The optimal pre-post allocation for randomized clinical trials
Background In pre-post designs, analysis of covariance (ANCOVA) is a standard technique to detect the treatment effect with a continuous variable measured at baseline and follow-up. For measurements subject to a high degree of variability, it may be advisable to repeat the pre-treatment and/or follo...
Ausführliche Beschreibung
Autor*in: |
Ma, Shiyang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC medical research methodology - London : BioMed Central, 2001, 23(2023), 1 vom: 28. März |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2023 ; number:1 ; day:28 ; month:03 |
Links: |
---|
DOI / URN: |
10.1186/s12874-023-01893-w |
---|
Katalog-ID: |
SPR049873709 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR049873709 | ||
003 | DE-627 | ||
005 | 20230331052635.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230329s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12874-023-01893-w |2 doi | |
035 | |a (DE-627)SPR049873709 | ||
035 | |a (SPR)s12874-023-01893-w-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Ma, Shiyang |e verfasserin |4 aut | |
245 | 1 | 4 | |a The optimal pre-post allocation for randomized clinical trials |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Background In pre-post designs, analysis of covariance (ANCOVA) is a standard technique to detect the treatment effect with a continuous variable measured at baseline and follow-up. For measurements subject to a high degree of variability, it may be advisable to repeat the pre-treatment and/or follow-up assessments. In general, repeating the follow-up measurements is more advantageous than repeating the pre-treatment measurements, while the latter can still be valuable and improve efficiency in clinical trials. Methods In this article, we report investigations of using multiple pre-treatment and post-treatment measurements in randomized clinical trials. We consider the sample size formula for ANCOVA under general correlation structures with the pre-treatment mean included as the covariate and the mean follow-up value included as the response. We propose an optimal experimental design of multiple pre-post allocations under a specified constraint, that is, given the total number of pre-post treatment visits. The optimal number of the pre-treatment measurements is derived. For non-linear models, closed-form formulas for sample size/power calculations are generally unavailable, but we conduct Monte Carlo simulation studies instead. Results Theoretical formulas and simulation studies show the benefits of repeating the pre-treatment measurements in pre-post randomized studies. The optimal pre-post allocation derived from the ANCOVA extends well to binary measurements in simulation studies, using logistic regression and generalized estimating equations (GEE). Conclusions Repeating baselines and follow-up assessments is a valuable and efficient technique in pre-post design. The proposed optimal pre-post allocation designs can minimize the sample size, i.e., achieve maximum power. | ||
650 | 4 | |a Optimal allocation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Repeating baselines |7 (dpeaa)DE-He213 | |
650 | 4 | |a Pre-post design |7 (dpeaa)DE-He213 | |
650 | 4 | |a Analysis of covariance |7 (dpeaa)DE-He213 | |
650 | 4 | |a Repeated measures |7 (dpeaa)DE-He213 | |
700 | 1 | |a Wang, Tianying |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC medical research methodology |d London : BioMed Central, 2001 |g 23(2023), 1 vom: 28. März |w (DE-627)326643818 |w (DE-600)2041362-2 |x 1471-2288 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2023 |g number:1 |g day:28 |g month:03 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12874-023-01893-w |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 23 |j 2023 |e 1 |b 28 |c 03 |
author_variant |
s m sm t w tw |
---|---|
matchkey_str |
article:14712288:2023----::hotmlrpsalctofradmz |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1186/s12874-023-01893-w doi (DE-627)SPR049873709 (SPR)s12874-023-01893-w-e DE-627 ger DE-627 rakwb eng Ma, Shiyang verfasserin aut The optimal pre-post allocation for randomized clinical trials 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background In pre-post designs, analysis of covariance (ANCOVA) is a standard technique to detect the treatment effect with a continuous variable measured at baseline and follow-up. For measurements subject to a high degree of variability, it may be advisable to repeat the pre-treatment and/or follow-up assessments. In general, repeating the follow-up measurements is more advantageous than repeating the pre-treatment measurements, while the latter can still be valuable and improve efficiency in clinical trials. Methods In this article, we report investigations of using multiple pre-treatment and post-treatment measurements in randomized clinical trials. We consider the sample size formula for ANCOVA under general correlation structures with the pre-treatment mean included as the covariate and the mean follow-up value included as the response. We propose an optimal experimental design of multiple pre-post allocations under a specified constraint, that is, given the total number of pre-post treatment visits. The optimal number of the pre-treatment measurements is derived. For non-linear