A study of sparse representation-based classification for biometric verification based on both handcrafted and deep learning features
Abstract Biometric verification is generally considered a one-to-one matching task. In contrast, in this paper, we argue that the one-to-many competitive matching via sparse representation-based classification (SRC) can bring enhanced verification security and accuracy. SRC-based verification introd...
Ausführliche Beschreibung
Autor*in: |
Huang, Zengxi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Complex & intelligent systems - Berlin : SpringerOpen, 2015, 9(2022), 2 vom: 22. Sept., Seite 1583-1603 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2022 ; number:2 ; day:22 ; month:09 ; pages:1583-1603 |
Links: |
---|
DOI / URN: |
10.1007/s40747-022-00868-6 |
---|
Katalog-ID: |
SPR050100815 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR050100815 | ||
003 | DE-627 | ||
005 | 20230419064805.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230419s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40747-022-00868-6 |2 doi | |
035 | |a (DE-627)SPR050100815 | ||
035 | |a (SPR)s40747-022-00868-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Huang, Zengxi |e verfasserin |4 aut | |
245 | 1 | 2 | |a A study of sparse representation-based classification for biometric verification based on both handcrafted and deep learning features |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Abstract Biometric verification is generally considered a one-to-one matching task. In contrast, in this paper, we argue that the one-to-many competitive matching via sparse representation-based classification (SRC) can bring enhanced verification security and accuracy. SRC-based verification introduces non-target subjects to construct dynamic dictionary together with the client claimed and encodes the submitted feature. Owing to the sparsity constraint, a client can only be accepted when it defeats almost all non-target classes and wins a convincing sparsity-based matching score. This will make the verification more secure than those using one-to-one matching. However, intense competition may also lead to extremely inferior genuine scores when data degeneration occurs. Motivated by the latent benefits and concerns, we study SRC-based verification using two sparsity-based matching measures, three biometric modalities (i.e., face, palmprint, and ear) and their multimodal combinations based on both handcrafted and deep learning features. We finally approach a comprehensive study of SRC-based verification, including its methodology, characteristics, merits, challenges and the directions to resolve. Extensive experimental results demonstrate the superiority of SRC-based verification, especially when using multimodal fusion and advanced deep learning features. The concerns about its efficiency in large-scale user applications can be readily solved using a simple dictionary shrinkage strategy based on cluster analysis and random selection of non-target subjects. | ||
650 | 4 | |a Biometric verification |7 (dpeaa)DE-He213 | |
650 | 4 | |a Sparse representation |7 (dpeaa)DE-He213 | |
650 | 4 | |a One-to-many matching |7 (dpeaa)DE-He213 | |
650 | 4 | |a Sparsity-based matching measures |7 (dpeaa)DE-He213 | |
650 | 4 | |a Multimodal biometrics |7 (dpeaa)DE-He213 | |
650 | 4 | |a Deep learning |7 (dpeaa)DE-He213 | |
700 | 1 | |a Wang, Jie |4 aut | |
700 | 1 | |a Wang, Xiaoming |4 aut | |
700 | 1 | |a Song, Xiaoning |4 aut | |
700 | 1 | |a Chen, Mingjin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Complex & intelligent systems |d Berlin : SpringerOpen, 2015 |g 9(2022), 2 vom: 22. Sept., Seite 1583-1603 |w (DE-627)835589269 |w (DE-600)2834740-7 |x 2198-6053 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2022 |g number:2 |g day:22 |g month:09 |g pages:1583-1603 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40747-022-00868-6 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2022 |e 2 |b 22 |c 09 |h 1583-1603 |
author_variant |
z h zh j w jw x w xw x s xs m c mc |
---|---|
matchkey_str |
article:21986053:2022----::suyfpreersnainaecasfctofrimtivrfctobsdnohad |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s40747-022-00868-6 doi (DE-627)SPR050100815 (SPR)s40747-022-00868-6-e DE-627 ger DE-627 rakwb eng Huang, Zengxi verfasserin aut A study of sparse representation-based classification for biometric verification based on both handcrafted and deep learning features 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Biometric verification is generally considered a one-to-one matching task. In contrast, in this paper, we argue that the one-to-many competitive matching via sparse representation-based classification (SRC) can bring enhanced verification security and accuracy. SRC-based verification introduces non-target subjects to construct dynamic dictionary together with the client claimed and encodes the submitted feature. Owing to the sparsity constraint, a client can only be accepted when it defeats almost all non-target classes and wins a convincing sparsity-based matching score. This will make the verification more secure than those using one-to-one matching. However, intense competition may also lead to extremely inferior genuine scores when data degeneration occurs. Motivated by the latent benefits and concerns, we study SRC-based verification using two sparsity-based matching measures, three biometric modalities (i.e., face, palmprint, and ear) and their multimodal combinations