The dilemma between eliminating dominance-resistant solutions and preserving boundary solutions of extremely convex Pareto fronts
Abstract It has been acknowledged that dominance-resistant solutions (DRSs) extensively exist in the feasible region of multi-objective optimization problems. Recent studies show that DRSs can cause serious performance degradation of many multi-objective evolutionary algorithms (MOEAs). Thereafter,...
Ausführliche Beschreibung
Autor*in: |
Wang, Zhenkun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Complex & intelligent systems - Berlin : SpringerOpen, 2015, 9(2021), 2 vom: 22. Sept., Seite 1117-1126 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2021 ; number:2 ; day:22 ; month:09 ; pages:1117-1126 |
Links: |
---|
DOI / URN: |
10.1007/s40747-021-00543-2 |
---|
Katalog-ID: |
SPR05010053X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR05010053X | ||
003 | DE-627 | ||
005 | 20230419064804.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230419s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40747-021-00543-2 |2 doi | |
035 | |a (DE-627)SPR05010053X | ||
035 | |a (SPR)s40747-021-00543-2-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Wang, Zhenkun |e verfasserin |0 (orcid)0000-0003-1152-6780 |4 aut | |
245 | 1 | 4 | |a The dilemma between eliminating dominance-resistant solutions and preserving boundary solutions of extremely convex Pareto fronts |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2021 | ||
520 | |a Abstract It has been acknowledged that dominance-resistant solutions (DRSs) extensively exist in the feasible region of multi-objective optimization problems. Recent studies show that DRSs can cause serious performance degradation of many multi-objective evolutionary algorithms (MOEAs). Thereafter, various strategies (e.g., the %$\epsilon %$-dominance and the modified objective calculation) to eliminate DRSs have been proposed. However, these strategies may in turn cause algorithm inefficiency in other aspects. We argue that these coping strategies prevent the algorithm from obtaining some boundary solutions of an extremely convex Pareto front (ECPF). That is, there is a dilemma between eliminating DRSs and preserving boundary solutions of the ECPF. To illustrate such a dilemma, we propose a new multi-objective optimization test problem with the ECPF as well as DRSs. Using this test problem, we investigate the performance of six representative MOEAs in terms of boundary solutions preservation and DRS elimination. The results reveal that it is quite challenging to distinguish between DRSs and boundary solutions of the ECPF. | ||
650 | 4 | |a Multi-objective optimization |7 (dpeaa)DE-He213 | |
650 | 4 | |a Dominance resistant solution |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hardly dominated boundary |7 (dpeaa)DE-He213 | |
650 | 4 | |a Extremely convex Pareto front |7 (dpeaa)DE-He213 | |
700 | 1 | |a Li, Qingyan |4 aut | |
700 | 1 | |a Yang, Qite |4 aut | |
700 | 1 | |a Ishibuchi, Hisao |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Complex & intelligent systems |d Berlin : SpringerOpen, 2015 |g 9(2021), 2 vom: 22. Sept., Seite 1117-1126 |w (DE-627)835589269 |w (DE-600)2834740-7 |x 2198-6053 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2021 |g number:2 |g day:22 |g month:09 |g pages:1117-1126 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40747-021-00543-2 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2021 |e 2 |b 22 |c 09 |h 1117-1126 |
author_variant |
z w zw q l ql q y qy h i hi |
---|---|
matchkey_str |
article:21986053:2021----::hdlmaeweeiiaigoiacrssatouinadrsrigonayouin |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s40747-021-00543-2 doi (DE-627)SPR05010053X (SPR)s40747-021-00543-2-e DE-627 ger DE-627 rakwb eng Wang, Zhenkun verfasserin (orcid)0000-0003-1152-6780 aut The dilemma between eliminating dominance-resistant solutions and preserving boundary solutions of extremely convex Pareto fronts 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract It has been acknowledged that dominance-resistant solutions (DRSs) extensively exist in the feasible region of multi-objective optimization problems. Recent studies show that DRSs can cause serious performance degradation of many multi-objective evolutionary algorithms (MOEAs). Thereafter, various strategies (e.g., the %$\epsilon %$-dominance and the modified objective calculation) to eliminate DRSs have been proposed. However, these strategies may in turn cause algorithm inefficiency in other aspects. We argue that these coping strategies prevent the algorithm from obtaining some boundary