Proteomic Portrait of Human Lymphoma Reveals Protein Molecular Fingerprint of Disease Specific Subtypes and Progression
Abstract An altered proteome in lymph nodes often suggests abnormal signaling pathways that may be associated with diverse lymphatic disorders. Current clinical biomarkers for histological classification of lymphomas have encountered many discrepancies, particularly for borderline cases. Therefore,...
Ausführliche Beschreibung
Autor*in: |
Ku, Xin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© International Human Phenome Institutes (Shanghai) 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Phenomics - Cham : Springer Nature Switzerland AG, 2021, 3(2022), 2 vom: 12. Dez., Seite 148-166 |
---|---|
Übergeordnetes Werk: |
volume:3 ; year:2022 ; number:2 ; day:12 ; month:12 ; pages:148-166 |
Links: |
---|
DOI / URN: |
10.1007/s43657-022-00075-w |
---|
Katalog-ID: |
SPR050075128 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR050075128 | ||
003 | DE-627 | ||
005 | 20230418064751.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230418s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s43657-022-00075-w |2 doi | |
035 | |a (DE-627)SPR050075128 | ||
035 | |a (SPR)s43657-022-00075-w-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Ku, Xin |e verfasserin |0 (orcid)0000-0002-1828-625X |4 aut | |
245 | 1 | 0 | |a Proteomic Portrait of Human Lymphoma Reveals Protein Molecular Fingerprint of Disease Specific Subtypes and Progression |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © International Human Phenome Institutes (Shanghai) 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract An altered proteome in lymph nodes often suggests abnormal signaling pathways that may be associated with diverse lymphatic disorders. Current clinical biomarkers for histological classification of lymphomas have encountered many discrepancies, particularly for borderline cases. Therefore, we launched a comprehensive proteomic study aimed to establish a proteomic landscape of patients with various lymphatic disorders and identify proteomic variations associated with different disease subgroups. In this study, 109 fresh-frozen lymph node tissues from patients with various lymphatic disorders (with a focus on Non-Hodgkin’s Lymphoma) were analyzed by data-independent acquisition mass spectrometry. A quantitative proteomic landscape was comprehensively characterized, leading to the identification of featured protein profiles for each subgroup. Potential correlations between clinical outcomes and expression profiles of signature proteins were also probed. Two representative signature proteins, phospholipid-binding proteins Annexin A6 (ANXA6) and Phospholipase C Gamma 2 (PLCG2), were successfully validated via immunohistochemistry. We also evaluated the capability of acquired proteomic signatures to segregate multiple lymphatic abnormalities and identified several core signature proteins, such as Sialic Acid Binding Ig Like Lectin 1 (SIGLEC1) and GTPase of immunity-associated protein 5 (GIMAP5). In summary, the established lympho-specific data resource provides a comprehensive map of protein expression in lymph nodes during multiple disease states, thus extending the existing human tissue proteome atlas. Our findings will be of great value in exploring protein expression and regulation underlying lymphatic malignancies, while also providing novel protein candidates to classify various lymphomas for more precise medical practice. | ||
650 | 4 | |a Lymphoma |7 (dpeaa)DE-He213 | |
650 | 4 | |a Non-Hodgkin’s Lymphoma |7 (dpeaa)DE-He213 | |
650 | 4 | |a Proteomics |7 (dpeaa)DE-He213 | |
650 | 4 | |a Stratification |7 (dpeaa)DE-He213 | |
650 | 4 | |a Molecular profiling |7 (dpeaa)DE-He213 | |
700 | 1 | |a Wang, Jinghan |4 aut | |
700 | 1 | |a Li, Haikuo |4 aut | |
700 | 1 | |a Meng, Chen |4 aut | |
700 | 1 | |a Yu, Fang |4 aut | |
700 | 1 | |a Yu, Wenjuan |4 aut | |
700 | 1 | |a Li, Zhongqi |4 aut | |
700 | 1 | |a Zhou, Ziqi |4 aut | |
700 | 1 | |a Zhang, Can |4 aut | |
700 | 1 | |a Hua, Ying |4 aut | |
700 | 1 | |a Yan, Wei |0 (orcid)0000-0003-0619-5876 |4 aut | |
700 | 1 | |a Jin, Jie |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Phenomics |d Cham : Springer Nature Switzerland AG, 2021 |g 3(2022), 2 vom: 12. Dez., Seite 148-166 |w (DE-627)1739053117 |w (DE-600)3045731-2 |x 2730-5848 |7 nnns |
773 | 1 | 8 | |g volume:3 |g year:2022 |g number:2 |g day:12 |g month:12 |g pages:148-166 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s43657-022-00075-w |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 3 |j 2022 |e 2 |b 12 |c 12 |h 148-166 |
author_variant |
x k xk j w jw h l hl c m cm f y fy w y wy z l zl z z zz c z cz y h yh w y wy j j jj |
---|---|
matchkey_str |