based on both handcrafted and deep learning features. We finally approach a comprehensive study of SRC-based verification, including its methodology, characteristics, merits, challenges and the directions to resolve. Extensive experimental results demonstrate the superiority of SRC-based verification, especially when using multimodal fusion and advanced deep learning features. The concerns about its efficiency in large-scale user applications can be readily solved using a simple dictionary shrinkage strategy based on cluster analysis and random selection of non-target subjects. Biometric verification (dpeaa)DE-He213 Sparse representation (dpeaa)DE-He213 One-to-many matching (dpeaa)DE-He213 Sparsity-based matching measures (dpeaa)DE-He213 Multimodal biometrics (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Wang, Jie aut Wang, Xiaoming aut Song, Xiaoning aut Chen, Mingjin aut Enthalten in Complex & intelligent systems Berlin : SpringerOpen, 2015 9(2022), 2 vom: 22. Sept., Seite 1583-1603 (DE-627)835589269 (DE-600)2834740-7 2198-6053 nnns volume:9 year:2022 number:2 day:22 month:09 pages:1583-1603 https://dx.doi.org/10.1007/s40747-022-00868-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 2 22 09 1583-1603 |
spelling |
10.1007/s40747-022-00868-6 doi (DE-627)SPR050100815 (SPR)s40747-022-00868-6-e DE-627 ger DE-627 rakwb eng Huang, Zengxi verfasserin aut A study of sparse representation-based classification for biometric verification based on both handcrafted and deep learning features 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Biometric verification is generally considered a one-to-one matching task. In contrast, in this paper, we argue that the one-to-many competitive matching via sparse representation-based classification (SRC) can bring enhanced verification security and accuracy. SRC-based verification introduces non-target subjects to construct dynamic dictionary together with the client claimed and encodes the submitted feature. Owing to the sparsity constraint, a client can only be accepted when it defeats almost all non-target classes and wins a convincing sparsity-based matching score. This will make the verification more secure than those using one-to-one matching. However, intense competition may also lead to extremely inferior genuine scores when data degeneration occurs. Motivated by the latent benefits and concerns, we study SRC-based verification using two sparsity-based matching measures, three biometric modalities (i.e., face, palmprint, and ear) and their multimodal combinations based on both handcrafted and deep learning features. We finally approach a comprehensive study of SRC-based verification, including its methodology, characteristics, merits, challenges and the directions to resolve. Extensive experimental results demonstrate the superiority of SRC-based verification, especially when using multimodal fusion and advanced deep learning features. The concerns about its efficiency in large-scale user applications can be readily solved using a simple dictionary shrinkage strategy based on cluster analysis and random selection of non-target subjects. Biometric verification (dpeaa)DE-He213 Sparse representation (dpeaa)DE-He213 One-to-many matching (dpeaa)DE-He213 Sparsity-based matching measures (dpeaa)DE-He213 Multimodal biometrics (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Wang, Jie aut Wang, Xiaoming aut Song, Xiaoning aut Chen, Mingjin aut Enthalten in Complex & intelligent systems Berlin : SpringerOpen, 2015 9(2022), 2 vom: 22. Sept., Seite 1583-1603 (DE-627)835589269 (DE-600)2834740-7 2198-6053 nnns volume:9 year:2022 number:2 day:22 month:09 pages:1583-1603 https://dx.doi.org/10.1007/s40747-022-00868-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 2 22 09 1583-1603 |
allfields_unstemmed |
10.1007/s40747-022-00868-6 doi (DE-627)SPR050100815 (SPR)s40747-022-00868-6-e DE-627 ger DE-627 rakwb eng Huang, Zengxi verfasserin aut A study of sparse representation-based classification for biometric verification based on both handcrafted and deep learning features 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Biometric verification is generally considered a one-to-one matching task. In contrast, in this paper, we argue that the one-to-many competitive matching via sparse representation-based classification (SRC) can bring enhanced verification security and accuracy. SRC-based verification introduces non-target subjects to construct dynamic dictionary together with the client claimed and encodes the submitted feature. Owing to the sparsity constraint, a client can only be accepted when it defeats almost all non-target classes and wins a convincing sparsity-based matching score. This will make the verification more secure than those using one-to-one matching. However, intense competition may also lead to extremely inferior genuine scores when data degeneration occurs. Motivated by the latent benefits and concerns, we study SRC-based verification using two sparsity-based matching measures, three biometric modalities (i.e., face, palmprint, and ear) and their multimodal combinations based on both handcrafted and deep learning features. We finally approach a comprehensive study of SRC-based verification, including its methodology, characteristics, merits, challenges and the directions to resolve. Extensive experimental results demonstrate the superiority of SRC-based verification, especially when using multimodal fusion and advanced deep learning features. The concerns