solutions of an extremely convex Pareto front (ECPF). That is, there is a dilemma between eliminating DRSs and preserving boundary solutions of the ECPF. To illustrate such a dilemma, we propose a new multi-objective optimization test problem with the ECPF as well as DRSs. Using this test problem, we investigate the performance of six representative MOEAs in terms of boundary solutions preservation and DRS elimination. The results reveal that it is quite challenging to distinguish between DRSs and boundary solutions of the ECPF. Multi-objective optimization (dpeaa)DE-He213 Dominance resistant solution (dpeaa)DE-He213 Hardly dominated boundary (dpeaa)DE-He213 Extremely convex Pareto front (dpeaa)DE-He213 Li, Qingyan aut Yang, Qite aut Ishibuchi, Hisao aut Enthalten in Complex & intelligent systems Berlin : SpringerOpen, 2015 9(2021), 2 vom: 22. Sept., Seite 1117-1126 (DE-627)835589269 (DE-600)2834740-7 2198-6053 nnns volume:9 year:2021 number:2 day:22 month:09 pages:1117-1126 https://dx.doi.org/10.1007/s40747-021-00543-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 2 22 09 1117-1126 |
spelling |
10.1007/s40747-021-00543-2 doi (DE-627)SPR05010053X (SPR)s40747-021-00543-2-e DE-627 ger DE-627 rakwb eng Wang, Zhenkun verfasserin (orcid)0000-0003-1152-6780 aut The dilemma between eliminating dominance-resistant solutions and preserving boundary solutions of extremely convex Pareto fronts 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract It has been acknowledged that dominance-resistant solutions (DRSs) extensively exist in the feasible region of multi-objective optimization problems. Recent studies show that DRSs can cause serious performance degradation of many multi-objective evolutionary algorithms (MOEAs). Thereafter, various strategies (e.g., the %$\epsilon %$-dominance and the modified objective calculation) to eliminate DRSs have been proposed. However, these strategies may in turn cause algorithm inefficiency in other aspects. We argue that these coping strategies prevent the algorithm from obtaining some boundary solutions of an extremely convex Pareto front (ECPF). That is, there is a dilemma between eliminating DRSs and preserving boundary solutions of the ECPF. To illustrate such a dilemma, we propose a new multi-objective optimization test problem with the ECPF as well as DRSs. Using this test problem, we investigate the performance of six representative MOEAs in terms of boundary solutions preservation and DRS elimination. The results reveal that it is quite challenging to distinguish between DRSs and boundary solutions of the ECPF. Multi-objective optimization (dpeaa)DE-He213 Dominance resistant solution (dpeaa)DE-He213 Hardly dominated boundary (dpeaa)DE-He213 Extremely convex Pareto front (dpeaa)DE-He213 Li, Qingyan aut Yang, Qite aut Ishibuchi, Hisao aut Enthalten in Complex & intelligent systems Berlin : SpringerOpen, 2015 9(2021), 2 vom: 22. Sept., Seite 1117-1126 (DE-627)835589269 (DE-600)2834740-7 2198-6053 nnns volume:9 year:2021 number:2 day:22 month:09 pages:1117-1126 https://dx.doi.org/10.1007/s40747-021-00543-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 2 22 09 1117-1126 |
allfields_unstemmed |
10.1007/s40747-021-00543-2 doi (DE-627)SPR05010053X (SPR)s40747-021-00543-2-e DE-627 ger DE-627 rakwb eng Wang, Zhenkun verfasserin (orcid)0000-0003-1152-6780 aut The dilemma between eliminating dominance-resistant solutions and preserving boundary solutions of extremely convex Pareto fronts 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract It has been acknowledged that dominance-resistant solutions (DRSs) extensively exist in the feasible region of multi-objective optimization problems. Recent studies show that DRSs can cause serious performance degradation of many multi-objective evolutionary algorithms (MOEAs). Thereafter, various strategies (e.g., the %$\epsilon %$-dominance and the modified objective calculation) to eliminate DRSs have been proposed. However, these strategies may in turn cause algorithm inefficiency in other aspects. We argue that these coping strategies prevent the algorithm from obtaining some boundary solutions of an extremely convex Pareto front (ECPF). That is, there is a dilemma between eliminating DRSs and preserving boundary solutions of the ECPF. To illustrate such a dilemma, we propose a new multi-objective optimization test problem with the ECPF as well as DRSs. Using this test problem, we investigate the performance of six representative MOEAs in terms of boundary solutions preservation and DRS elimination. The results reveal that it is quite challenging to distinguish between DRSs and boundary solutions of the ECPF. Multi-objective optimization (dpeaa)DE-He213 Dominance resistant solution (dpeaa)DE-He213 Hardly dominated boundary (dpeaa)DE-He213 Extremely convex Pareto front (dpeaa)DE-He213 Li, Qingyan aut Yang, Qite aut Ishibuchi, Hisao aut Enthalten in Complex & intelligent systems Berlin : SpringerOpen, 2015 9(2021), 2 vom: 22. Sept., Seite 1117-1126 (DE-627)835589269 (DE-600)2834740-7 2198-6053 nnns volume:9 year:2021 number:2 day:22 month:09 pages:1117-1126 https://dx.doi.org/10.1007/s40747-021-00543-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 2 22 09 1117-1126 |