models, closed-form formulas for sample size/power calculations are generally unavailable, but we conduct Monte Carlo simulation studies instead. Results Theoretical formulas and simulation studies show the benefits of repeating the pre-treatment measurements in pre-post randomized studies. The optimal pre-post allocation derived from the ANCOVA extends well to binary measurements in simulation studies, using logistic regression and generalized estimating equations (GEE). Conclusions Repeating baselines and follow-up assessments is a valuable and efficient technique in pre-post design. The proposed optimal pre-post allocation designs can minimize the sample size, i.e., achieve maximum power. Optimal allocation (dpeaa)DE-He213 Repeating baselines (dpeaa)DE-He213 Pre-post design (dpeaa)DE-He213 Analysis of covariance (dpeaa)DE-He213 Repeated measures (dpeaa)DE-He213 Wang, Tianying aut Enthalten in BMC medical research methodology London : BioMed Central, 2001 23(2023), 1 vom: 28. März (DE-627)326643818 (DE-600)2041362-2 1471-2288 nnns volume:23 year:2023 number:1 day:28 month:03 https://dx.doi.org/10.1186/s12874-023-01893-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 28 03 |
spelling |
10.1186/s12874-023-01893-w doi (DE-627)SPR049873709 (SPR)s12874-023-01893-w-e DE-627 ger DE-627 rakwb eng Ma, Shiyang verfasserin aut The optimal pre-post allocation for randomized clinical trials 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background In pre-post designs, analysis of covariance (ANCOVA) is a standard technique to detect the treatment effect with a continuous variable measured at baseline and follow-up. For measurements subject to a high degree of variability, it may be advisable to repeat the pre-treatment and/or follow-up assessments. In general, repeating the follow-up measurements is more advantageous than repeating the pre-treatment measurements, while the latter can still be valuable and improve efficiency in clinical trials. Methods In this article, we report investigations of using multiple pre-treatment and post-treatment measurements in randomized clinical trials. We consider the sample size formula for ANCOVA under general correlation structures with the pre-treatment mean included as the covariate and the mean follow-up value included as the response. We propose an optimal experimental design of multiple pre-post allocations under a specified constraint, that is, given the total number of pre-post treatment visits. The optimal number of the pre-treatment measurements is derived. For non-linear models, closed-form formulas for sample size/power calculations are generally unavailable, but we conduct Monte Carlo simulation studies instead. Results Theoretical formulas and simulation studies show the benefits of repeating the pre-treatment measurements in pre-post randomized studies. The optimal pre-post allocation derived from the ANCOVA extends well to binary measurements in simulation studies, using logistic regression and generalized estimating equations (GEE). Conclusions Repeating baselines and follow-up assessments is a valuable and efficient technique in pre-post design. The proposed optimal pre-post allocation designs can minimize the sample size, i.e., achieve maximum power. Optimal allocation (dpeaa)DE-He213 Repeating baselines (dpeaa)DE-He213 Pre-post design (dpeaa)DE-He213 Analysis of covariance (dpeaa)DE-He213 Repeated measures (dpeaa)DE-He213 Wang, Tianying aut Enthalten in BMC medical research methodology London : BioMed Central, 2001 23(2023), 1 vom: 28. März (DE-627)326643818 (DE-600)2041362-2 1471-2288 nnns volume:23 year:2023 number:1 day:28 month:03 https://dx.doi.org/10.1186/s12874-023-01893-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 28 03 |
allfields_unstemmed |
10.1186/s12874-023-01893-w doi (DE-627)SPR049873709 (SPR)s12874-023-01893-w-e DE-627 ger DE-627 rakwb eng Ma, Shiyang verfasserin aut The optimal pre-post allocation for randomized clinical trials 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background In pre-post designs, analysis of covariance (ANCOVA) is a standard technique to detect the treatment effect with a continuous variable measured at baseline and follow-up. For measurements subject to a high degree of variability, it may be advisable to repeat the pre-treatment and/or follow-up assessments. In general, repeating the follow-up measurements is more advantageous than repeating the pre-treatment measurements, while the latter can still be valuable and improve efficiency in clinical trials. Methods In this article, we report investigations of using multiple pre-treatment and post-treatment measurements in randomized clinical trials. We consider the sample size formula for ANCOVA under general correlation structures with the pre-treatment mean included as the covariate and the mean follow-up value included as the response. We propose an optimal experimental design of multiple pre-post allocations under a specified constraint, that is, given the total number of pre-post treatment visits. The optimal number of the pre-treatment measurements is derived. For non-linear models, closed-form formulas for sample size/power calculations are generally unavailable, but we conduct Monte Carlo simulation studies instead. Results Theoretical formulas and simulation studies show the benefits of repeating the