Dynamics of the interaction of tetracycline with a monolayer of model cell membrane using VSFG spectroscopy
Abstract The knowledge of interaction of a drug with the membrane phospholipids is crucial to decipher its penetration mechanism inside the cell. Tetracycline is a widely used antibiotic effective against various classes of bacteria. In this work, we have employed vibrational sum-frequency generatio...
Ausführliche Beschreibung
Autor*in: |
Virmani, A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Indian Association for the Cultivation of Science 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Indian journal of physics - New Delhi : Springer India, 2009, 97(2022), 6 vom: 12. Nov., Seite 1697-1706 |
---|---|
Übergeordnetes Werk: |
volume:97 ; year:2022 ; number:6 ; day:12 ; month:11 ; pages:1697-1706 |
Links: |
---|
DOI / URN: |
10.1007/s12648-022-02516-8 |
---|
Katalog-ID: |
SPR050230492 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR050230492 | ||
003 | DE-627 | ||
005 | 20230429064745.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230429s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s12648-022-02516-8 |2 doi | |
035 | |a (DE-627)SPR050230492 | ||
035 | |a (SPR)s12648-022-02516-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Virmani, A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dynamics of the interaction of tetracycline with a monolayer of model cell membrane using VSFG spectroscopy |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Indian Association for the Cultivation of Science 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract The knowledge of interaction of a drug with the membrane phospholipids is crucial to decipher its penetration mechanism inside the cell. Tetracycline is a widely used antibiotic effective against various classes of bacteria. In this work, we have employed vibrational sum-frequency generation (VSFG) spectroscopy to understand the molecular-level interaction of tetracycline with a model phospholipid monolayer, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), at the air–water interface. Results suggest that tetracycline molecules are not present on the topmost surface of the water and remain mostly in the bulk aqueous phase. However, due to charge–dipole interaction, the orientation of water molecules in the subphase immediately beneath the topmost layer gets randomized due to its presence. Due to their long hydrophobic aliphatic chains, DPPC molecules are surface active and replace the topmost water layer and increase the polar orientation of interfacial water molecules by generating electric field across the interface. In the presence of the DPPC monolayer, tetracycline molecules get adsorbed from the bulk water to the interface due to electrostatic interactions with the ionic headgroups of DPPC. This interaction also results in the ordering of hydrophobic chains as confirmed by an increase in the VSFG intensity of $ CH_{3} $ groups of the hydrocarbon chains. We have been successful in unraveling the changes induced in the hydrocarbon backbone of DPPC as a result of such interaction. The water molecules associated with the DPPC monolayer also get randomized in presence of tetracycline molecules. We, for the first time, have studied the dynamics of interfacial water molecules in presence of tetracycline and tetracycline-DPPC environment. | ||
650 | 4 | |a Sum-frequency generation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Air–water interface |7 (dpeaa)DE-He213 | |
650 | 4 | |a Lipid monolayer |7 (dpeaa)DE-He213 | |
650 | 4 | |a Tetracycline |7 (dpeaa)DE-He213 | |
650 | 4 | |a Surface active |7 (dpeaa)DE-He213 | |
700 | 1 | |a Saha, A. |0 (orcid)0000-0002-6274-5599 |4 aut | |
700 | 1 | |a Sengupta, S. |4 aut | |
700 | 1 | |a Kumar, A. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Indian journal of physics |d New Delhi : Springer India, 2009 |g 97(2022), 6 vom: 12. Nov., Seite 1697-1706 |w (DE-627)606030921 |w (DE-600)2508021-0 |x 0974-9845 |7 nnns |
773 | 1 | 8 | |g volume:97 |g year:2022 |g number:6 |g day:12 |g month:11 |g pages:1697-1706 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s12648-022-02516-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 97 |j 2022 |e 6 |b 12 |c 11 |h 1697-1706 |
author_variant |
a v av a s as s s ss a k ak |
---|---|
matchkey_str |
