Pixel attention convolutional network for image super-resolution

Abstract We propose an image super-resolution method (SR) using a deeply-recursive convolutional network (DRCN). Single-image super-resolution reconstruction technology is to reconstruct fuzzy low-resolution images into clearer high-resolution images. It is a research hotspot in the field of compute...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Wang, Xin [verfasserIn]

Zhang, Shufen

Lin, Yuanyuan

Lyu, Yanxia

Zhang, Jiale

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Single-image super-resolution

Pixel attention mechanism

Channel attention

Spatial attention

Deep learning

Anmerkung:

© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Neural computing & applications - London : Springer, 1993, 35(2022), 11 vom: 26. Dez., Seite 8589-8599

Übergeordnetes Werk:

volume:35 ; year:2022 ; number:11 ; day:26 ; month:12 ; pages:8589-8599

Links:

Volltext

DOI / URN:

10.1007/s00521-022-08132-1

Katalog-ID:

SPR049767755

Nicht das Richtige dabei?

Schreiben Sie uns!