allfieldsGer |
10.1007/s40747-021-00543-2 doi (DE-627)SPR05010053X (SPR)s40747-021-00543-2-e DE-627 ger DE-627 rakwb eng Wang, Zhenkun verfasserin (orcid)0000-0003-1152-6780 aut The dilemma between eliminating dominance-resistant solutions and preserving boundary solutions of extremely convex Pareto fronts 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract It has been acknowledged that dominance-resistant solutions (DRSs) extensively exist in the feasible region of multi-objective optimization problems. Recent studies show that DRSs can cause serious performance degradation of many multi-objective evolutionary algorithms (MOEAs). Thereafter, various strategies (e.g., the %$\epsilon %$-dominance and the modified objective calculation) to eliminate DRSs have been proposed. However, these strategies may in turn cause algorithm inefficiency in other aspects. We argue that these coping strategies prevent the algorithm from obtaining some boundary solutions of an extremely convex Pareto front (ECPF). That is, there is a dilemma between eliminating DRSs and preserving boundary solutions of the ECPF. To illustrate such a dilemma, we propose a new multi-objective optimization test problem with the ECPF as well as DRSs. Using this test problem, we investigate the performance of six representative MOEAs in terms of boundary solutions preservation and DRS elimination. The results reveal that it is quite challenging to distinguish between DRSs and boundary solutions of the ECPF. Multi-objective optimization (dpeaa)DE-He213 Dominance resistant solution (dpeaa)DE-He213 Hardly dominated boundary (dpeaa)DE-He213 Extremely convex Pareto front (dpeaa)DE-He213 Li, Qingyan aut Yang, Qite aut Ishibuchi, Hisao aut Enthalten in Complex & intelligent systems Berlin : SpringerOpen, 2015 9(2021), 2 vom: 22. Sept., Seite 1117-1126 (DE-627)835589269 (DE-600)2834740-7 2198-6053 nnns volume:9 year:2021 number:2 day:22 month:09 pages:1117-1126 https://dx.doi.org/10.1007/s40747-021-00543-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 2 22 09 1117-1126 |
allfieldsSound |
10.1007/s40747-021-00543-2 doi (DE-627)SPR05010053X (SPR)s40747-021-00543-2-e DE-627 ger DE-627 rakwb eng Wang, Zhenkun verfasserin (orcid)0000-0003-1152-6780 aut The dilemma between eliminating dominance-resistant solutions and preserving boundary solutions of extremely convex Pareto fronts 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract It has been acknowledged that dominance-resistant solutions (DRSs) extensively exist in the feasible region of multi-objective optimization problems. Recent studies show that DRSs can cause serious performance degradation of many multi-objective evolutionary algorithms (MOEAs). Thereafter, various strategies (e.g., the %$\epsilon %$-dominance and the modified objective calculation) to eliminate DRSs have been proposed. However, these strategies may in turn cause algorithm inefficiency in other aspects. We argue that these coping strategies prevent the algorithm from obtaining some boundary solutions of an extremely convex Pareto front (ECPF). That is, there is a dilemma between eliminating DRSs and preserving boundary solutions of the ECPF. To illustrate such a dilemma, we propose a new multi-objective optimization test problem with the ECPF as well as DRSs. Using this test problem, we investigate the performance of six representative MOEAs in terms of boundary solutions preservation and DRS elimination. The results reveal that it is quite challenging to distinguish between DRSs and boundary solutions of the ECPF. Multi-objective optimization (dpeaa)DE-He213 Dominance resistant solution (dpeaa)DE-He213 Hardly dominated boundary (dpeaa)DE-He213 Extremely convex Pareto front (dpeaa)DE-He213 Li, Qingyan aut Yang, Qite aut Ishibuchi, Hisao aut Enthalten in Complex & intelligent systems Berlin : SpringerOpen, 2015 9(2021), 2 vom: 22. Sept., Seite 1117-1126 (DE-627)835589269 (DE-600)2834740-7 2198-6053 nnns volume:9 year:2021 number:2 day:22 month:09 pages:1117-1126 https://dx.doi.org/10.1007/s40747-021-00543-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 2 22 09 1117-1126 |