article:09749845:2022----::yaisfhitrcinferccieihmnlyrfoeclmmr |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s12648-022-02516-8 doi (DE-627)SPR050230492 (SPR)s12648-022-02516-8-e DE-627 ger DE-627 rakwb eng Virmani, A. verfasserin aut Dynamics of the interaction of tetracycline with a monolayer of model cell membrane using VSFG spectroscopy 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Indian Association for the Cultivation of Science 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The knowledge of interaction of a drug with the membrane phospholipids is crucial to decipher its penetration mechanism inside the cell. Tetracycline is a widely used antibiotic effective against various classes of bacteria. In this work, we have employed vibrational sum-frequency generation (VSFG) spectroscopy to understand the molecular-level interaction of tetracycline with a model phospholipid monolayer, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), at the air–water interface. Results suggest that tetracycline molecules are not present on the topmost surface of the water and remain mostly in the bulk aqueous phase. However, due to charge–dipole interaction, the orientation of water molecules in the subphase immediately beneath the topmost layer gets randomized due to its presence. Due to their long hydrophobic aliphatic chains, DPPC molecules are surface active and replace the topmost water layer and increase the polar orientation of interfacial water molecules by generating electric field across the interface. In the presence of the DPPC monolayer, tetracycline molecules get adsorbed from the bulk water to the interface due to electrostatic interactions with the ionic headgroups of DPPC. This interaction also results in the ordering of hydrophobic chains as confirmed by an increase in the VSFG intensity of $ CH_{3} $ groups of the hydrocarbon chains. We have been successful in unraveling the changes induced in the hydrocarbon backbone of DPPC as a result of such interaction. The water molecules associated with the DPPC monolayer also get randomized in presence of tetracycline molecules. We, for the first time, have studied the dynamics of interfacial water molecules in presence of tetracycline and tetracycline-DPPC environment. Sum-frequency generation (dpeaa)DE-He213 Air–water interface (dpeaa)DE-He213 Lipid monolayer (dpeaa)DE-He213 Tetracycline (dpeaa)DE-He213 Surface active (dpeaa)DE-He213 Saha, A. (orcid)0000-0002-6274-5599 aut Sengupta, S. aut Kumar, A. aut Enthalten in Indian journal of physics New Delhi : Springer India, 2009 97(2022), 6 vom: 12. Nov., Seite 1697-1706 (DE-627)606030921 (DE-600)2508021-0 0974-9845 nnns volume:97 year:2022 number:6 day:12 month:11 pages:1697-1706 https://dx.doi.org/10.1007/s12648-022-02516-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 97 2022 6 12 11 1697-1706 |
spelling |
10.1007/s12648-022-02516-8 doi (DE-627)SPR050230492 (SPR)s12648-022-02516-8-e DE-627 ger DE-627 rakwb eng Virmani, A. verfasserin aut Dynamics of the interaction of tetracycline with a monolayer of model cell membrane using VSFG spectroscopy 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Indian Association for the Cultivation of Science 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The knowledge of interaction of a drug with the membrane phospholipids is crucial to decipher its penetration mechanism inside the cell. Tetracycline is a widely used antibiotic effective against various classes of bacteria. In this work, we have employed vibrational sum-frequency generation (VSFG) spectroscopy to understand the molecular-level interaction of tetracycline with a model phospholipid monolayer, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), at the air–water interface. Results suggest that tetracycline molecules are not present on the topmost surface of the water and remain mostly in the bulk aqueous phase. However, due to charge–dipole interaction, the orientation of water molecules in the subphase immediately beneath the topmost layer gets randomized due to its presence. Due to their long hydrophobic aliphatic chains, DPPC molecules are surface active and replace the topmost water layer and increase the polar orientation of interfacial water molecules by generating electric field across the interface. In the presence of the DPPC monolayer, tetracycline molecules get adsorbed from the bulk water to the interface due to