pre-treatment measurements in pre-post randomized studies. The optimal pre-post allocation derived from the ANCOVA extends well to binary measurements in simulation studies, using logistic regression and generalized estimating equations (GEE). Conclusions Repeating baselines and follow-up assessments is a valuable and efficient technique in pre-post design. The proposed optimal pre-post allocation designs can minimize the sample size, i.e., achieve maximum power. Optimal allocation (dpeaa)DE-He213 Repeating baselines (dpeaa)DE-He213 Pre-post design (dpeaa)DE-He213 Analysis of covariance (dpeaa)DE-He213 Repeated measures (dpeaa)DE-He213 Wang, Tianying aut Enthalten in BMC medical research methodology London : BioMed Central, 2001 23(2023), 1 vom: 28. März (DE-627)326643818 (DE-600)2041362-2 1471-2288 nnns volume:23 year:2023 number:1 day:28 month:03 https://dx.doi.org/10.1186/s12874-023-01893-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 28 03 |
allfieldsGer |
10.1186/s12874-023-01893-w doi (DE-627)SPR049873709 (SPR)s12874-023-01893-w-e DE-627 ger DE-627 rakwb eng Ma, Shiyang verfasserin aut The optimal pre-post allocation for randomized clinical trials 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background In pre-post designs, analysis of covariance (ANCOVA) is a standard technique to detect the treatment effect with a continuous variable measured at baseline and follow-up. For measurements subject to a high degree of variability, it may be advisable to repeat the pre-treatment and/or follow-up assessments. In general, repeating the follow-up measurements is more advantageous than repeating the pre-treatment measurements, while the latter can still be valuable and improve efficiency in clinical trials. Methods In this article, we report investigations of using multiple pre-treatment and post-treatment measurements in randomized clinical trials. We consider the sample size formula for ANCOVA under general correlation structures with the pre-treatment mean included as the covariate and the mean follow-up value included as the response. We propose an optimal experimental design of multiple pre-post allocations under a specified constraint, that is, given the total number of pre-post treatment visits. The optimal number of the pre-treatment measurements is derived. For non-linear models, closed-form formulas for sample size/power calculations are generally unavailable, but we conduct Monte Carlo simulation studies instead. Results Theoretical formulas and simulation studies show the benefits of repeating the pre-treatment measurements in pre-post randomized studies. The optimal pre-post allocation derived from the ANCOVA extends well to binary measurements in simulation studies, using logistic regression and generalized estimating equations (GEE). Conclusions Repeating baselines and follow-up assessments is a valuable and efficient technique in pre-post design. The proposed optimal pre-post allocation designs can minimize the sample size, i.e., achieve maximum power. Optimal allocation (dpeaa)DE-He213 Repeating baselines (dpeaa)DE-He213 Pre-post design (dpeaa)DE-He213 Analysis of covariance (dpeaa)DE-He213 Repeated measures (dpeaa)DE-He213 Wang, Tianying aut Enthalten in BMC medical research methodology London : BioMed Central, 2001 23(2023), 1 vom: 28. März (DE-627)326643818 (DE-600)2041362-2 1471-2288 nnns volume:23 year:2023 number:1 day:28 month:03 https://dx.doi.org/10.1186/s12874-023-01893-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 28 03 |
allfieldsSound |
10.1186/s12874-023-01893-w doi (DE-627)SPR049873709 (SPR)s12874-023-01893-w-e DE-627 ger DE-627 rakwb eng Ma, Shiyang verfasserin aut The optimal pre-post allocation for randomized clinical trials 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background In pre-post designs, analysis of covariance (ANCOVA) is a standard technique to detect the treatment effect with a continuous variable measured at baseline and follow-up. For measurements subject to a high degree of variability, it may be advisable to repeat the pre-treatment and/or follow-up assessments. In general, repeating the follow-up measurements is more advantageous than repeating the pre-treatment measurements, while the latter can still be valuable and improve efficiency in clinical trials. Methods In this article, we report investigations of using multiple pre-treatment and post-treatment measurements in randomized clinical trials. We consider the sample size formula for ANCOVA under general correlation structures with the pre-treatment mean included as the covariate and the mean follow-up value included as the response. We propose an optimal experimental design of multiple pre-post allocations under a specified constraint, that is, given the total number of pre-post treatment visits. The optimal number of the pre-treatment measurements is derived. For non-linear models, closed-form formulas for sample size/power calculations are generally unavailable, but we conduct Monte Carlo simulation studies instead. Results Theoretical formulas and simulation studies show the benefits of repeating the pre-treatment measurements in pre-post randomized studies. The optimal pre-post allocation derived from the ANCOVA extends well to binary measurements in simulation studies, using logistic regression and generalized estimating equations (GEE). Conclusions Repeating baselines and follow-up assessments is a valuable and efficient technique in pre-post design. The proposed optimal pre-post allocation designs can minimize the sample size, i.e., achieve maximum power. Optimal allocation (dpeaa)DE-He213 Repeating baselines (dpeaa)DE-He213 Pre-post design (dpeaa)DE-He213 Analysis of covariance (dpeaa)DE-He213 Repeated measures (dpeaa)DE-He213 Wang, Tianying aut Enthalten in BMC medical research methodology London : BioMed Central, 2001 23(2023), 1 vom: 28. März (DE-627)326643818 (DE-600)2041362-2 1471-2288 nnns volume:23 year:2023 number:1 day:28 month:03 https://dx.doi.org/10.1186/s12874-023-01893-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 28 03 |