article:27305848:2022----::rtoiprriohmnypoaeelpoenoeuafnepitfiesse |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s43657-022-00075-w doi (DE-627)SPR050075128 (SPR)s43657-022-00075-w-e DE-627 ger DE-627 rakwb eng Ku, Xin verfasserin (orcid)0000-0002-1828-625X aut Proteomic Portrait of Human Lymphoma Reveals Protein Molecular Fingerprint of Disease Specific Subtypes and Progression 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © International Human Phenome Institutes (Shanghai) 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract An altered proteome in lymph nodes often suggests abnormal signaling pathways that may be associated with diverse lymphatic disorders. Current clinical biomarkers for histological classification of lymphomas have encountered many discrepancies, particularly for borderline cases. Therefore, we launched a comprehensive proteomic study aimed to establish a proteomic landscape of patients with various lymphatic disorders and identify proteomic variations associated with different disease subgroups. In this study, 109 fresh-frozen lymph node tissues from patients with various lymphatic disorders (with a focus on Non-Hodgkin’s Lymphoma) were analyzed by data-independent acquisition mass spectrometry. A quantitative proteomic landscape was comprehensively characterized, leading to the identification of featured protein profiles for each subgroup. Potential correlations between clinical outcomes and expression profiles of signature proteins were also probed. Two representative signature proteins, phospholipid-binding proteins Annexin A6 (ANXA6) and Phospholipase C Gamma 2 (PLCG2), were successfully validated via immunohistochemistry. We also evaluated the capability of acquired proteomic signatures to segregate multiple lymphatic abnormalities and identified several core signature proteins, such as Sialic Acid Binding Ig Like Lectin 1 (SIGLEC1) and GTPase of immunity-associated protein 5 (GIMAP5). In summary, the established lympho-specific data resource provides a comprehensive map of protein expression in lymph nodes during multiple disease states, thus extending the existing human tissue proteome atlas. Our findings will be of great value in exploring protein expression and regulation underlying lymphatic malignancies, while also providing novel protein candidates to classify various lymphomas for more precise medical practice. Lymphoma (dpeaa)DE-He213 Non-Hodgkin’s Lymphoma (dpeaa)DE-He213 Proteomics (dpeaa)DE-He213 Stratification (dpeaa)DE-He213 Molecular profiling (dpeaa)DE-He213 Wang, Jinghan aut Li, Haikuo aut Meng, Chen aut Yu, Fang aut Yu, Wenjuan aut Li, Zhongqi aut Zhou, Ziqi aut Zhang, Can aut Hua, Ying aut Yan, Wei (orcid)0000-0003-0619-5876 aut Jin, Jie aut Enthalten in Phenomics Cham : Springer Nature Switzerland AG, 2021 3(2022), 2 vom: 12. Dez., Seite 148-166 (DE-627)1739053117 (DE-600)3045731-2 2730-5848 nnns volume:3 year:2022 number:2 day:12 month:12 pages:148-166 https://dx.doi.org/10.1007/s43657-022-00075-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 3 2022 2 12 12 148-166 |
spelling |
10.1007/s43657-022-00075-w doi (DE-627)SPR050075128 (SPR)s43657-022-00075-w-e DE-627 ger DE-627 rakwb eng Ku, Xin verfasserin (orcid)0000-0002-1828-625X aut Proteomic Portrait of Human Lymphoma Reveals Protein Molecular Fingerprint of Disease Specific Subtypes and Progression 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © International Human Phenome Institutes (Shanghai) 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract An altered proteome in lymph nodes often suggests abnormal signaling pathways that may be associated with diverse lymphatic disorders. Current clinical biomarkers for histological classification of lymphomas have encountered many discrepancies, particularly for borderline cases. Therefore, we launched a comprehensive proteomic study aimed to establish a proteomic landscape of patients with various lymphatic disorders and identify proteomic variations associated with different disease subgroups. In this study, 109 fresh-frozen lymph node tissues from patients with various lymphatic disorders (with a focus on Non-Hodgkin’s Lymphoma) were analyzed by data-independent acquisition mass spectrometry. A quantitative proteomic landscape was comprehensively characterized, leading to the identification of featured protein profiles for each subgroup. Potential correlations between clinical outcomes and expression profiles of signature proteins were also probed. Two representative signature proteins, phospholipid-binding proteins Annexin A6 (ANXA6) and Phospholipase C Gamma 2 (PLCG2), were successfully validated via immunohistochemistry. We also evaluated the capability of acquired proteomic signatures to segregate multiple lymphatic abnormalities and identified several core signature proteins, such as Sialic Acid