Influence of protein source (cricket, pea, whey) on amino acid bioavailability and activation of the mTORC1 signaling pathway after resistance exercise in healthy young males
Purpose New dietary proteins are currently introduced to replace traditional animal protein sources. However, not much is known about their bioaccessibility and ability to stimulate muscle protein synthesis compared to the traditional protein sources. We aimed to compare effects of ingesting a prote...
Ausführliche Beschreibung
Autor*in: |
Lanng, Sofie Kaas [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Zeitschrift für Ernährungswissenschaft - Darmstadt : Steinkopff, 1960, 62(2022), 3 vom: 19. Dez., Seite 1295-1308 |
---|---|
Übergeordnetes Werk: |
volume:62 ; year:2022 ; number:3 ; day:19 ; month:12 ; pages:1295-1308 |
Links: |
---|
DOI / URN: |
10.1007/s00394-022-03071-y |
---|
Katalog-ID: |
SPR049766309 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR049766309 | ||
003 | DE-627 | ||
005 | 20230323113742.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230323s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00394-022-03071-y |2 doi | |
035 | |a (DE-627)SPR049766309 | ||
035 | |a (SPR)s00394-022-03071-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Lanng, Sofie Kaas |e verfasserin |4 aut | |
245 | 1 | 0 | |a Influence of protein source (cricket, pea, whey) on amino acid bioavailability and activation of the mTORC1 signaling pathway after resistance exercise in healthy young males |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Purpose New dietary proteins are currently introduced to replace traditional animal protein sources. However, not much is known about their bioaccessibility and ability to stimulate muscle protein synthesis compared to the traditional protein sources. We aimed to compare effects of ingesting a protein bolus (0.25 g/kg fat free mass) of either cricket (insect), pea, or whey protein on circulating amino acid levels and activation of the mTORC1 signaling pathway in the skeletal muscle at rest and after exercise. Methods In a randomized parallel controlled trial, young males (n = 50) performed a one-legged resistance exercise followed by ingestion of one of the three protein sources. Blood samples were collected before and in the following 4 h after exercise. Muscle biopsies were obtained at baseline and after 3 h from the non-exercised and exercised leg. Results Analysis of blood serum showed a significantly higher concentration of amino acids after ingestion of whey protein compared to cricket and pea protein. No difference between protein sources in activation of the mTORC1 signaling pathway was observed either at rest or after exercise. Conclusion Amino acid blood concentration after protein ingestion was higher for whey than pea and cricket protein, whereas activation of mTORC1 signaling pathway at rest and after exercise did not differ between protein sources. Trial registration number Clinicaltrials.org ID NCT04633694. | ||
650 | 4 | |a Insect protein supplementation |7 (dpeaa)DE-He213 | |
650 | 4 | |a NMR metabolomics |7 (dpeaa)DE-He213 | |
650 | 4 | |a Muscle protein synthesis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Alternative protein sources |7 (dpeaa)DE-He213 | |
650 | 4 | |a Protein quality |7 (dpeaa)DE-He213 | |
700 | 1 | |a Oxfeldt, Mikkel |4 aut | |
700 | 1 | |a Pedersen, Simon Stjernholm |4 aut | |
700 | 1 | |a Johansen, Frank Ted |4 aut | |
700 | 1 | |a Risikesan, Jeyanthini |4 aut | |
700 | 1 | |a Lejel, Trine |4 aut | |
700 | 1 | |a Bertram, Hanne Christine |0 (orcid)0000-0002-1882-5321 |4 aut | |
700 | 1 | |a Hansen, Mette |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Zeitschrift für Ernährungswissenschaft |d Darmstadt : Steinkopff, 1960 |g 62(2022), 3 vom: 19. Dez., Seite 1295-1308 |w (DE-627)461907356 |w (DE-600)2164295-3 |x 1435-1293 |7 nnns |
773 | 1 | 8 | |g volume:62 |g year:2022 |g number:3 |g day:19 |g month:12 |g pages:1295-1308 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00394-022-03071-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_702 | ||
951 | |a AR | ||
952 | |d 62 |j 2022 |e 3 |b 19 |c 12 |h 1295-1308 |
author_variant |
s k l sk skl m o mo s s p ss ssp f t j ft ftj j r jr t l tl h c b hc hcb m h mh |
---|---|
matchkey_str |
