107 |
topic_title |
Enhanced Efficiency of In Vitro Rootstock Micro-propagation Using Silica-Based Nanoparticles and Plant Growth Regulators in Myrobalan 29C (Prunus cerasifera L.) Bioreactor (dpeaa)DE-He213 Micro-propagation (dpeaa)DE-He213 Plant growth regulator (dpeaa)DE-He213 Silica-based nanoparticles (dpeaa)DE-He213 |
topic |
misc Bioreactor misc Micro-propagation misc Plant growth regulator misc Silica-based nanoparticles |
topic_unstemmed |
misc Bioreactor misc Micro-propagation misc Plant growth regulator misc Silica-based nanoparticles |
topic_browse |
misc Bioreactor misc Micro-propagation misc Plant growth regulator misc Silica-based nanoparticles |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of plant growth regulation |
hierarchy_parent_id |
254630448 |
hierarchy_top_title |
Journal of plant growth regulation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)254630448 (DE-600)1462091-1 |
title |
Enhanced Efficiency of In Vitro Rootstock Micro-propagation Using Silica-Based Nanoparticles and Plant Growth Regulators in Myrobalan 29C (Prunus cerasifera L.) |
ctrlnum |
(DE-627)SPR049765582 (SPR)s00344-022-10631-3-e |
title_full |
Enhanced Efficiency of In Vitro Rootstock Micro-propagation Using Silica-Based Nanoparticles and Plant Growth Regulators in Myrobalan 29C (Prunus cerasifera L.) |
author_sort |
Khafri, Asieh Zare |
journal |
Journal of plant growth regulation |
journalStr |
Journal of plant growth regulation |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
1457 |
author_browse |
Khafri, Asieh Zare Zarghami, Reza Ma’mani, Leila Ahmadi, Behzad |
container_volume |
42 |
format_se |
Elektronische Aufsätze |
author-letter |
Khafri, Asieh Zare |
doi_str_mv |
10.1007/s00344-022-10631-3 |
title_sort |
enhanced efficiency of in vitro rootstock micro-propagation using silica-based nanoparticles and plant growth regulators in myrobalan 29c (prunus cerasifera l.) |
title_auth |
Enhanced Efficiency of In Vitro Rootstock Micro-propagation Using Silica-Based Nanoparticles and Plant Growth Regulators in Myrobalan 29C (Prunus cerasifera L.) |
abstract |
Abstract Different experiments were conducted to establish and optimize an efficient in vitro micropropagation protocol for Myrobalan 29C rootstocks. Disinfection of initial explants with AgNPs (2.5%) reduced the needed amount of NaClO (5.0%) by half. The highest rates of induced active buds were obtained in the DKW (90.63%), MS (86.67%), modified MS (82.22%), and WPM (78.15%) culture media supplemented with BAP (2.22 μmol $ L^{−1} $) + $ GA_{3} $ (2.88 μmol $ L^{−1} $) + IBA (0.05 μmol $ L^{−1} $) + Fe-EDDHA (228.72 μmol $ L^{−1} $). The highest quality of the proliferated shoots (5.0) was also achieved using DKW medium. Inclusion of $ GA_{3} $ (5.76 μmol $ L^{−1} $), Fe-EDDHA (114.36–228.72 μmol $ L^{−1} $), or BAP (2.22 μmol $ L^{−1} $) were also able to enhance the rate of shoot multiplication. Compared to the agar-solidified culture system, the established shoots proliferated more efficiently when immersed by bioreactor in the liquid DKW culture medium on a regular basis. Exogenous application of silica-based nanoparticles (NPs) including the chemically synthesized silica NPs ($ TSiO_{2} $ NPs, 1.0 ppm), rice husk derived biogenic silica NPs ($ RSiO_{2} $ NPs, 10.0 ppm), or amine modified silica NPs ($ ASiO_{2} $ NPs, 10.0 ppm) to the multiplication medium increased the number of regenerated lateral shoots by 520%, 360%, and 349%, respectively. Proliferated shoots with well-developed root system were obtained from the rooting medium supplemented with 19.68 μmol $ L^{−1} $ IBA. Our results indicated that the rootstocks of Myrobalan 29C could be efficiently propagated under in vitro condition providing proper culture medium and optimal concentrations of additives and plant growth regulators were adopted. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstractGer |
Abstract Different experiments were conducted to establish and optimize an efficient in vitro micropropagation protocol for Myrobalan 29C rootstocks. Disinfection of initial explants with AgNPs (2.5%) reduced the needed amount of NaClO (5.0%) by half. The highest rates of induced active buds were obtained in the DKW (90.63%), MS (86.67%), modified MS (82.22%), and WPM (78.15%) culture media supplemented with BAP (2.22 μmol $ L^{−1} $) + $ GA_{3} $ (2.88 μmol $ L^{−1} $) + IBA (0.05 μmol $ L^{−1} $) + Fe-EDDHA (228.72 μmol $ L^{−1} $). The highest quality of the proliferated shoots (5.0) was also achieved using DKW medium. Inclusion of $ GA_{3} $ (5.76 μmol $ L^{−1} $), Fe-EDDHA (114.36–228.72 μmol $ L^{−1} $), or BAP (2.22 μmol $ L^{−1} $) were also able to enhance the rate of shoot multiplication. Compared to the agar-solidified culture system, the established shoots proliferated more efficiently when immersed by bioreactor in the liquid DKW culture medium on a regular basis. Exogenous application of silica-based nanoparticles (NPs) including the chemically synthesized silica NPs ($ TSiO_{2} $ NPs, 1.0 ppm), rice husk derived biogenic silica NPs ($ RSiO_{2} $ NPs, 10.0 ppm), or amine modified silica NPs ($ ASiO_{2} $ NPs, 10.0 ppm) to the multiplication medium increased the number of regenerated lateral shoots by 520%, 360%, and 349%, respectively. Proliferated shoots with well-developed root system were obtained from the rooting medium supplemented with 19.68 μmol $ L^{−1} $ IBA. Our results indicated that the rootstocks of Myrobalan 29C could be efficiently propagated under in vitro condition providing proper culture medium and optimal concentrations of additives and plant growth regulators were adopted. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract Different experiments were conducted to establish and optimize an efficient in vitro micropropagation protocol for Myrobalan 29C rootstocks. Disinfection of initial explants with AgNPs (2.5%) reduced the needed amount of NaClO (5.0%) by half. The highest rates of induced active buds were obtained in the DKW (90.63%), MS (86.67%), modified MS (82.22%), and WPM (78.15%) culture media supplemented with BAP (2.22 μmol $ L^{−1} $) + $ GA_{3} $ (2.88 μmol $ L^{−1} $) + IBA (0.05 μmol $ L^{−1} $) + Fe-EDDHA (228.72 μmol $ L^{−1} $). The highest quality of the proliferated shoots (5.0) was also achieved using DKW medium. Inclusion of $ GA_{3} $ (5.76 μmol $ L^{−1} $), Fe-EDDHA (114.36–228.72 μmol $ L^{−1} $), or BAP (2.22 μmol $ L^{−1} $) were also able to enhance the rate of shoot multiplication. Compared to the agar-solidified culture system, the established shoots proliferated more efficiently when immersed by bioreactor in the liquid DKW culture medium on a regular basis. Exogenous application of silica-based nanoparticles (NPs) including the chemically synthesized silica NPs ($ TSiO_{2} $ NPs, 1.0 ppm), rice husk derived biogenic silica NPs ($ RSiO_{2} $ NPs, 10.0 ppm), or amine modified silica NPs ($ ASiO_{2} $ NPs, 10.0 ppm) to the multiplication medium increased the number of regenerated lateral shoots by 520%, 360%, and 349%, respectively. Proliferated shoots with well-developed root system were obtained from the rooting medium supplemented with 19.68 μmol $ L^{−1} $ IBA. Our results indicated that the rootstocks of Myrobalan 29C could be efficiently propagated under in vitro condition providing proper culture medium and optimal concentrations of additives and plant growth regulators were adopted. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Enhanced Efficiency of In Vitro Rootstock Micro-propagation Using Silica-Based Nanoparticles and Plant Growth Regulators in Myrobalan 29C (Prunus cerasifera L.) |
url |
https://dx.doi.org/10.1007/s00344-022-10631-3 |
remote_bool |
true |
author2 |
Zarghami, Reza Ma’mani, Leila Ahmadi, Behzad |
author2Str |
Zarghami, Reza Ma’mani, Leila Ahmadi, Behzad |
ppnlink |
