Machinery fault diagnosis based on a modified hybrid deep sparse autoencoder using a raw vibration time-series signal

Abstract Intelligent fault diagnosis (IFD) is an effective system to ensure the safe operation of mechanical components such as bearings, gears, and blades. The main challenge of IFD using traditional methods lies in finding the good features that reflect the machine conditions that need prior knowl...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Saufi, Syahril Ramadhan [verfasserIn]

Isham, Muhammad Firdaus

Ahmad, Zair Asrar

Hasan, M. Danial Abu

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Fault diagnosis

Grey wolf optimiser

Hybrid activation function

Deep sparse autoencoder

Anmerkung:

© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Journal of ambient intelligence and humanized computing - Berlin : Springer, 2010, 14(2022), 4 vom: 05. Okt., Seite 3827-3838

Übergeordnetes Werk:

volume:14 ; year:2022 ; number:4 ; day:05 ; month:10 ; pages:3827-3838

Links:

Volltext

DOI / URN:

10.1007/s12652-022-04436-1

Katalog-ID:

SPR049872966

Nicht das Richtige dabei?

Schreiben Sie uns!