language |
English |
source |
Enthalten in Complex & intelligent systems 9(2021), 2 vom: 22. Sept., Seite 1117-1126 volume:9 year:2021 number:2 day:22 month:09 pages:1117-1126 |
sourceStr |
Enthalten in Complex & intelligent systems 9(2021), 2 vom: 22. Sept., Seite 1117-1126 volume:9 year:2021 number:2 day:22 month:09 pages:1117-1126 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Multi-objective optimization Dominance resistant solution Hardly dominated boundary Extremely convex Pareto front |
isfreeaccess_bool |
true |
container_title |
Complex & intelligent systems |
authorswithroles_txt_mv |
Wang, Zhenkun @@aut@@ Li, Qingyan @@aut@@ Yang, Qite @@aut@@ Ishibuchi, Hisao @@aut@@ |
publishDateDaySort_date |
2021-09-22T00:00:00Z |
hierarchy_top_id |
835589269 |
id |
SPR05010053X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR05010053X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230419064804.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230419s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40747-021-00543-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR05010053X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40747-021-00543-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Zhenkun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1152-6780</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The dilemma between eliminating dominance-resistant solutions and preserving boundary solutions of extremely convex Pareto fronts</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract It has been acknowledged that dominance-resistant solutions (DRSs) extensively exist in the feasible region of multi-objective optimization problems. Recent studies show that DRSs can cause serious performance degradation of many multi-objective evolutionary algorithms (MOEAs). Thereafter, various strategies (e.g., the %$\epsilon %$-dominance and the modified objective calculation) to eliminate DRSs have been proposed. However, these strategies may in turn cause algorithm inefficiency in other aspects. We argue that these coping strategies prevent the algorithm from obtaining some boundary solutions of an extremely convex Pareto front (ECPF). That is, there is a dilemma between eliminating DRSs and preserving boundary solutions of the ECPF. To illustrate such a dilemma, we propose a new multi-objective optimization test problem with the ECPF as well as DRSs. Using this test problem, we investigate the performance of six representative MOEAs in terms of boundary solutions preservation and DRS elimination. The results reveal that it is quite challenging to distinguish between DRSs and boundary solutions of the ECPF.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-objective optimization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dominance resistant solution</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hardly dominated boundary</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extremely convex Pareto front</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Qingyan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Qite</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ishibuchi, Hisao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Complex & intelligent systems</subfield><subfield code="d">Berlin : SpringerOpen, 2015</subfield><subfield code="g">9(2021), 2 vom: 22. Sept., Seite 1117-1126</subfield><subfield code="w">(DE-627)835589269</subfield><subfield code="w">(DE-600)2834740-7</subfield><subfield code="x">2198-6053</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2</subfield><subfield code="g">day:22</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1117-1126</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40747-021-00543-2</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="e">2</subfield><subfield code="b">22</subfield><subfield code="c">09</subfield><subfield code="h">1117-1126</subfield></datafield></record></collection>
|
author |
Wang, Zhenkun |
spellingShingle |
Wang, Zhenkun misc Multi-objective optimization misc Dominance resistant solution misc Hardly dominated boundary misc Extremely convex Pareto front The dilemma between eliminating dominance-resistant solutions and preserving boundary solutions of extremely convex Pareto fronts |
authorStr |
Wang, Zhenkun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)835589269 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2198-6053 |
topic_title |