article:14351293:2022----::nlecopoenorercepahynmnaiboviaiiynatvtootetr1inlnptwyfe |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s00394-022-03071-y doi (DE-627)SPR049766309 (SPR)s00394-022-03071-y-e DE-627 ger DE-627 rakwb eng Lanng, Sofie Kaas verfasserin aut Influence of protein source (cricket, pea, whey) on amino acid bioavailability and activation of the mTORC1 signaling pathway after resistance exercise in healthy young males 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Purpose New dietary proteins are currently introduced to replace traditional animal protein sources. However, not much is known about their bioaccessibility and ability to stimulate muscle protein synthesis compared to the traditional protein sources. We aimed to compare effects of ingesting a protein bolus (0.25 g/kg fat free mass) of either cricket (insect), pea, or whey protein on circulating amino acid levels and activation of the mTORC1 signaling pathway in the skeletal muscle at rest and after exercise. Methods In a randomized parallel controlled trial, young males (n = 50) performed a one-legged resistance exercise followed by ingestion of one of the three protein sources. Blood samples were collected before and in the following 4 h after exercise. Muscle biopsies were obtained at baseline and after 3 h from the non-exercised and exercised leg. Results Analysis of blood serum showed a significantly higher concentration of amino acids after ingestion of whey protein compared to cricket and pea protein. No difference between protein sources in activation of the mTORC1 signaling pathway was observed either at rest or after exercise. Conclusion Amino acid blood concentration after protein ingestion was higher for whey than pea and cricket protein, whereas activation of mTORC1 signaling pathway at rest and after exercise did not differ between protein sources. Trial registration number Clinicaltrials.org ID NCT04633694. Insect protein supplementation (dpeaa)DE-He213 NMR metabolomics (dpeaa)DE-He213 Muscle protein synthesis (dpeaa)DE-He213 Alternative protein sources (dpeaa)DE-He213 Protein quality (dpeaa)DE-He213 Oxfeldt, Mikkel aut Pedersen, Simon Stjernholm aut Johansen, Frank Ted aut Risikesan, Jeyanthini aut Lejel, Trine aut Bertram, Hanne Christine (orcid)0000-0002-1882-5321 aut Hansen, Mette aut Enthalten in Zeitschrift für Ernährungswissenschaft Darmstadt : Steinkopff, 1960 62(2022), 3 vom: 19. Dez., Seite 1295-1308 (DE-627)461907356 (DE-600)2164295-3 1435-1293 nnns volume:62 year:2022 number:3 day:19 month:12 pages:1295-1308 https://dx.doi.org/10.1007/s00394-022-03071-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 AR 62 2022 3 19 12 1295-1308 |
spelling |
10.1007/s00394-022-03071-y doi (DE-627)SPR049766309 (SPR)s00394-022-03071-y-e DE-627 ger DE-627 rakwb eng Lanng, Sofie Kaas verfasserin aut Influence of protein source (cricket, pea, whey) on amino acid bioavailability and activation of the mTORC1 signaling pathway after resistance exercise in healthy young males 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Purpose New dietary proteins are currently introduced to replace traditional animal protein sources. However, not much is known about their bioaccessibility and ability to stimulate muscle protein synthesis compared to the traditional protein sources. We aimed to compare effects of ingesting a protein bolus (0.25 g/kg fat free mass) of either cricket (insect), pea, or whey protein on circulating amino acid levels and activation of the mTORC1 signaling pathway in the skeletal muscle at rest and after exercise. Methods In a randomized parallel controlled trial, young males (n = 50) performed a one-legged resistance exercise followed by ingestion of one of the three protein sources. Blood samples were collected before and in the following 4 h after exercise. Muscle biopsies were obtained at baseline and after 3 h from the non-exercised and exercised leg. Results Analysis of blood serum showed a significantly higher concentration of amino acids after ingestion of whey protein compared to cricket and pea protein. No difference between protein sources in activation of the mTORC1 signaling pathway was observed either at rest or after exercise. Conclusion Amino acid blood concentration after protein ingestion was higher for whey than pea and cricket protein, whereas activation of mTORC1 signaling pathway at rest and after exercise did not differ between protein sources. Trial registration number Clinicaltrials.org ID NCT04633694. Insect protein supplementation (dpeaa)DE-He213 NMR metabolomics (dpeaa)DE-He213 Muscle protein synthesis (dpeaa)DE-He213 Alternative protein sources (dpeaa)DE-He213 Protein quality (dpeaa)DE-He213 Oxfeldt, Mikkel aut Pedersen, Simon Stjernholm aut Johansen, Frank Ted aut Risikesan, Jeyanthini aut Lejel, Trine aut Bertram, Hanne Christine (orcid)0000-0002-1882-5321 aut Hansen, Mette aut Enthalten in Zeitschrift für Ernährungswissenschaft Darmstadt : Steinkopff, 1960 62(2022), 3 vom: 19. Dez., Seite 1295-1308 (DE-627)461907356 (DE-600)2164295-3 1435-1293 nnns volume:62 year:2022 number:3 day:19 month:12 pages:1295-1308 https://dx.doi.org/10.1007/s00394-022-03071-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 AR 62 2022 3 19 12 1295-1308 |
allfields_unstemmed |