about its efficiency in large-scale user applications can be readily solved using a simple dictionary shrinkage strategy based on cluster analysis and random selection of non-target subjects. Biometric verification (dpeaa)DE-He213 Sparse representation (dpeaa)DE-He213 One-to-many matching (dpeaa)DE-He213 Sparsity-based matching measures (dpeaa)DE-He213 Multimodal biometrics (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Wang, Jie aut Wang, Xiaoming aut Song, Xiaoning aut Chen, Mingjin aut Enthalten in Complex & intelligent systems Berlin : SpringerOpen, 2015 9(2022), 2 vom: 22. Sept., Seite 1583-1603 (DE-627)835589269 (DE-600)2834740-7 2198-6053 nnns volume:9 year:2022 number:2 day:22 month:09 pages:1583-1603 https://dx.doi.org/10.1007/s40747-022-00868-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 2 22 09 1583-1603 |
allfieldsGer |
10.1007/s40747-022-00868-6 doi (DE-627)SPR050100815 (SPR)s40747-022-00868-6-e DE-627 ger DE-627 rakwb eng Huang, Zengxi verfasserin aut A study of sparse representation-based classification for biometric verification based on both handcrafted and deep learning features 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Biometric verification is generally considered a one-to-one matching task. In contrast, in this paper, we argue that the one-to-many competitive matching via sparse representation-based classification (SRC) can bring enhanced verification security and accuracy. SRC-based verification introduces non-target subjects to construct dynamic dictionary together with the client claimed and encodes the submitted feature. Owing to the sparsity constraint, a client can only be accepted when it defeats almost all non-target classes and wins a convincing sparsity-based matching score. This will make the verification more secure than those using one-to-one matching. However, intense competition may also lead to extremely inferior genuine scores when data degeneration occurs. Motivated by the latent benefits and concerns, we study SRC-based verification using two sparsity-based matching measures, three biometric modalities (i.e., face, palmprint, and ear) and their multimodal combinations based on both handcrafted and deep learning features. We finally approach a comprehensive study of SRC-based verification, including its methodology, characteristics, merits, challenges and the directions to resolve. Extensive experimental results demonstrate the superiority of SRC-based verification, especially when using multimodal fusion and advanced deep learning features. The concerns about its efficiency in large-scale user applications can be readily solved using a simple dictionary shrinkage strategy based on cluster analysis and random selection of non-target subjects. Biometric verification (dpeaa)DE-He213 Sparse representation (dpeaa)DE-He213 One-to-many matching (dpeaa)DE-He213 Sparsity-based matching measures (dpeaa)DE-He213 Multimodal biometrics (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Wang, Jie aut Wang, Xiaoming aut Song, Xiaoning aut Chen, Mingjin aut Enthalten in Complex & intelligent systems Berlin : SpringerOpen, 2015 9(2022), 2 vom: 22. Sept., Seite 1583-1603 (DE-627)835589269 (DE-600)2834740-7 2198-6053 nnns volume:9 year:2022 number:2 day:22 month:09 pages:1583-1603 https://dx.doi.org/10.1007/s40747-022-00868-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 2 22 09 1583-1603 |
allfieldsSound |
10.1007/s40747-022-00868-6 doi (DE-627)SPR050100815 (SPR)s40747-022-00868-6-e DE-627 ger DE-627 rakwb eng Huang, Zengxi verfasserin aut A study of sparse representation-based classification for biometric verification based on both handcrafted and deep learning features 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Biometric verification is generally considered a one-to-one matching task. In contrast, in this paper, we argue that the one-to-many competitive matching via sparse representation-based classification (SRC) can bring enhanced verification security and accuracy. SRC-based verification introduces non-target subjects to construct dynamic dictionary together with the client claimed and encodes the submitted feature. Owing to the sparsity constraint, a client can only be accepted when it defeats almost all non-target classes and wins a convincing sparsity-based matching score. This will make the verification more secure than those using one-to-one matching. However, intense competition may also lead to extremely inferior genuine scores when data degeneration occurs. Motivated by the latent benefits and concerns, we study SRC-based verification using two sparsity-based matching measures, three biometric modalities (i.e., face, palmprint, and ear) and their multimodal combinations based on both handcrafted and deep learning features. We finally approach a comprehensive study of SRC-based verification, including its methodology, characteristics, merits, challenges and the directions to resolve. Extensive experimental results demonstrate the superiority of SRC-based verification, especially when using multimodal fusion and advanced deep learning features. The concerns about its efficiency in large-scale user applications can be readily solved using a simple dictionary shrinkage strategy based on cluster analysis and random selection of non-target subjects. Biometric verification (dpeaa)DE-He213 Sparse representation (dpeaa)DE-He213 One-to-many matching (dpeaa)DE-He213 Sparsity-based matching measures (dpeaa)DE-He213 Multimodal biometrics (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Wang, Jie aut Wang, Xiaoming aut Song, Xiaoning aut Chen, Mingjin aut Enthalten in Complex & intelligent systems Berlin : SpringerOpen, 2015 9(2022), 2 vom: 22. Sept., Seite 1583-1603 (DE-627)835589269 (DE-600)2834740-7 2198-6053 nnns volume:9 year:2022 number:2 day:22 month:09 pages:1583-1603 https://dx.doi.org/10.1007/s40747-022-00868-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 2 22 09 1583-1603 |