Binding Ig Like Lectin 1 (SIGLEC1) and GTPase of immunity-associated protein 5 (GIMAP5). In summary, the established lympho-specific data resource provides a comprehensive map of protein expression in lymph nodes during multiple disease states, thus extending the existing human tissue proteome atlas. Our findings will be of great value in exploring protein expression and regulation underlying lymphatic malignancies, while also providing novel protein candidates to classify various lymphomas for more precise medical practice. Lymphoma (dpeaa)DE-He213 Non-Hodgkin’s Lymphoma (dpeaa)DE-He213 Proteomics (dpeaa)DE-He213 Stratification (dpeaa)DE-He213 Molecular profiling (dpeaa)DE-He213 Wang, Jinghan aut Li, Haikuo aut Meng, Chen aut Yu, Fang aut Yu, Wenjuan aut Li, Zhongqi aut Zhou, Ziqi aut Zhang, Can aut Hua, Ying aut Yan, Wei (orcid)0000-0003-0619-5876 aut Jin, Jie aut Enthalten in Phenomics Cham : Springer Nature Switzerland AG, 2021 3(2022), 2 vom: 12. Dez., Seite 148-166 (DE-627)1739053117 (DE-600)3045731-2 2730-5848 nnns volume:3 year:2022 number:2 day:12 month:12 pages:148-166 https://dx.doi.org/10.1007/s43657-022-00075-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 3 2022 2 12 12 148-166 |
allfields_unstemmed |
10.1007/s43657-022-00075-w doi (DE-627)SPR050075128 (SPR)s43657-022-00075-w-e DE-627 ger DE-627 rakwb eng Ku, Xin verfasserin (orcid)0000-0002-1828-625X aut Proteomic Portrait of Human Lymphoma Reveals Protein Molecular Fingerprint of Disease Specific Subtypes and Progression 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © International Human Phenome Institutes (Shanghai) 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract An altered proteome in lymph nodes often suggests abnormal signaling pathways that may be associated with diverse lymphatic disorders. Current clinical biomarkers for histological classification of lymphomas have encountered many discrepancies, particularly for borderline cases. Therefore, we launched a comprehensive proteomic study aimed to establish a proteomic landscape of patients with various lymphatic disorders and identify proteomic variations associated with different disease subgroups. In this study, 109 fresh-frozen lymph node tissues from patients with various lymphatic disorders (with a focus on Non-Hodgkin’s Lymphoma) were analyzed by data-independent acquisition mass spectrometry. A quantitative proteomic landscape was comprehensively characterized, leading to the identification of featured protein profiles for each subgroup. Potential correlations between clinical outcomes and expression profiles of signature proteins were also probed. Two representative signature proteins, phospholipid-binding proteins Annexin A6 (ANXA6) and Phospholipase C Gamma 2 (PLCG2), were successfully validated via immunohistochemistry. We also evaluated the capability of acquired proteomic signatures to segregate multiple lymphatic abnormalities and identified several core signature proteins, such as Sialic Acid Binding Ig Like Lectin 1 (SIGLEC1) and GTPase of immunity-associated protein 5 (GIMAP5). In summary, the established lympho-specific data resource provides a comprehensive map of protein expression in lymph nodes during multiple disease states, thus extending the existing human tissue proteome atlas. Our findings will be of great value in exploring protein expression and regulation underlying lymphatic malignancies, while also providing novel protein candidates to classify various lymphomas for more precise medical practice. Lymphoma (dpeaa)DE-He213 Non-Hodgkin’s Lymphoma (dpeaa)DE-He213 Proteomics (dpeaa)DE-He213 Stratification (dpeaa)DE-He213 Molecular profiling (dpeaa)DE-He213 Wang, Jinghan aut Li, Haikuo aut Meng, Chen aut Yu, Fang aut Yu, Wenjuan aut Li, Zhongqi aut Zhou, Ziqi aut Zhang, Can aut Hua, Ying aut Yan, Wei (orcid)0000-0003-0619-5876 aut Jin, Jie aut Enthalten in Phenomics Cham : Springer Nature Switzerland AG, 2021 3(2022), 2 vom: 12. Dez., Seite 148-166 (DE-627)1739053117 (DE-600)3045731-2 2730-5848 nnns volume:3 year:2022 number:2 day:12 month:12 pages:148-166 https://dx.doi.org/10.1007/s43657-022-00075-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 3 2022 2 12 12 148-166 |
allfieldsGer |