10.1007/s00394-022-03071-y doi (DE-627)SPR049766309 (SPR)s00394-022-03071-y-e DE-627 ger DE-627 rakwb eng Lanng, Sofie Kaas verfasserin aut Influence of protein source (cricket, pea, whey) on amino acid bioavailability and activation of the mTORC1 signaling pathway after resistance exercise in healthy young males 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Purpose New dietary proteins are currently introduced to replace traditional animal protein sources. However, not much is known about their bioaccessibility and ability to stimulate muscle protein synthesis compared to the traditional protein sources. We aimed to compare effects of ingesting a protein bolus (0.25 g/kg fat free mass) of either cricket (insect), pea, or whey protein on circulating amino acid levels and activation of the mTORC1 signaling pathway in the skeletal muscle at rest and after exercise. Methods In a randomized parallel controlled trial, young males (n = 50) performed a one-legged resistance exercise followed by ingestion of one of the three protein sources. Blood samples were collected before and in the following 4 h after exercise. Muscle biopsies were obtained at baseline and after 3 h from the non-exercised and exercised leg. Results Analysis of blood serum showed a significantly higher concentration of amino acids after ingestion of whey protein compared to cricket and pea protein. No difference between protein sources in activation of the mTORC1 signaling pathway was observed either at rest or after exercise. Conclusion Amino acid blood concentration after protein ingestion was higher for whey than pea and cricket protein, whereas activation of mTORC1 signaling pathway at rest and after exercise did not differ between protein sources. Trial registration number Clinicaltrials.org ID NCT04633694. Insect protein supplementation (dpeaa)DE-He213 NMR metabolomics (dpeaa)DE-He213 Muscle protein synthesis (dpeaa)DE-He213 Alternative protein sources (dpeaa)DE-He213 Protein quality (dpeaa)DE-He213 Oxfeldt, Mikkel aut Pedersen, Simon Stjernholm aut Johansen, Frank Ted aut Risikesan, Jeyanthini aut Lejel, Trine aut Bertram, Hanne Christine (orcid)0000-0002-1882-5321 aut Hansen, Mette aut Enthalten in Zeitschrift für Ernährungswissenschaft Darmstadt : Steinkopff, 1960 62(2022), 3 vom: 19. Dez., Seite 1295-1308 (DE-627)461907356 (DE-600)2164295-3 1435-1293 nnns volume:62 year:2022 number:3 day:19 month:12 pages:1295-1308 https://dx.doi.org/10.1007/s00394-022-03071-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 AR 62 2022 3 19 12 1295-1308 |
allfieldsGer |
10.1007/s00394-022-03071-y doi (DE-627)SPR049766309 (SPR)s00394-022-03071-y-e DE-627 ger DE-627 rakwb eng Lanng, Sofie Kaas verfasserin aut Influence of protein source (cricket, pea, whey) on amino acid bioavailability and activation of the mTORC1 signaling pathway after resistance exercise in healthy young males 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Purpose New dietary proteins are currently introduced to replace traditional animal protein sources. However, not much is known about their bioaccessibility and ability to stimulate muscle protein synthesis compared to the traditional protein sources. We aimed to compare effects of ingesting a protein bolus (0.25 g/kg fat free mass) of either cricket (insect), pea, or whey protein on circulating amino acid levels and activation of the mTORC1 signaling pathway in the skeletal muscle at rest and after exercise. Methods In a randomized parallel controlled trial, young males (n = 50) performed a one-legged resistance exercise followed by ingestion of one of the three protein sources. Blood samples were collected before and in the following 4 h after exercise. Muscle biopsies were obtained at baseline and after 3 h from the non-exercised and exercised leg. Results Analysis of blood serum showed a significantly higher concentration of amino acids after ingestion of whey protein compared to cricket and pea protein. No difference between protein sources in activation of the mTORC1 signaling pathway was observed either at rest or after exercise. Conclusion Amino acid blood concentration after protein ingestion was higher for whey than pea and cricket protein, whereas activation of mTORC1 signaling pathway at rest and after exercise did not differ between protein sources. Trial registration number Clinicaltrials.org ID NCT04633694. Insect protein supplementation (dpeaa)DE-He213 NMR metabolomics (dpeaa)DE-He213 Muscle protein synthesis (dpeaa)DE-He213 Alternative protein sources (dpeaa)DE-He213 Protein quality (dpeaa)DE-He213 Oxfeldt, Mikkel aut Pedersen, Simon Stjernholm aut Johansen, Frank Ted aut Risikesan, Jeyanthini aut Lejel, Trine aut Bertram, Hanne Christine (orcid)0000-0002-1882-5321 aut Hansen, Mette aut Enthalten in Zeitschrift für Ernährungswissenschaft Darmstadt : Steinkopff, 1960 62(2022), 3 vom: 19. Dez., Seite 1295-1308 (DE-627)461907356 (DE-600)2164295-3 1435-1293 nnns volume:62 year:2022 number:3 day:19 month:12 pages:1295-1308 https://dx.doi.org/10.1007/s00394-022-03071-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 AR 62 2022 3 19 12 1295-1308 |