language |
English |
source |
Enthalten in Complex & intelligent systems 9(2022), 2 vom: 22. Sept., Seite 1583-1603 volume:9 year:2022 number:2 day:22 month:09 pages:1583-1603 |
sourceStr |
Enthalten in Complex & intelligent systems 9(2022), 2 vom: 22. Sept., Seite 1583-1603 volume:9 year:2022 number:2 day:22 month:09 pages:1583-1603 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Biometric verification Sparse representation One-to-many matching Sparsity-based matching measures Multimodal biometrics Deep learning |
isfreeaccess_bool |
true |
container_title |
Complex & intelligent systems |
authorswithroles_txt_mv |
Huang, Zengxi @@aut@@ Wang, Jie @@aut@@ Wang, Xiaoming @@aut@@ Song, Xiaoning @@aut@@ Chen, Mingjin @@aut@@ |
publishDateDaySort_date |
2022-09-22T00:00:00Z |
hierarchy_top_id |
835589269 |
id |
SPR050100815 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050100815</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230419064805.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230419s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40747-022-00868-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050100815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40747-022-00868-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Zengxi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A study of sparse representation-based classification for biometric verification based on both handcrafted and deep learning features</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Biometric verification is generally considered a one-to-one matching task. In contrast, in this paper, we argue that the one-to-many competitive matching via sparse representation-based classification (SRC) can bring enhanced verification security and accuracy. SRC-based verification introduces non-target subjects to construct dynamic dictionary together with the client claimed and encodes the submitted feature. Owing to the sparsity constraint, a client can only be accepted when it defeats almost all non-target classes and wins a convincing sparsity-based matching score. This will make the verification more secure than those using one-to-one matching. However, intense competition may also lead to extremely inferior genuine scores when data degeneration occurs. Motivated by the latent benefits and concerns, we study SRC-based verification using two sparsity-based matching measures, three biometric modalities (i.e., face, palmprint, and ear) and their multimodal combinations based on both handcrafted and deep learning features. We finally approach a comprehensive study of SRC-based verification, including its methodology, characteristics, merits, challenges and the directions to resolve. Extensive experimental results demonstrate the superiority of SRC-based verification, especially when using multimodal fusion and advanced deep learning features. The concerns about its efficiency in large-scale user applications can be readily solved using a simple dictionary shrinkage strategy based on cluster analysis and random selection of non-target subjects.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biometric verification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sparse representation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">One-to-many matching</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sparsity-based matching measures</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multimodal biometrics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xiaoming</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Xiaoning</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Mingjin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Complex & intelligent systems</subfield><subfield code="d">Berlin : SpringerOpen, 2015</subfield><subfield code="g">9(2022), 2 vom: 22. Sept., Seite 1583-1603</subfield><subfield code="w">(DE-627)835589269</subfield><subfield code="w">(DE-600)2834740-7</subfield><subfield code="x">2198-6053</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">day:22</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1583-1603</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40747-022-00868-6</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="b">22</subfield><subfield code="c">09</subfield><subfield code="h">1583-1603</subfield></datafield></record></collection>
|
author |
Huang, Zengxi |
spellingShingle |
Huang, Zengxi misc Biometric verification misc Sparse representation misc One-to-many matching misc Sparsity-based matching measures misc Multimodal biometrics misc Deep learning A study of sparse representation-based classification for biometric verification based on both handcrafted and deep learning features |
authorStr |
Huang, Zengxi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)835589269 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2198-6053 |
topic_title |