The dilemma between eliminating dominance-resistant solutions and preserving boundary solutions of extremely convex Pareto fronts Multi-objective optimization (dpeaa)DE-He213 Dominance resistant solution (dpeaa)DE-He213 Hardly dominated boundary (dpeaa)DE-He213 Extremely convex Pareto front (dpeaa)DE-He213 |
topic |
misc Multi-objective optimization misc Dominance resistant solution misc Hardly dominated boundary misc Extremely convex Pareto front |
topic_unstemmed |
misc Multi-objective optimization misc Dominance resistant solution misc Hardly dominated boundary misc Extremely convex Pareto front |
topic_browse |
misc Multi-objective optimization misc Dominance resistant solution misc Hardly dominated boundary misc Extremely convex Pareto front |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Complex & intelligent systems |
hierarchy_parent_id |
835589269 |
hierarchy_top_title |
Complex & intelligent systems |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)835589269 (DE-600)2834740-7 |
title |
The dilemma between eliminating dominance-resistant solutions and preserving boundary solutions of extremely convex Pareto fronts |
ctrlnum |
(DE-627)SPR05010053X (SPR)s40747-021-00543-2-e |
title_full |
The dilemma between eliminating dominance-resistant solutions and preserving boundary solutions of extremely convex Pareto fronts |
author_sort |
Wang, Zhenkun |
journal |
Complex & intelligent systems |
journalStr |
Complex & intelligent systems |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
1117 |
author_browse |
Wang, Zhenkun Li, Qingyan Yang, Qite Ishibuchi, Hisao |
container_volume |
9 |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Zhenkun |
doi_str_mv |
10.1007/s40747-021-00543-2 |
normlink |
(ORCID)0000-0003-1152-6780 |
normlink_prefix_str_mv |
(orcid)0000-0003-1152-6780 |
title_sort |
dilemma between eliminating dominance-resistant solutions and preserving boundary solutions of extremely convex pareto fronts |
title_auth |
The dilemma between eliminating dominance-resistant solutions and preserving boundary solutions of extremely convex Pareto fronts |
abstract |
Abstract It has been acknowledged that dominance-resistant solutions (DRSs) extensively exist in the feasible region of multi-objective optimization problems. Recent studies show that DRSs can cause serious performance degradation of many multi-objective evolutionary algorithms (MOEAs). Thereafter, various strategies (e.g., the %$\epsilon %$-dominance and the modified objective calculation) to eliminate DRSs have been proposed. However, these strategies may in turn cause algorithm inefficiency in other aspects. We argue that these coping strategies prevent the algorithm from obtaining some boundary solutions of an extremely convex Pareto front (ECPF). That is, there is a dilemma between eliminating DRSs and preserving boundary solutions of the ECPF. To illustrate such a dilemma, we propose a new multi-objective optimization test problem with the ECPF as well as DRSs. Using this test problem, we investigate the performance of six representative MOEAs in terms of boundary solutions preservation and DRS elimination. The results reveal that it is quite challenging to distinguish between DRSs and boundary solutions of the ECPF. © The Author(s) 2021 |
abstractGer |
Abstract It has been acknowledged that dominance-resistant solutions (DRSs) extensively exist in the feasible region of multi-objective optimization problems. Recent studies show that DRSs can cause serious performance degradation of many multi-objective evolutionary algorithms (MOEAs). Thereafter, various strategies (e.g., the %$\epsilon %$-dominance and the modified objective calculation) to eliminate DRSs have been proposed. However, these strategies may in turn cause algorithm inefficiency in other aspects. We argue that these coping strategies prevent the algorithm from obtaining some boundary solutions of an extremely convex Pareto front (ECPF). That is, there is a dilemma between eliminating DRSs and preserving boundary solutions of the ECPF. To illustrate such a dilemma, we propose a new multi-objective optimization test problem with the ECPF as well as DRSs. Using this test problem, we investigate the performance of six representative MOEAs in terms of boundary solutions preservation and DRS elimination. The results reveal that it is quite challenging to distinguish between DRSs and boundary solutions of the ECPF. © The Author(s) 2021 |
abstract_unstemmed |