allfieldsSound |
10.1007/s00394-022-03071-y doi (DE-627)SPR049766309 (SPR)s00394-022-03071-y-e DE-627 ger DE-627 rakwb eng Lanng, Sofie Kaas verfasserin aut Influence of protein source (cricket, pea, whey) on amino acid bioavailability and activation of the mTORC1 signaling pathway after resistance exercise in healthy young males 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Purpose New dietary proteins are currently introduced to replace traditional animal protein sources. However, not much is known about their bioaccessibility and ability to stimulate muscle protein synthesis compared to the traditional protein sources. We aimed to compare effects of ingesting a protein bolus (0.25 g/kg fat free mass) of either cricket (insect), pea, or whey protein on circulating amino acid levels and activation of the mTORC1 signaling pathway in the skeletal muscle at rest and after exercise. Methods In a randomized parallel controlled trial, young males (n = 50) performed a one-legged resistance exercise followed by ingestion of one of the three protein sources. Blood samples were collected before and in the following 4 h after exercise. Muscle biopsies were obtained at baseline and after 3 h from the non-exercised and exercised leg. Results Analysis of blood serum showed a significantly higher concentration of amino acids after ingestion of whey protein compared to cricket and pea protein. No difference between protein sources in activation of the mTORC1 signaling pathway was observed either at rest or after exercise. Conclusion Amino acid blood concentration after protein ingestion was higher for whey than pea and cricket protein, whereas activation of mTORC1 signaling pathway at rest and after exercise did not differ between protein sources. Trial registration number Clinicaltrials.org ID NCT04633694. Insect protein supplementation (dpeaa)DE-He213 NMR metabolomics (dpeaa)DE-He213 Muscle protein synthesis (dpeaa)DE-He213 Alternative protein sources (dpeaa)DE-He213 Protein quality (dpeaa)DE-He213 Oxfeldt, Mikkel aut Pedersen, Simon Stjernholm aut Johansen, Frank Ted aut Risikesan, Jeyanthini aut Lejel, Trine aut Bertram, Hanne Christine (orcid)0000-0002-1882-5321 aut Hansen, Mette aut Enthalten in Zeitschrift für Ernährungswissenschaft Darmstadt : Steinkopff, 1960 62(2022), 3 vom: 19. Dez., Seite 1295-1308 (DE-627)461907356 (DE-600)2164295-3 1435-1293 nnns volume:62 year:2022 number:3 day:19 month:12 pages:1295-1308 https://dx.doi.org/10.1007/s00394-022-03071-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 AR 62 2022 3 19 12 1295-1308 |
language |
English |
source |
Enthalten in Zeitschrift für Ernährungswissenschaft 62(2022), 3 vom: 19. Dez., Seite 1295-1308 volume:62 year:2022 number:3 day:19 month:12 pages:1295-1308 |
sourceStr |
Enthalten in Zeitschrift für Ernährungswissenschaft 62(2022), 3 vom: 19. Dez., Seite 1295-1308 volume:62 year:2022 number:3 day:19 month:12 pages:1295-1308 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Insect protein supplementation NMR metabolomics Muscle protein synthesis Alternative protein sources Protein quality |
isfreeaccess_bool |
false |
container_title |
Zeitschrift für Ernährungswissenschaft |
authorswithroles_txt_mv |
Lanng, Sofie Kaas @@aut@@ Oxfeldt, Mikkel @@aut@@ Pedersen, Simon Stjernholm @@aut@@ Johansen, Frank Ted @@aut@@ Risikesan, Jeyanthini @@aut@@ Lejel, Trine @@aut@@ Bertram, Hanne Christine @@aut@@ Hansen, Mette @@aut@@ |
publishDateDaySort_date |
2022-12-19T00:00:00Z |
hierarchy_top_id |
461907356 |
id |
SPR049766309 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR049766309</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323113742.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230323s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00394-022-03071-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049766309</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00394-022-03071-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lanng, Sofie Kaas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Influence of protein source (cricket, pea, whey) on amino acid bioavailability and activation of the mTORC1 signaling pathway after resistance exercise in healthy young males</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose New dietary proteins are currently introduced to replace traditional animal protein sources. However, not much is known about their bioaccessibility and ability to stimulate muscle protein synthesis compared to the traditional protein sources. We aimed to compare effects of ingesting a protein bolus (0.25 g/kg fat free mass) of either cricket (insect), pea, or whey protein on circulating amino acid levels and activation of the mTORC1 signaling pathway in the skeletal muscle at rest and after exercise. Methods In a randomized parallel controlled trial, young males (n = 50) performed a one-legged resistance