254630448 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00344-022-10631-3 |
up_date |
2024-07-04T02:11:56.481Z |
_version_ |
1803612708128423936 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR049765582</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323113740.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230323s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00344-022-10631-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049765582</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00344-022-10631-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khafri, Asieh Zare</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhanced Efficiency of In Vitro Rootstock Micro-propagation Using Silica-Based Nanoparticles and Plant Growth Regulators in Myrobalan 29C (Prunus cerasifera L.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Different experiments were conducted to establish and optimize an efficient in vitro micropropagation protocol for Myrobalan 29C rootstocks. Disinfection of initial explants with AgNPs (2.5%) reduced the needed amount of NaClO (5.0%) by half. The highest rates of induced active buds were obtained in the DKW (90.63%), MS (86.67%), modified MS (82.22%), and WPM (78.15%) culture media supplemented with BAP (2.22 μmol $ L^{−1} $) + $ GA_{3} $ (2.88 μmol $ L^{−1} $) + IBA (0.05 μmol $ L^{−1} $) + Fe-EDDHA (228.72 μmol $ L^{−1} $). The highest quality of the proliferated shoots (5.0) was also achieved using DKW medium. Inclusion of $ GA_{3} $ (5.76 μmol $ L^{−1} $), Fe-EDDHA (114.36–228.72 μmol $ L^{−1} $), or BAP (2.22 μmol $ L^{−1} $) were also able to enhance the rate of shoot multiplication. Compared to the agar-solidified culture system, the established shoots proliferated more efficiently when immersed by bioreactor in the liquid DKW culture medium on a regular basis. Exogenous application of silica-based nanoparticles (NPs) including the chemically synthesized silica NPs ($ TSiO_{2} $ NPs, 1.0 ppm), rice husk derived biogenic silica NPs ($ RSiO_{2} $ NPs, 10.0 ppm), or amine modified silica NPs ($ ASiO_{2} $ NPs, 10.0 ppm) to the multiplication medium increased the number of regenerated lateral shoots by 520%, 360%, and 349%, respectively. Proliferated shoots with well-developed root system were obtained from the rooting medium supplemented with 19.68 μmol $ L^{−1} $ IBA. Our results indicated that the rootstocks of Myrobalan 29C could be efficiently propagated under in vitro condition providing proper culture medium and optimal concentrations of additives and plant growth regulators were adopted.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bioreactor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Micro-propagation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plant growth regulator</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silica-based nanoparticles</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zarghami, Reza</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma’mani, Leila</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ahmadi, Behzad</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of plant growth regulation</subfield><subfield code="d">New York, NY : Springer, 1982</subfield><subfield code="g">42(2022), 3 vom: 23. März, Seite 1457-1471</subfield><subfield code="w">(DE-627)254630448</subfield><subfield code="w">(DE-600)1462091-1</subfield><subfield code="x">1435-8107</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:42</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:23</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1457-1471</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00344-022-10631-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">42</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">23</subfield><subfield code="c">03</subfield><subfield code="h">1457-1471</subfield></datafield></record></collection>
|
score |
7.399678 |