electrostatic interactions with the ionic headgroups of DPPC. This interaction also results in the ordering of hydrophobic chains as confirmed by an increase in the VSFG intensity of $ CH_{3} $ groups of the hydrocarbon chains. We have been successful in unraveling the changes induced in the hydrocarbon backbone of DPPC as a result of such interaction. The water molecules associated with the DPPC monolayer also get randomized in presence of tetracycline molecules. We, for the first time, have studied the dynamics of interfacial water molecules in presence of tetracycline and tetracycline-DPPC environment. Sum-frequency generation (dpeaa)DE-He213 Air–water interface (dpeaa)DE-He213 Lipid monolayer (dpeaa)DE-He213 Tetracycline (dpeaa)DE-He213 Surface active (dpeaa)DE-He213 Saha, A. (orcid)0000-0002-6274-5599 aut Sengupta, S. aut Kumar, A. aut Enthalten in Indian journal of physics New Delhi : Springer India, 2009 97(2022), 6 vom: 12. Nov., Seite 1697-1706 (DE-627)606030921 (DE-600)2508021-0 0974-9845 nnns volume:97 year:2022 number:6 day:12 month:11 pages:1697-1706 https://dx.doi.org/10.1007/s12648-022-02516-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 97 2022 6 12 11 1697-1706 |
allfields_unstemmed |
10.1007/s12648-022-02516-8 doi (DE-627)SPR050230492 (SPR)s12648-022-02516-8-e DE-627 ger DE-627 rakwb eng Virmani, A. verfasserin aut Dynamics of the interaction of tetracycline with a monolayer of model cell membrane using VSFG spectroscopy 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Indian Association for the Cultivation of Science 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The knowledge of interaction of a drug with the membrane phospholipids is crucial to decipher its penetration mechanism inside the cell. Tetracycline is a widely used antibiotic effective against various classes of bacteria. In this work, we have employed vibrational sum-frequency generation (VSFG) spectroscopy to understand the molecular-level interaction of tetracycline with a model phospholipid monolayer, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), at the air–water interface. Results suggest that tetracycline molecules are not present on the topmost surface of the water and remain mostly in the bulk aqueous phase. However, due to charge–dipole interaction, the orientation of water molecules in the subphase immediately beneath the topmost layer gets randomized due to its presence. Due to their long hydrophobic aliphatic chains, DPPC molecules are surface active and replace the topmost water layer and increase the polar orientation of interfacial water molecules by generating electric field across the interface. In the presence of the DPPC monolayer, tetracycline molecules get adsorbed from the bulk water to the interface due to electrostatic interactions with the ionic headgroups of DPPC. This interaction also results in the ordering of hydrophobic chains as confirmed by an increase in the VSFG intensity of $ CH_{3} $ groups of the hydrocarbon chains. We have been successful in unraveling the changes induced in the hydrocarbon backbone of DPPC as a result of such interaction. The water molecules associated with the DPPC monolayer also get randomized in presence of tetracycline molecules. We, for the first time, have studied the dynamics of interfacial water molecules in presence of tetracycline and tetracycline-DPPC environment. Sum-frequency generation (dpeaa)DE-He213 Air–water interface (dpeaa)DE-He213 Lipid monolayer (dpeaa)DE-He213 Tetracycline (dpeaa)DE-He213 Surface active (dpeaa)DE-He213 Saha, A. (orcid)0000-0002-6274-5599 aut Sengupta, S. aut Kumar, A. aut Enthalten in Indian journal of physics New Delhi : Springer India, 2009 97(2022), 6 vom: 12. Nov., Seite 1697-1706 (DE-627)606030921 (DE-600)2508021-0 0974-9845 nnns volume:97 year:2022 number:6 day:12 month:11 pages:1697-1706 https://dx.doi.org/10.1007/s12648-022-02516-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 97 2022 6 12 11 1697-1706 |
allfieldsGer |