A study of sparse representation-based classification for biometric verification based on both handcrafted and deep learning features Biometric verification (dpeaa)DE-He213 Sparse representation (dpeaa)DE-He213 One-to-many matching (dpeaa)DE-He213 Sparsity-based matching measures (dpeaa)DE-He213 Multimodal biometrics (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 |
topic |
misc Biometric verification misc Sparse representation misc One-to-many matching misc Sparsity-based matching measures misc Multimodal biometrics misc Deep learning |
topic_unstemmed |
misc Biometric verification misc Sparse representation misc One-to-many matching misc Sparsity-based matching measures misc Multimodal biometrics misc Deep learning |
topic_browse |
misc Biometric verification misc Sparse representation misc One-to-many matching misc Sparsity-based matching measures misc Multimodal biometrics misc Deep learning |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Complex & intelligent systems |
hierarchy_parent_id |
835589269 |
hierarchy_top_title |
Complex & intelligent systems |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)835589269 (DE-600)2834740-7 |
title |
A study of sparse representation-based classification for biometric verification based on both handcrafted and deep learning features |
ctrlnum |
(DE-627)SPR050100815 (SPR)s40747-022-00868-6-e |
title_full |
A study of sparse representation-based classification for biometric verification based on both handcrafted and deep learning features |
author_sort |
Huang, Zengxi |
journal |
Complex & intelligent systems |
journalStr |
Complex & intelligent systems |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
1583 |
author_browse |
Huang, Zengxi Wang, Jie Wang, Xiaoming Song, Xiaoning Chen, Mingjin |
container_volume |
9 |
format_se |
Elektronische Aufsätze |
author-letter |
Huang, Zengxi |
doi_str_mv |
10.1007/s40747-022-00868-6 |
title_sort |
study of sparse representation-based classification for biometric verification based on both handcrafted and deep learning features |
title_auth |
A study of sparse representation-based classification for biometric verification based on both handcrafted and deep learning features |
abstract |
Abstract Biometric verification is generally considered a one-to-one matching task. In contrast, in this paper, we argue that the one-to-many competitive matching via sparse representation-based classification (SRC) can bring enhanced verification security and accuracy. SRC-based verification introduces non-target subjects to construct dynamic dictionary together with the client claimed and encodes the submitted feature. Owing to the sparsity constraint, a client can only be accepted when it defeats almost all non-target classes and wins a convincing sparsity-based matching score. This will make the verification more secure than those using one-to-one matching. However, intense competition may also lead to extremely inferior genuine scores when data degeneration occurs. Motivated by the latent benefits and concerns, we study SRC-based verification using two sparsity-based matching measures, three biometric modalities (i.e., face, palmprint, and ear) and their multimodal combinations based on both handcrafted and deep learning features. We finally approach a comprehensive study of SRC-based verification, including its methodology, characteristics, merits, challenges and the directions to resolve. Extensive experimental results demonstrate the superiority of SRC-based verification, especially when using multimodal fusion and advanced deep learning features. The concerns about its efficiency in large-scale user applications can be readily solved using a simple dictionary shrinkage strategy based on cluster analysis and random selection of non-target subjects. © The Author(s) 2022 |
abstractGer |
Abstract Biometric verification is generally considered a one-to-one matching task. In contrast, in this paper, we argue that the one-to-many competitive matching via sparse representation-based classification (SRC) can bring enhanced verification security and accuracy. SRC-based verification introduces non-target subjects to construct dynamic dictionary together with the client claimed and encodes the submitted feature. Owing to the sparsity constraint, a client can only be accepted when it defeats almost all non-target classes and wins a convincing sparsity-based matching score. This will make the verification more secure than those using one-to-one matching. However, intense competition may also lead to extremely inferior genuine scores when data degeneration occurs. Motivated by the latent benefits and concerns, we study SRC-based verification using two sparsity-based matching measures, three biometric modalities (i.e., face, palmprint, and ear) and their multimodal combinations based on both handcrafted and deep learning features. We finally approach a comprehensive study of SRC-based verification, including its methodology, characteristics, merits, challenges and the directions to resolve. Extensive experimental results demonstrate the superiority of SRC-based verification, especially when using multimodal fusion and advanced deep learning features. The concerns about its efficiency in large-scale user applications can be readily solved using a simple dictionary shrinkage strategy based on cluster analysis and random selection of non-target subjects. © The Author(s) 2022 |
abstract_unstemmed |