10.1007/s43657-022-00075-w doi (DE-627)SPR050075128 (SPR)s43657-022-00075-w-e DE-627 ger DE-627 rakwb eng Ku, Xin verfasserin (orcid)0000-0002-1828-625X aut Proteomic Portrait of Human Lymphoma Reveals Protein Molecular Fingerprint of Disease Specific Subtypes and Progression 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © International Human Phenome Institutes (Shanghai) 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract An altered proteome in lymph nodes often suggests abnormal signaling pathways that may be associated with diverse lymphatic disorders. Current clinical biomarkers for histological classification of lymphomas have encountered many discrepancies, particularly for borderline cases. Therefore, we launched a comprehensive proteomic study aimed to establish a proteomic landscape of patients with various lymphatic disorders and identify proteomic variations associated with different disease subgroups. In this study, 109 fresh-frozen lymph node tissues from patients with various lymphatic disorders (with a focus on Non-Hodgkin’s Lymphoma) were analyzed by data-independent acquisition mass spectrometry. A quantitative proteomic landscape was comprehensively characterized, leading to the identification of featured protein profiles for each subgroup. Potential correlations between clinical outcomes and expression profiles of signature proteins were also probed. Two representative signature proteins, phospholipid-binding proteins Annexin A6 (ANXA6) and Phospholipase C Gamma 2 (PLCG2), were successfully validated via immunohistochemistry. We also evaluated the capability of acquired proteomic signatures to segregate multiple lymphatic abnormalities and identified several core signature proteins, such as Sialic Acid Binding Ig Like Lectin 1 (SIGLEC1) and GTPase of immunity-associated protein 5 (GIMAP5). In summary, the established lympho-specific data resource provides a comprehensive map of protein expression in lymph nodes during multiple disease states, thus extending the existing human tissue proteome atlas. Our findings will be of great value in exploring protein expression and regulation underlying lymphatic malignancies, while also providing novel protein candidates to classify various lymphomas for more precise medical practice. Lymphoma (dpeaa)DE-He213 Non-Hodgkin’s Lymphoma (dpeaa)DE-He213 Proteomics (dpeaa)DE-He213 Stratification (dpeaa)DE-He213 Molecular profiling (dpeaa)DE-He213 Wang, Jinghan aut Li, Haikuo aut Meng, Chen aut Yu, Fang aut Yu, Wenjuan aut Li, Zhongqi aut Zhou, Ziqi aut Zhang, Can aut Hua, Ying aut Yan, Wei (orcid)0000-0003-0619-5876 aut Jin, Jie aut Enthalten in Phenomics Cham : Springer Nature Switzerland AG, 2021 3(2022), 2 vom: 12. Dez., Seite 148-166 (DE-627)1739053117 (DE-600)3045731-2 2730-5848 nnns volume:3 year:2022 number:2 day:12 month:12 pages:148-166 https://dx.doi.org/10.1007/s43657-022-00075-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 3 2022 2 12 12 148-166 |
allfieldsSound |
10.1007/s43657-022-00075-w doi (DE-627)SPR050075128 (SPR)s43657-022-00075-w-e DE-627 ger DE-627 rakwb eng Ku, Xin verfasserin (orcid)0000-0002-1828-625X aut Proteomic Portrait of Human Lymphoma Reveals Protein Molecular Fingerprint of Disease Specific Subtypes and Progression 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © International Human Phenome Institutes (Shanghai) 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract An altered proteome in lymph nodes often suggests abnormal signaling pathways that may be associated with diverse lymphatic disorders. Current clinical biomarkers for histological classification of lymphomas have encountered many discrepancies, particularly for borderline cases. Therefore, we launched a comprehensive proteomic study aimed to establish a proteomic landscape of patients with various lymphatic disorders and identify proteomic variations associated with different disease subgroups. In this study, 109 fresh-frozen lymph node tissues from patients with various lymphatic disorders (with a focus on Non-Hodgkin’s Lymphoma) were analyzed by data-independent acquisition mass spectrometry. A quantitative proteomic landscape was comprehensively characterized, leading to the identification of featured protein profiles for each subgroup. Potential correlations between clinical outcomes and expression profiles of signature proteins were also probed. Two representative signature proteins, phospholipid-binding proteins Annexin A6 (ANXA6) and Phospholipase C Gamma 2 (PLCG2), were successfully validated via immunohistochemistry. We also evaluated the capability of acquired proteomic signatures to segregate multiple lymphatic abnormalities and identified several core signature proteins, such as Sialic Acid Binding Ig Like Lectin 1 (SIGLEC1) and GTPase of immunity-associated protein 5 (GIMAP5). In summary, the established lympho-specific data resource provides a comprehensive map of protein expression in lymph nodes during multiple disease states, thus extending the existing human tissue proteome atlas. Our findings will be of great value in exploring protein expression and regulation underlying lymphatic malignancies, while also providing novel protein candidates to classify various lymphomas for more precise medical practice. Lymphoma (dpeaa)DE-He213 Non-Hodgkin’s Lymphoma (dpeaa)DE-He213 Proteomics (dpeaa)DE-He213 Stratification (dpeaa)DE-He213 Molecular profiling (dpeaa)DE-He213 Wang, Jinghan aut Li, Haikuo aut Meng, Chen aut Yu, Fang aut Yu, Wenjuan aut Li, Zhongqi aut Zhou, Ziqi aut Zhang, Can aut Hua, Ying aut Yan, Wei (orcid)0000-0003-0619-5876 aut Jin, Jie aut Enthalten in Phenomics Cham : Springer Nature Switzerland AG, 2021 3(2022), 2 vom: 12. Dez., Seite 148-166 (DE-627)1739053117 (DE-600)3045731-2 2730-5848 nnns volume:3 year:2022 number:2 day:12 month:12 pages:148-166 https://dx.doi.org/10.1007/s43657-022-00075-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 3 2022 2 12 12 148-166 |