10.1007/s12648-022-02516-8 doi (DE-627)SPR050230492 (SPR)s12648-022-02516-8-e DE-627 ger DE-627 rakwb eng Virmani, A. verfasserin aut Dynamics of the interaction of tetracycline with a monolayer of model cell membrane using VSFG spectroscopy 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Indian Association for the Cultivation of Science 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The knowledge of interaction of a drug with the membrane phospholipids is crucial to decipher its penetration mechanism inside the cell. Tetracycline is a widely used antibiotic effective against various classes of bacteria. In this work, we have employed vibrational sum-frequency generation (VSFG) spectroscopy to understand the molecular-level interaction of tetracycline with a model phospholipid monolayer, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), at the air–water interface. Results suggest that tetracycline molecules are not present on the topmost surface of the water and remain mostly in the bulk aqueous phase. However, due to charge–dipole interaction, the orientation of water molecules in the subphase immediately beneath the topmost layer gets randomized due to its presence. Due to their long hydrophobic aliphatic chains, DPPC molecules are surface active and replace the topmost water layer and increase the polar orientation of interfacial water molecules by generating electric field across the interface. In the presence of the DPPC monolayer, tetracycline molecules get adsorbed from the bulk water to the interface due to electrostatic interactions with the ionic headgroups of DPPC. This interaction also results in the ordering of hydrophobic chains as confirmed by an increase in the VSFG intensity of $ CH_{3} $ groups of the hydrocarbon chains. We have been successful in unraveling the changes induced in the hydrocarbon backbone of DPPC as a result of such interaction. The water molecules associated with the DPPC monolayer also get randomized in presence of tetracycline molecules. We, for the first time, have studied the dynamics of interfacial water molecules in presence of tetracycline and tetracycline-DPPC environment. Sum-frequency generation (dpeaa)DE-He213 Air–water interface (dpeaa)DE-He213 Lipid monolayer (dpeaa)DE-He213 Tetracycline (dpeaa)DE-He213 Surface active (dpeaa)DE-He213 Saha, A. (orcid)0000-0002-6274-5599 aut Sengupta, S. aut Kumar, A. aut Enthalten in Indian journal of physics New Delhi : Springer India, 2009 97(2022), 6 vom: 12. Nov., Seite 1697-1706 (DE-627)606030921 (DE-600)2508021-0 0974-9845 nnns volume:97 year:2022 number:6 day:12 month:11 pages:1697-1706 https://dx.doi.org/10.1007/s12648-022-02516-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 97 2022 6 12 11 1697-1706 |
allfieldsSound |
10.1007/s12648-022-02516-8 doi (DE-627)SPR050230492 (SPR)s12648-022-02516-8-e DE-627 ger DE-627 rakwb eng Virmani, A. verfasserin aut Dynamics of the interaction of tetracycline with a monolayer of model cell membrane using VSFG spectroscopy 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Indian Association for the Cultivation of Science 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The knowledge of interaction of a drug with the membrane phospholipids is crucial to decipher its penetration mechanism inside the cell. Tetracycline is a widely used antibiotic effective against various classes of bacteria. In this work, we have employed vibrational sum-frequency generation (VSFG) spectroscopy to understand the molecular-level interaction of tetracycline with a model phospholipid monolayer, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), at the air–water interface. Results suggest that tetracycline molecules are not present on the topmost surface of the water and remain mostly in the bulk aqueous phase. However, due to charge–dipole interaction, the orientation of water molecules in the subphase immediately beneath the topmost layer gets randomized due to its presence. Due to their long hydrophobic aliphatic chains, DPPC molecules are surface active and replace the topmost water layer and increase the polar orientation of interfacial water molecules by generating electric field across the interface. In the presence of the DPPC monolayer, tetracycline molecules get adsorbed from the bulk water to the interface due to electrostatic interactions with the ionic headgroups of DPPC. This interaction also results in the ordering of hydrophobic chains as confirmed by an increase in the VSFG intensity of $ CH_{3} $ groups of the hydrocarbon chains. We have been successful in unraveling the changes induced in the hydrocarbon backbone of DPPC as a result of such interaction. The water molecules associated with the DPPC monolayer also get randomized in presence of tetracycline