exercise followed by ingestion of one of the three protein sources. Blood samples were collected before and in the following 4 h after exercise. Muscle biopsies were obtained at baseline and after 3 h from the non-exercised and exercised leg. Results Analysis of blood serum showed a significantly higher concentration of amino acids after ingestion of whey protein compared to cricket and pea protein. No difference between protein sources in activation of the mTORC1 signaling pathway was observed either at rest or after exercise. Conclusion Amino acid blood concentration after protein ingestion was higher for whey than pea and cricket protein, whereas activation of mTORC1 signaling pathway at rest and after exercise did not differ between protein sources. Trial registration number Clinicaltrials.org ID NCT04633694.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Insect protein supplementation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NMR metabolomics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Muscle protein synthesis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alternative protein sources</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Protein quality</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oxfeldt, Mikkel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pedersen, Simon Stjernholm</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Johansen, Frank Ted</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Risikesan, Jeyanthini</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lejel, Trine</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bertram, Hanne Christine</subfield><subfield code="0">(orcid)0000-0002-1882-5321</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hansen, Mette</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Zeitschrift für Ernährungswissenschaft</subfield><subfield code="d">Darmstadt : Steinkopff, 1960</subfield><subfield code="g">62(2022), 3 vom: 19. Dez., Seite 1295-1308</subfield><subfield code="w">(DE-627)461907356</subfield><subfield code="w">(DE-600)2164295-3</subfield><subfield code="x">1435-1293</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:19</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:1295-1308</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00394-022-03071-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">19</subfield><subfield code="c">12</subfield><subfield code="h">1295-1308</subfield></datafield></record></collection>
|
author |
Lanng, Sofie Kaas |
spellingShingle |
Lanng, Sofie Kaas misc Insect protein supplementation misc NMR metabolomics misc Muscle protein synthesis misc Alternative protein sources misc Protein quality Influence of protein source (cricket, pea, whey) on amino acid bioavailability and activation of the mTORC1 signaling pathway after resistance exercise in healthy young males |
authorStr |
Lanng, Sofie Kaas |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)461907356 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1435-1293 |
topic_title |
Influence of protein source (cricket, pea, whey) on amino acid bioavailability and activation of the mTORC1 signaling pathway after resistance exercise in healthy young males Insect protein supplementation (dpeaa)DE-He213 NMR metabolomics (dpeaa)DE-He213 Muscle protein synthesis (dpeaa)DE-He213 Alternative protein sources (dpeaa)DE-He213 Protein quality (dpeaa)DE-He213 |
topic |
misc Insect protein supplementation misc NMR metabolomics misc Muscle protein synthesis misc Alternative protein sources misc Protein quality |
topic_unstemmed |
misc Insect protein supplementation misc NMR metabolomics misc Muscle protein synthesis misc Alternative protein sources misc Protein quality |
topic_browse |
misc Insect protein supplementation misc NMR metabolomics misc Muscle protein synthesis misc Alternative protein sources misc Protein quality |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Zeitschrift für Ernährungswissenschaft |
hierarchy_parent_id |
461907356 |
hierarchy_top_title |
Zeitschrift für Ernährungswissenschaft |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)461907356 (DE-600)2164295-3 |
title |
Influence of protein source (cricket, pea, whey) on amino acid bioavailability and activation of the mTORC1 signaling pathway after resistance exercise in healthy young males |
ctrlnum |
(DE-627)SPR049766309 (SPR)s00394-022-03071-y-e |
title_full |
Influence of protein source (cricket, pea, whey) on amino acid bioavailability and activation of the mTORC1 signaling pathway after resistance exercise in healthy young males |
author_sort |
Lanng, Sofie Kaas |
journal |
Zeitschrift für Ernährungswissenschaft |
journalStr |
Zeitschrift für Ernährungswissenschaft |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
1295 |
author_browse |
Lanng, Sofie Kaas Oxfeldt, Mikkel Pedersen, Simon Stjernholm Johansen, Frank Ted Risikesan, Jeyanthini Lejel, Trine Bertram, Hanne Christine Hansen, Mette |