language |
English |
source |
Enthalten in Phenomics 3(2022), 2 vom: 12. Dez., Seite 148-166 volume:3 year:2022 number:2 day:12 month:12 pages:148-166 |
sourceStr |
Enthalten in Phenomics 3(2022), 2 vom: 12. Dez., Seite 148-166 volume:3 year:2022 number:2 day:12 month:12 pages:148-166 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Lymphoma Non-Hodgkin’s Lymphoma Proteomics Stratification Molecular profiling |
isfreeaccess_bool |
false |
container_title |
Phenomics |
authorswithroles_txt_mv |
Ku, Xin @@aut@@ Wang, Jinghan @@aut@@ Li, Haikuo @@aut@@ Meng, Chen @@aut@@ Yu, Fang @@aut@@ Yu, Wenjuan @@aut@@ Li, Zhongqi @@aut@@ Zhou, Ziqi @@aut@@ Zhang, Can @@aut@@ Hua, Ying @@aut@@ Yan, Wei @@aut@@ Jin, Jie @@aut@@ |
publishDateDaySort_date |
2022-12-12T00:00:00Z |
hierarchy_top_id |
1739053117 |
id |
SPR050075128 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050075128</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230418064751.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230418s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s43657-022-00075-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050075128</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s43657-022-00075-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ku, Xin</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1828-625X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Proteomic Portrait of Human Lymphoma Reveals Protein Molecular Fingerprint of Disease Specific Subtypes and Progression</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© International Human Phenome Institutes (Shanghai) 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract An altered proteome in lymph nodes often suggests abnormal signaling pathways that may be associated with diverse lymphatic disorders. Current clinical biomarkers for histological classification of lymphomas have encountered many discrepancies, particularly for borderline cases. Therefore, we launched a comprehensive proteomic study aimed to establish a proteomic landscape of patients with various lymphatic disorders and identify proteomic variations associated with different disease subgroups. In this study, 109 fresh-frozen lymph node tissues from patients with various lymphatic disorders (with a focus on Non-Hodgkin’s Lymphoma) were analyzed by data-independent acquisition mass spectrometry. A quantitative proteomic landscape was comprehensively characterized, leading to the identification of featured protein profiles for each subgroup. Potential correlations between clinical outcomes and expression profiles of signature proteins were also probed. Two representative signature proteins, phospholipid-binding proteins Annexin A6 (ANXA6) and Phospholipase C Gamma 2 (PLCG2), were successfully validated via immunohistochemistry. We also evaluated the capability of acquired proteomic signatures to segregate multiple lymphatic abnormalities and identified several core signature proteins, such as Sialic Acid Binding Ig Like Lectin 1 (SIGLEC1) and GTPase of immunity-associated protein 5 (GIMAP5). In summary, the established lympho-specific data resource provides a comprehensive map of protein expression in lymph nodes during multiple disease states, thus extending the existing human tissue proteome atlas. Our findings will be of great value in exploring protein expression and regulation underlying lymphatic malignancies, while also providing novel protein candidates to classify various lymphomas for more precise medical practice.