Abstract Biometric verification is generally considered a one-to-one matching task. In contrast, in this paper, we argue that the one-to-many competitive matching via sparse representation-based classification (SRC) can bring enhanced verification security and accuracy. SRC-based verification introduces non-target subjects to construct dynamic dictionary together with the client claimed and encodes the submitted feature. Owing to the sparsity constraint, a client can only be accepted when it defeats almost all non-target classes and wins a convincing sparsity-based matching score. This will make the verification more secure than those using one-to-one matching. However, intense competition may also lead to extremely inferior genuine scores when data degeneration occurs. Motivated by the latent benefits and concerns, we study SRC-based verification using two sparsity-based matching measures, three biometric modalities (i.e., face, palmprint, and ear) and their multimodal combinations based on both handcrafted and deep learning features. We finally approach a comprehensive study of SRC-based verification, including its methodology, characteristics, merits, challenges and the directions to resolve. Extensive experimental results demonstrate the superiority of SRC-based verification, especially when using multimodal fusion and advanced deep learning features. The concerns about its efficiency in large-scale user applications can be readily solved using a simple dictionary shrinkage strategy based on cluster analysis and random selection of non-target subjects. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
A study of sparse representation-based classification for biometric verification based on both handcrafted and deep learning features |
url |
https://dx.doi.org/10.1007/s40747-022-00868-6 |
remote_bool |
true |
author2 |
Wang, Jie Wang, Xiaoming Song, Xiaoning Chen, Mingjin |
author2Str |
Wang, Jie Wang, Xiaoming Song, Xiaoning Chen, Mingjin |
ppnlink |
835589269 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40747-022-00868-6 |
up_date |
2024-07-03T13:22:54.465Z |
_version_ |
1803564324717854720 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050100815</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230419064805.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230419s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40747-022-00868-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050100815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40747-022-00868-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Zengxi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A study of sparse representation-based classification for biometric verification based on both handcrafted and deep learning features</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Biometric verification is generally considered a one-to-one matching task. In contrast, in this paper, we argue that the one-to-many competitive matching via sparse representation-based classification (SRC) can bring enhanced verification security and accuracy. SRC-based verification introduces non-target subjects to construct dynamic dictionary together with the client claimed and encodes the submitted feature. Owing to the sparsity constraint, a client can only be accepted when it defeats almost all non-target classes and wins a convincing sparsity-based matching score. This will make the verification more secure than those using one-to-one matching. However, intense competition may also lead to extremely inferior genuine scores when data degeneration occurs. Motivated by the latent benefits and concerns, we study SRC-based verification using two sparsity-based matching measures, three biometric modalities (i.e., face, palmprint, and ear) and their multimodal combinations based on both handcrafted and deep learning features. We finally approach a comprehensive study of SRC-based verification, including its methodology, characteristics, merits, challenges and the directions to resolve. Extensive experimental results demonstrate the superiority of SRC-based verification, especially when using multimodal fusion and advanced deep learning features. The concerns about its efficiency in large-scale user applications can be readily solved using a simple dictionary shrinkage strategy based on cluster analysis and random selection of non-target subjects.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biometric verification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sparse representation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">One-to-many matching</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sparsity-based matching measures</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multimodal biometrics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xiaoming</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Xiaoning</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Mingjin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Complex & intelligent systems</subfield><subfield code="d">Berlin : SpringerOpen, 2015</subfield><subfield code="g">9(2022), 2 vom: 22. Sept., Seite 1583-1603</subfield><subfield code="w">(DE-627)835589269</subfield><subfield code="w">(DE-600)2834740-7</subfield><subfield code="x">2198-6053</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">day:22</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1583-1603</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40747-022-00868-6</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="b">22</subfield><subfield code="c">09</subfield><subfield code="h">1583-1603</subfield></datafield></record></collection>
|
score |
7.4024982 |