language |
English |
source |
Enthalten in BMC medical research methodology 23(2023), 1 vom: 28. März volume:23 year:2023 number:1 day:28 month:03 |
sourceStr |
Enthalten in BMC medical research methodology 23(2023), 1 vom: 28. März volume:23 year:2023 number:1 day:28 month:03 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Optimal allocation Repeating baselines Pre-post design Analysis of covariance Repeated measures |
isfreeaccess_bool |
true |
container_title |
BMC medical research methodology |
authorswithroles_txt_mv |
Ma, Shiyang @@aut@@ Wang, Tianying @@aut@@ |
publishDateDaySort_date |
2023-03-28T00:00:00Z |
hierarchy_top_id |
326643818 |
id |
SPR049873709 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR049873709</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331052635.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230329s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12874-023-01893-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049873709</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12874-023-01893-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ma, Shiyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The optimal pre-post allocation for randomized clinical trials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background In pre-post designs, analysis of covariance (ANCOVA) is a standard technique to detect the treatment effect with a continuous variable measured at baseline and follow-up. For measurements subject to a high degree of variability, it may be advisable to repeat the pre-treatment and/or follow-up assessments. In general, repeating the follow-up measurements is more advantageous than repeating the pre-treatment measurements, while the latter can still be valuable and improve efficiency in clinical trials. Methods In this article, we report investigations of using multiple pre-treatment and post-treatment measurements in randomized clinical trials. We consider the sample size formula for ANCOVA under general correlation structures with the pre-treatment mean included as the covariate and the mean follow-up value included as the response. We propose an optimal experimental design of multiple pre-post allocations under a specified constraint, that is, given the total number of pre-post treatment visits. The optimal number of the pre-treatment measurements is derived. For non-linear models, closed-form formulas for sample size/power calculations are generally unavailable, but we conduct Monte Carlo simulation studies instead. Results Theoretical formulas and simulation studies show the benefits of repeating the pre-treatment measurements in pre-post randomized studies. The optimal pre-post allocation derived from the ANCOVA extends well to binary measurements in simulation studies, using logistic regression and generalized estimating equations (GEE). Conclusions Repeating baselines and follow-up assessments is a valuable and efficient technique in pre-post design. The proposed optimal pre-post allocation designs can minimize the sample size, i.e., achieve maximum power.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimal allocation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Repeating baselines</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pre-post design</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis of covariance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Repeated measures</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Tianying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC medical research methodology</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">23(2023), 1 vom: 28. März</subfield><subfield code="w">(DE-627)326643818</subfield><subfield code="w">(DE-600)2041362-2</subfield><subfield code="x">1471-2288</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:28</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12874-023-01893-w</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">28</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
author |
Ma, Shiyang |
spellingShingle |
Ma, Shiyang misc Optimal allocation misc Repeating baselines misc Pre-post design misc Analysis of covariance misc Repeated measures The optimal pre-post allocation for randomized clinical trials |
authorStr |
Ma, Shiyang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326643818 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2288 |
topic_title |
The optimal pre-post allocation for randomized clinical trials Optimal allocation (dpeaa)DE-He213 Repeating baselines (dpeaa)DE-He213 Pre-post design (dpeaa)DE-He213 Analysis of covariance (dpeaa)DE-He213 Repeated measures (dpeaa)DE-He213 |