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lymphoma</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-Hodgkin’s Lymphoma</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proteomics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stratification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular profiling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jinghan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Haikuo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Chen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Fang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Wenjuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Zhongqi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Ziqi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Can</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hua, Ying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Wei</subfield><subfield code="0">(orcid)0000-0003-0619-5876</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, Jie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Phenomics</subfield><subfield code="d">Cham : Springer Nature Switzerland AG, 2021</subfield><subfield code="g">3(2022), 2 vom: 12. Dez., Seite 148-166</subfield><subfield code="w">(DE-627)1739053117</subfield><subfield code="w">(DE-600)3045731-2</subfield><subfield code="x">2730-5848</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">day:12</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:148-166</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s43657-022-00075-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="b">12</subfield><subfield code="c">12</subfield><subfield code="h">148-166</subfield></datafield></record></collection>
|
author |
Ku, Xin |
spellingShingle |
Ku, Xin misc Lymphoma misc Non-Hodgkin’s Lymphoma misc Proteomics misc Stratification misc Molecular profiling Proteomic Portrait of Human Lymphoma Reveals Protein Molecular Fingerprint of Disease Specific Subtypes and Progression |
authorStr |
Ku, Xin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1739053117 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2730-5848 |
topic_title |
Proteomic Portrait of Human Lymphoma Reveals Protein Molecular Fingerprint of Disease Specific Subtypes and Progression Lymphoma (dpeaa)DE-He213 Non-Hodgkin’s Lymphoma (dpeaa)DE-He213 Proteomics (dpeaa)DE-He213 Stratification (dpeaa)DE-He213 Molecular profiling (dpeaa)DE-He213 |
topic |
misc Lymphoma misc Non-Hodgkin’s Lymphoma misc Proteomics misc Stratification misc Molecular profiling |
topic_unstemmed |
misc Lymphoma misc Non-Hodgkin’s Lymphoma misc Proteomics misc Stratification misc Molecular profiling |
topic_browse |
misc Lymphoma misc Non-Hodgkin’s Lymphoma misc Proteomics misc Stratification misc Molecular profiling |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Phenomics |
hierarchy_parent_id |
1739053117 |
hierarchy_top_title |
Phenomics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)1739053117 (DE-600)3045731-2 |
title |
Proteomic Portrait of Human Lymphoma Reveals Protein Molecular Fingerprint of Disease Specific Subtypes and Progression |
ctrlnum |
(DE-627)SPR050075128 (SPR)s43657-022-00075-w-e |
title_full |
Proteomic Portrait of Human Lymphoma Reveals Protein Molecular Fingerprint of Disease Specific Subtypes and Progression |
author_sort |
Ku, Xin |
journal |
Phenomics |
journalStr |
Phenomics |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
148 |
author_browse |
Ku, Xin Wang, Jinghan Li, Haikuo Meng, Chen Yu, Fang Yu, Wenjuan Li, Zhongqi Zhou, Ziqi Zhang, Can Hua, Ying Yan, Wei Jin, Jie |
container_volume |
3 |
format_se |
Elektronische Aufsätze |
author-letter |
Ku, Xin |
doi_str_mv |
10.1007/s43657-022-00075-w |
normlink |
(ORCID)0000-0002-1828-625X (ORCID)0000-0003-0619-5876 |
normlink_prefix_str_mv |
(orcid)0000-0002-1828-625X (orcid)0000-0003-0619-5876 |
title_sort |
proteomic portrait of human lymphoma reveals protein molecular fingerprint of disease specific subtypes and progression |
title_auth |
Proteomic Portrait of Human Lymphoma Reveals Protein Molecular Fingerprint of Disease Specific Subtypes and Progression |
abstract |
Abstract An altered proteome in lymph nodes often suggests abnormal signaling pathways that may be associated with diverse lymphatic disorders. Current clinical biomarkers for histological classification of lymphomas have encountered many discrepancies, particularly for borderline cases. Therefore, we launched a comprehensive proteomic study aimed to establish a proteomic landscape of patients with various lymphatic disorders and identify proteomic variations associated with different disease subgroups. In this study, 109 fresh-frozen lymph node tissues from patients with various lymphatic disorders (with a focus on Non-Hodgkin’s Lymphoma) were analyzed by data-independent acquisition mass spectrometry. A quantitative proteomic landscape was comprehensively characterized, leading to the identification of featured protein profiles for each subgroup. Potential correlations between clinical outcomes and expression profiles of signature proteins were also probed. Two representative signature proteins, phospholipid-binding proteins Annexin A6 (ANXA6) and Phospholipase C Gamma 2 (PLCG2), were successfully validated via immunohistochemistry. We also evaluated the capability of acquired proteomic signatures to segregate multiple lymphatic abnormalities and identified several core signature proteins, such as Sialic Acid Binding Ig Like