container_volume |
62 |
format_se |
Elektronische Aufsätze |
author-letter |
Lanng, Sofie Kaas |
doi_str_mv |
10.1007/s00394-022-03071-y |
normlink |
(ORCID)0000-0002-1882-5321 |
normlink_prefix_str_mv |
(orcid)0000-0002-1882-5321 |
title_sort |
influence of protein source (cricket, pea, whey) on amino acid bioavailability and activation of the mtorc1 signaling pathway after resistance exercise in healthy young males |
title_auth |
Influence of protein source (cricket, pea, whey) on amino acid bioavailability and activation of the mTORC1 signaling pathway after resistance exercise in healthy young males |
abstract |
Purpose New dietary proteins are currently introduced to replace traditional animal protein sources. However, not much is known about their bioaccessibility and ability to stimulate muscle protein synthesis compared to the traditional protein sources. We aimed to compare effects of ingesting a protein bolus (0.25 g/kg fat free mass) of either cricket (insect), pea, or whey protein on circulating amino acid levels and activation of the mTORC1 signaling pathway in the skeletal muscle at rest and after exercise. Methods In a randomized parallel controlled trial, young males (n = 50) performed a one-legged resistance exercise followed by ingestion of one of the three protein sources. Blood samples were collected before and in the following 4 h after exercise. Muscle biopsies were obtained at baseline and after 3 h from the non-exercised and exercised leg. Results Analysis of blood serum showed a significantly higher concentration of amino acids after ingestion of whey protein compared to cricket and pea protein. No difference between protein sources in activation of the mTORC1 signaling pathway was observed either at rest or after exercise. Conclusion Amino acid blood concentration after protein ingestion was higher for whey than pea and cricket protein, whereas activation of mTORC1 signaling pathway at rest and after exercise did not differ between protein sources. Trial registration number Clinicaltrials.org ID NCT04633694. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Purpose New dietary proteins are currently introduced to replace traditional animal protein sources. However, not much is known about their bioaccessibility and ability to stimulate muscle protein synthesis compared to the traditional protein sources. We aimed to compare effects of ingesting a protein bolus (0.25 g/kg fat free mass) of either cricket (insect), pea, or whey protein on circulating amino acid levels and activation of the mTORC1 signaling pathway in the skeletal muscle at rest and after exercise. Methods In a randomized parallel controlled trial, young males (n = 50) performed a one-legged resistance exercise followed by ingestion of one of the three protein sources. Blood samples were collected before and in the following 4 h after exercise. Muscle biopsies were obtained at baseline and after 3 h from the non-exercised and exercised leg. Results Analysis of blood serum showed a significantly higher concentration of amino acids after ingestion of whey protein compared to cricket and pea protein. No difference between protein sources in activation of the mTORC1 signaling pathway was observed either at rest or after exercise. Conclusion Amino acid blood concentration after protein ingestion was higher for whey than pea and cricket protein, whereas activation of mTORC1 signaling pathway at rest and after exercise did not differ between protein sources. Trial registration number Clinicaltrials.org ID NCT04633694. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Purpose New dietary proteins are currently introduced to replace traditional animal protein sources. However, not much is known about their bioaccessibility and ability to stimulate muscle protein synthesis compared to the traditional protein sources. We aimed to compare effects of ingesting a protein bolus (0.25 g/kg fat free mass) of either cricket (insect), pea, or whey protein on circulating amino acid levels and activation of the mTORC1 signaling pathway in the skeletal muscle at rest and after exercise. Methods In a randomized parallel controlled trial, young males (n = 50) performed a one-legged resistance exercise followed by ingestion of one of the three protein sources. Blood samples were collected before and in the following 4 h after exercise. Muscle biopsies were obtained at baseline and after 3 h from the non-exercised and exercised leg. Results Analysis of blood serum showed a significantly higher concentration of amino acids after ingestion of whey protein compared to cricket and pea protein. No difference between protein sources in activation of the mTORC1 signaling pathway was observed either at rest or after exercise. Conclusion Amino acid blood concentration after protein ingestion was higher for whey than pea and cricket protein, whereas activation of mTORC1 signaling pathway at rest and after exercise did not differ between protein sources. Trial registration number Clinicaltrials.org ID NCT04633694. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 |