topic |
misc Optimal allocation misc Repeating baselines misc Pre-post design misc Analysis of covariance misc Repeated measures |
topic_unstemmed |
misc Optimal allocation misc Repeating baselines misc Pre-post design misc Analysis of covariance misc Repeated measures |
topic_browse |
misc Optimal allocation misc Repeating baselines misc Pre-post design misc Analysis of covariance misc Repeated measures |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC medical research methodology |
hierarchy_parent_id |
326643818 |
hierarchy_top_title |
BMC medical research methodology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326643818 (DE-600)2041362-2 |
title |
The optimal pre-post allocation for randomized clinical trials |
ctrlnum |
(DE-627)SPR049873709 (SPR)s12874-023-01893-w-e |
title_full |
The optimal pre-post allocation for randomized clinical trials |
author_sort |
Ma, Shiyang |
journal |
BMC medical research methodology |
journalStr |
BMC medical research methodology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Ma, Shiyang Wang, Tianying |
container_volume |
23 |
format_se |
Elektronische Aufsätze |
author-letter |
Ma, Shiyang |
doi_str_mv |
10.1186/s12874-023-01893-w |
title_sort |
optimal pre-post allocation for randomized clinical trials |
title_auth |
The optimal pre-post allocation for randomized clinical trials |
abstract |
Background In pre-post designs, analysis of covariance (ANCOVA) is a standard technique to detect the treatment effect with a continuous variable measured at baseline and follow-up. For measurements subject to a high degree of variability, it may be advisable to repeat the pre-treatment and/or follow-up assessments. In general, repeating the follow-up measurements is more advantageous than repeating the pre-treatment measurements, while the latter can still be valuable and improve efficiency in clinical trials. Methods In this article, we report investigations of using multiple pre-treatment and post-treatment measurements in randomized clinical trials. We consider the sample size formula for ANCOVA under general correlation structures with the pre-treatment mean included as the covariate and the mean follow-up value included as the response. We propose an optimal experimental design of multiple pre-post allocations under a specified constraint, that is, given the total number of pre-post treatment visits. The optimal number of the pre-treatment measurements is derived. For non-linear models, closed-form formulas for sample size/power calculations are generally unavailable, but we conduct Monte Carlo simulation studies instead. Results Theoretical formulas and simulation studies show the benefits of repeating the pre-treatment measurements in pre-post randomized studies. The optimal pre-post allocation derived from the ANCOVA extends well to binary measurements in simulation studies, using logistic regression and generalized estimating equations (GEE). Conclusions Repeating baselines and follow-up assessments is a valuable and efficient technique in pre-post design. The proposed optimal pre-post allocation designs can minimize the sample size, i.e., achieve maximum power. © The Author(s) 2023 |
abstractGer |
Background In pre-post designs, analysis of covariance (ANCOVA) is a standard technique to detect the treatment effect with a continuous variable measured at baseline and follow-up. For measurements subject to a high degree of variability, it may be advisable to repeat the pre-treatment and/or follow-up assessments. In general, repeating the follow-up measurements is more advantageous than repeating the pre-treatment measurements, while the latter can still be valuable and improve efficiency in clinical trials. Methods In this article, we report investigations of using multiple pre-treatment and post-treatment measurements in randomized clinical trials. We consider the sample size formula for ANCOVA under general correlation structures with the pre-treatment mean included as the covariate and the mean follow-up value included as the response. We propose an optimal experimental design of multiple pre-post allocations under a specified constraint, that is, given the total number of pre-post treatment visits. The optimal number of the pre-treatment measurements is derived. For non-linear models, closed-form formulas for sample size/power calculations are generally unavailable, but we conduct Monte Carlo simulation studies instead. Results Theoretical formulas and simulation studies show the benefits of repeating the pre-treatment measurements in pre-post randomized studies. The optimal pre-post allocation derived from the ANCOVA extends well to binary measurements in simulation studies, using logistic regression and generalized estimating equations (GEE). Conclusions Repeating baselines and follow-up assessments is a valuable and efficient technique in pre-post design. The proposed optimal pre-post allocation designs can minimize the sample size, i.e., achieve maximum power. © The Author(s) 2023 |
abstract_unstemmed |