Lectin 1 (SIGLEC1) and GTPase of immunity-associated protein 5 (GIMAP5). In summary, the established lympho-specific data resource provides a comprehensive map of protein expression in lymph nodes during multiple disease states, thus extending the existing human tissue proteome atlas. Our findings will be of great value in exploring protein expression and regulation underlying lymphatic malignancies, while also providing novel protein candidates to classify various lymphomas for more precise medical practice. © International Human Phenome Institutes (Shanghai) 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract An altered proteome in lymph nodes often suggests abnormal signaling pathways that may be associated with diverse lymphatic disorders. Current clinical biomarkers for histological classification of lymphomas have encountered many discrepancies, particularly for borderline cases. Therefore, we launched a comprehensive proteomic study aimed to establish a proteomic landscape of patients with various lymphatic disorders and identify proteomic variations associated with different disease subgroups. In this study, 109 fresh-frozen lymph node tissues from patients with various lymphatic disorders (with a focus on Non-Hodgkin’s Lymphoma) were analyzed by data-independent acquisition mass spectrometry. A quantitative proteomic landscape was comprehensively characterized, leading to the identification of featured protein profiles for each subgroup. Potential correlations between clinical outcomes and expression profiles of signature proteins were also probed. Two representative signature proteins, phospholipid-binding proteins Annexin A6 (ANXA6) and Phospholipase C Gamma 2 (PLCG2), were successfully validated via immunohistochemistry. We also evaluated the capability of acquired proteomic signatures to segregate multiple lymphatic abnormalities and identified several core signature proteins, such as Sialic Acid Binding Ig Like Lectin 1 (SIGLEC1) and GTPase of immunity-associated protein 5 (GIMAP5). In summary, the established lympho-specific data resource provides a comprehensive map of protein expression in lymph nodes during multiple disease states, thus extending the existing human tissue proteome atlas. Our findings will be of great value in exploring protein expression and regulation underlying lymphatic malignancies, while also providing novel protein candidates to classify various lymphomas for more precise medical practice. © International Human Phenome Institutes (Shanghai) 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract An altered proteome in lymph nodes often suggests abnormal signaling pathways that may be associated with diverse lymphatic disorders. Current clinical biomarkers for histological classification of lymphomas have encountered many discrepancies, particularly for borderline cases. Therefore, we launched a comprehensive proteomic study aimed to establish a proteomic landscape of patients with various lymphatic disorders and identify proteomic variations associated with different disease subgroups. In this study, 109 fresh-frozen lymph node tissues from patients with various lymphatic disorders (with a focus on Non-Hodgkin’s Lymphoma) were analyzed by data-independent acquisition mass spectrometry. A quantitative proteomic landscape was comprehensively characterized, leading to the identification of featured protein profiles for each subgroup. Potential correlations between clinical outcomes and expression profiles of signature proteins were also probed. Two representative signature proteins, phospholipid-binding proteins Annexin A6 (ANXA6) and Phospholipase C Gamma 2 (PLCG2), were successfully validated via immunohistochemistry. We also evaluated the capability of acquired proteomic signatures to segregate multiple lymphatic abnormalities and identified several core signature proteins, such as Sialic Acid Binding Ig Like Lectin 1 (SIGLEC1) and GTPase of immunity-associated protein 5 (GIMAP5). In summary, the established lympho-specific data resource provides a comprehensive map of protein expression in lymph nodes during multiple disease states, thus extending the existing human tissue proteome atlas. Our findings will be of great value in exploring protein expression and regulation underlying lymphatic malignancies, while also providing novel protein candidates to classify various lymphomas for more precise medical practice. © International Human Phenome Institutes (Shanghai) 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Proteomic Portrait of Human Lymphoma Reveals Protein Molecular Fingerprint of Disease Specific Subtypes and Progression |
url |
https://dx.doi.org/10.1007/s43657-022-00075-w |
remote_bool |
true |
author2 |
Wang, Jinghan Li, Haikuo Meng, Chen Yu, Fang Yu, Wenjuan Li, Zhongqi Zhou, Ziqi Zhang, Can Hua, Ying Yan, Wei Jin, Jie |