Abstract It has been acknowledged that dominance-resistant solutions (DRSs) extensively exist in the feasible region of multi-objective optimization problems. Recent studies show that DRSs can cause serious performance degradation of many multi-objective evolutionary algorithms (MOEAs). Thereafter, various strategies (e.g., the %$\epsilon %$-dominance and the modified objective calculation) to eliminate DRSs have been proposed. However, these strategies may in turn cause algorithm inefficiency in other aspects. We argue that these coping strategies prevent the algorithm from obtaining some boundary solutions of an extremely convex Pareto front (ECPF). That is, there is a dilemma between eliminating DRSs and preserving boundary solutions of the ECPF. To illustrate such a dilemma, we propose a new multi-objective optimization test problem with the ECPF as well as DRSs. Using this test problem, we investigate the performance of six representative MOEAs in terms of boundary solutions preservation and DRS elimination. The results reveal that it is quite challenging to distinguish between DRSs and boundary solutions of the ECPF. © The Author(s) 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
The dilemma between eliminating dominance-resistant solutions and preserving boundary solutions of extremely convex Pareto fronts |
url |
https://dx.doi.org/10.1007/s40747-021-00543-2 |
remote_bool |
true |
author2 |
Li, Qingyan Yang, Qite Ishibuchi, Hisao |
author2Str |
Li, Qingyan Yang, Qite Ishibuchi, Hisao |
ppnlink |
835589269 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40747-021-00543-2 |
up_date |
2024-07-03T13:22:47.555Z |
_version_ |
1803564317472194561 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR05010053X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230419064804.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230419s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40747-021-00543-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR05010053X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40747-021-00543-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Zhenkun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1152-6780</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The dilemma between eliminating dominance-resistant solutions and preserving boundary solutions of extremely convex Pareto fronts</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract It has been acknowledged that dominance-resistant solutions (DRSs) extensively exist in the feasible region of multi-objective optimization problems. Recent studies show that DRSs can cause serious performance degradation of many multi-objective evolutionary algorithms (MOEAs). Thereafter, various strategies (e.g., the %$\epsilon %$-dominance and the modified objective calculation) to eliminate DRSs have been proposed. However, these strategies may in turn cause algorithm inefficiency in other aspects. We argue that these coping strategies prevent the algorithm from obtaining some boundary solutions of an extremely convex Pareto front (ECPF). That is, there is a dilemma between eliminating DRSs and preserving boundary solutions of the ECPF. To illustrate such a dilemma, we propose a new multi-objective optimization test problem with the ECPF as well as DRSs. Using this test problem, we investigate the performance of six representative MOEAs in terms of boundary solutions preservation and DRS elimination. The results reveal that it is quite challenging to distinguish between DRSs and boundary solutions of the ECPF.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-objective optimization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dominance resistant solution</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hardly dominated boundary</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extremely convex Pareto front</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Qingyan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Qite</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ishibuchi, Hisao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Complex & intelligent systems</subfield><subfield code="d">Berlin : SpringerOpen, 2015</subfield><subfield code="g">9(2021), 2 vom: 22. Sept., Seite 1117-1126</subfield><subfield code="w">(DE-627)835589269</subfield><subfield code="w">(DE-600)2834740-7</subfield><subfield code="x">2198-6053</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2</subfield><subfield code="g">day:22</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1117-1126</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40747-021-00543-2</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="e">2</subfield><subfield code="b">22</subfield><subfield code="c">09</subfield><subfield code="h">1117-1126</subfield></datafield></record></collection>
|
score |
7.399728 |