Quantitative prediction of radiographic progression in patients with axial spondyloarthritis using neural network model in a real-world setting

Background Predicting radiographic progression in axial spondyloarthritis (axSpA) remains limited because of the complex interaction between multiple associated factors and individual variability in real-world settings. Hence, we tested the feasibility of artificial neural network (ANN) models to pr...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Baek, In-Woon [verfasserIn]

Jung, Seung Min

Park, Yune-Jung

Park, Kyung-Su

Kim, Ki-Jo

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Axial spondyloarthritis

Radiographic progression

Artificial neural network

Quantitative prediction

Real-world setting

Anmerkung:

© The Author(s) 2023

Übergeordnetes Werk:

Enthalten in: Arthritis Research & Therapy - London : BioMed Central, 1999, 25(2023), 1 vom: 20. Apr.

Übergeordnetes Werk:

volume:25 ; year:2023 ; number:1 ; day:20 ; month:04

Links:

Volltext

DOI / URN:

10.1186/s13075-023-03050-6

Katalog-ID:

SPR050128337

Nicht das Richtige dabei?

Schreiben Sie uns!