author2Str |
Wang, Jinghan Li, Haikuo Meng, Chen Yu, Fang Yu, Wenjuan Li, Zhongqi Zhou, Ziqi Zhang, Can Hua, Ying Yan, Wei Jin, Jie |
ppnlink |
1739053117 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s43657-022-00075-w |
up_date |
2024-07-04T03:21:05.673Z |
_version_ |
1803617058872623104 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050075128</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230418064751.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230418s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s43657-022-00075-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050075128</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s43657-022-00075-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ku, Xin</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1828-625X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Proteomic Portrait of Human Lymphoma Reveals Protein Molecular Fingerprint of Disease Specific Subtypes and Progression</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© International Human Phenome Institutes (Shanghai) 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract An altered proteome in lymph nodes often suggests abnormal signaling pathways that may be associated with diverse lymphatic disorders. Current clinical biomarkers for histological classification of lymphomas have encountered many discrepancies, particularly for borderline cases. Therefore, we launched a comprehensive proteomic study aimed to establish a proteomic landscape of patients with various lymphatic disorders and identify proteomic variations associated with different disease subgroups. In this study, 109 fresh-frozen lymph node tissues from patients with various lymphatic disorders (with a focus on Non-Hodgkin’s Lymphoma) were analyzed by data-independent acquisition mass spectrometry. A quantitative proteomic landscape was comprehensively characterized, leading to the identification of featured protein profiles for each subgroup. Potential correlations between clinical outcomes and expression profiles of signature proteins were also probed. Two representative signature proteins, phospholipid-binding proteins Annexin A6 (ANXA6) and Phospholipase C Gamma 2 (PLCG2), were successfully validated via immunohistochemistry. We also evaluated the capability of acquired proteomic signatures to segregate multiple lymphatic abnormalities and identified several core signature proteins, such as Sialic Acid Binding Ig Like Lectin 1 (SIGLEC1) and GTPase of immunity-associated protein 5 (GIMAP5). In summary, the established lympho-specific data resource provides a comprehensive map of protein expression in lymph nodes during multiple disease states, thus extending the existing human tissue proteome atlas. Our findings will be of great value in exploring protein expression and regulation underlying lymphatic malignancies, while also providing novel protein candidates to classify various lymphomas for more precise medical practice.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lymphoma</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-Hodgkin’s Lymphoma</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proteomics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stratification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular profiling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jinghan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Haikuo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Chen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Fang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Wenjuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Zhongqi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Ziqi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Can</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hua, Ying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Wei</subfield><subfield code="0">(orcid)0000-0003-0619-5876</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, Jie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Phenomics</subfield><subfield code="d">Cham : Springer Nature Switzerland AG, 2021</subfield><subfield code="g">3(2022), 2 vom: 12. Dez., Seite 148-166</subfield><subfield code="w">(DE-627)1739053117</subfield><subfield code="w">(DE-600)3045731-2</subfield><subfield code="x">2730-5848</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">day:12</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:148-166</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s43657-022-00075-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="b">12</subfield><subfield code="c">12</subfield><subfield code="h">148-166</subfield></datafield></record></collection>
|
score |
7.4019337 |