A Machine Learning Approach for the Prediction of Severe Acute Kidney Injury Following Traumatic Brain Injury

Background Acute kidney injury (AKI), a prevalent non-neurological complication following traumatic brain injury (TBI), is a major clinical issue with an unfavorable prognosis. This study aimed to develop and validate machine learning models to predict severe AKI (stage 3 or greater) incidence in pa...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Peng, Chi [verfasserIn]

Yang, Fan

Li, Lulu

Peng, Liwei

Yu, Jian

Wang, Peng

Jin, Zhichao

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Traumatic brain injury

Acute kidney injury

Machine learning

External validation

Model interpretation

Anmerkung:

© Springer Science+Business Media, LLC, part of Springer Nature and Neurocritical Care Society 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Neurocritical care - New York, NY : Springer, 2004, 38(2022), 2 vom: 04. Okt., Seite 335-344

Übergeordnetes Werk:

volume:38 ; year:2022 ; number:2 ; day:04 ; month:10 ; pages:335-344

Links:

Volltext

DOI / URN:

10.1007/s12028-022-01606-z

Katalog-ID:

SPR050004514

Nicht das Richtige dabei?

Schreiben Sie uns!