Background In pre-post designs, analysis of covariance (ANCOVA) is a standard technique to detect the treatment effect with a continuous variable measured at baseline and follow-up. For measurements subject to a high degree of variability, it may be advisable to repeat the pre-treatment and/or follow-up assessments. In general, repeating the follow-up measurements is more advantageous than repeating the pre-treatment measurements, while the latter can still be valuable and improve efficiency in clinical trials. Methods In this article, we report investigations of using multiple pre-treatment and post-treatment measurements in randomized clinical trials. We consider the sample size formula for ANCOVA under general correlation structures with the pre-treatment mean included as the covariate and the mean follow-up value included as the response. We propose an optimal experimental design of multiple pre-post allocations under a specified constraint, that is, given the total number of pre-post treatment visits. The optimal number of the pre-treatment measurements is derived. For non-linear models, closed-form formulas for sample size/power calculations are generally unavailable, but we conduct Monte Carlo simulation studies instead. Results Theoretical formulas and simulation studies show the benefits of repeating the pre-treatment measurements in pre-post randomized studies. The optimal pre-post allocation derived from the ANCOVA extends well to binary measurements in simulation studies, using logistic regression and generalized estimating equations (GEE). Conclusions Repeating baselines and follow-up assessments is a valuable and efficient technique in pre-post design. The proposed optimal pre-post allocation designs can minimize the sample size, i.e., achieve maximum power. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
The optimal pre-post allocation for randomized clinical trials |
url |
https://dx.doi.org/10.1186/s12874-023-01893-w |
remote_bool |
true |
author2 |
Wang, Tianying |
author2Str |
Wang, Tianying |
ppnlink |
326643818 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12874-023-01893-w |
up_date |
2024-07-04T02:37:26.682Z |
_version_ |
1803614312654176256 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR049873709</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331052635.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230329s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12874-023-01893-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR049873709</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12874-023-01893-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ma, Shiyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The optimal pre-post allocation for randomized clinical trials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background In pre-post designs, analysis of covariance (ANCOVA) is a standard technique to detect the treatment effect with a continuous variable measured at baseline and follow-up. For measurements subject to a high degree of variability, it may be advisable to repeat the pre-treatment and/or follow-up assessments. In general, repeating the follow-up measurements is more advantageous than repeating the pre-treatment measurements, while the latter can still be valuable and improve efficiency in clinical trials. Methods In this article, we report investigations of using multiple pre-treatment and post-treatment measurements in randomized clinical trials. We consider the sample size formula for ANCOVA under general correlation structures with the pre-treatment mean included as the covariate and the mean follow-up value included as the response. We propose an optimal experimental design of multiple pre-post allocations under a specified constraint, that is, given the total number of pre-post treatment visits. The optimal number of the pre-treatment measurements is derived. For non-linear models, closed-form formulas for sample size/power calculations are generally unavailable, but we conduct Monte Carlo simulation studies instead. Results Theoretical formulas and simulation studies show the benefits of repeating the pre-treatment measurements in pre-post randomized studies. The optimal pre-post allocation derived from the ANCOVA extends well to binary measurements in simulation studies, using logistic regression and generalized estimating equations (GEE). Conclusions Repeating baselines and follow-up assessments is a valuable and efficient technique in pre-post design. The proposed optimal pre-post allocation designs can minimize the sample size, i.e., achieve maximum power.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimal allocation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Repeating baselines</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pre-post design</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis of covariance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Repeated measures</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Tianying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC medical research methodology</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">23(2023), 1 vom: 28. März</subfield><subfield code="w">(DE-627)326643818</subfield><subfield code="w">(DE-600)2041362-2</subfield><subfield code="x">1471-2288</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:28</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12874-023-01893-w</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">28</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
score |
7.400509 |