container_issue |
3 |
title_short |
Influence of protein source (cricket, pea, whey) on amino acid bioavailability and activation of the mTORC1 signaling pathway after resistance exercise in healthy young males |
url |
https://dx.doi.org/10.1007/s00394-022-03071-y |
remote_bool |
true |
author2 |
Oxfeldt, Mikkel Pedersen, Simon Stjernholm Johansen, Frank Ted Risikesan, Jeyanthini Lejel, Trine Bertram, Hanne Christine Hansen, Mette |
author2Str |
Oxfeldt, Mikkel Pedersen, Simon Stjernholm Johansen, Frank Ted Risikesan, Jeyanthini Lejel, Trine Bertram, Hanne Christine Hansen, Mette |
ppnlink |
461907356 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00394-022-03071-y |
up_date |
2024-07-04T02:12:09.092Z |
_version_ |
1803612721349918720 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR049766309</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323113742.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230323s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00394-022-03071-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049766309</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00394-022-03071-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lanng, Sofie Kaas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Influence of protein source (cricket, pea, whey) on amino acid bioavailability and activation of the mTORC1 signaling pathway after resistance exercise in healthy young males</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose New dietary proteins are currently introduced to replace traditional animal protein sources. However, not much is known about their bioaccessibility and ability to stimulate muscle protein synthesis compared to the traditional protein sources. We aimed to compare effects of ingesting a protein bolus (0.25 g/kg fat free mass) of either cricket (insect), pea, or whey protein on circulating amino acid levels and activation of the mTORC1 signaling pathway in the skeletal muscle at rest and after exercise. Methods In a randomized parallel controlled trial, young males (n = 50) performed a one-legged resistance exercise followed by ingestion of one of the three protein sources. Blood samples were collected before and in the following 4 h after exercise. Muscle biopsies were obtained at baseline and after 3 h from the non-exercised and exercised leg. Results Analysis of blood serum showed a significantly higher concentration of amino acids after ingestion of whey protein compared to cricket and pea protein. No difference between protein sources in activation of the mTORC1 signaling pathway was observed either at rest or after exercise. Conclusion Amino acid blood concentration after protein ingestion was higher for whey than pea and cricket protein, whereas activation of mTORC1 signaling pathway at rest and after exercise did not differ between protein sources. Trial registration number Clinicaltrials.org ID NCT04633694.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Insect protein supplementation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NMR metabolomics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Muscle protein synthesis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alternative protein sources</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Protein quality</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oxfeldt, Mikkel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pedersen, Simon Stjernholm</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Johansen, Frank Ted</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Risikesan, Jeyanthini</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lejel, Trine</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bertram, Hanne Christine</subfield><subfield code="0">(orcid)0000-0002-1882-5321</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hansen, Mette</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Zeitschrift für Ernährungswissenschaft</subfield><subfield code="d">Darmstadt : Steinkopff, 1960</subfield><subfield code="g">62(2022), 3 vom: 19. Dez., Seite 1295-1308</subfield><subfield code="w">(DE-627)461907356</subfield><subfield code="w">(DE-600)2164295-3</subfield><subfield code="x">1435-1293</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:19</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:1295-1308</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00394-022-03071-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">19</subfield><subfield code="c">12</subfield><subfield code="h">1295-1308</subfield></datafield></record></collection>
|
score |
7.400921 |