molecules. We, for the first time, have studied the dynamics of interfacial water molecules in presence of tetracycline and tetracycline-DPPC environment. Sum-frequency generation (dpeaa)DE-He213 Air–water interface (dpeaa)DE-He213 Lipid monolayer (dpeaa)DE-He213 Tetracycline (dpeaa)DE-He213 Surface active (dpeaa)DE-He213 Saha, A. (orcid)0000-0002-6274-5599 aut Sengupta, S. aut Kumar, A. aut Enthalten in Indian journal of physics New Delhi : Springer India, 2009 97(2022), 6 vom: 12. Nov., Seite 1697-1706 (DE-627)606030921 (DE-600)2508021-0 0974-9845 nnns volume:97 year:2022 number:6 day:12 month:11 pages:1697-1706 https://dx.doi.org/10.1007/s12648-022-02516-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 97 2022 6 12 11 1697-1706 |
language |
English |
source |
Enthalten in Indian journal of physics 97(2022), 6 vom: 12. Nov., Seite 1697-1706 volume:97 year:2022 number:6 day:12 month:11 pages:1697-1706 |
sourceStr |
Enthalten in Indian journal of physics 97(2022), 6 vom: 12. Nov., Seite 1697-1706 volume:97 year:2022 number:6 day:12 month:11 pages:1697-1706 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Sum-frequency generation Air–water interface Lipid monolayer Tetracycline Surface active |
isfreeaccess_bool |
false |
container_title |
Indian journal of physics |
authorswithroles_txt_mv |
Virmani, A. @@aut@@ Saha, A. @@aut@@ Sengupta, S. @@aut@@ Kumar, A. @@aut@@ |
publishDateDaySort_date |
2022-11-12T00:00:00Z |
hierarchy_top_id |
606030921 |
id |
SPR050230492 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050230492</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230429064745.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12648-022-02516-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050230492</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12648-022-02516-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Virmani, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamics of the interaction of tetracycline with a monolayer of model cell membrane using VSFG spectroscopy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Indian Association for the Cultivation of Science 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The knowledge of interaction of a drug with the membrane phospholipids is crucial to decipher its penetration mechanism inside the cell. Tetracycline is a widely used antibiotic effective against various classes of bacteria. In this work, we have employed vibrational sum-frequency generation (VSFG) spectroscopy to understand the molecular-level interaction of tetracycline with a model phospholipid monolayer, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), at the air–water interface. Results suggest that tetracycline molecules are not present on the topmost surface of the water and remain mostly in the bulk aqueous phase. However, due to charge–dipole interaction, the orientation of water molecules in the subphase immediately beneath the topmost layer gets randomized due to its presence. Due to their long hydrophobic aliphatic chains, DPPC molecules are surface active and replace the topmost water layer and increase the polar orientation of interfacial water molecules by generating electric field across the interface. In the presence of the DPPC monolayer, tetracycline molecules get adsorbed from the bulk water to the interface due to electrostatic interactions with the ionic headgroups of DPPC. This interaction also results in the ordering of hydrophobic chains as confirmed by an increase in the VSFG intensity of $ CH_{3} $ groups of the hydrocarbon chains. We have been successful in unraveling the changes induced in the hydrocarbon backbone of DPPC as a result of such interaction. The water molecules associated with the DPPC monolayer also get randomized in presence of tetracycline molecules. We, for the first time, have studied the dynamics of interfacial water molecules in presence of tetracycline and tetracycline-DPPC environment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sum-frequency generation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air–water interface</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipid monolayer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tetracycline</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface active</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saha, A.</subfield><subfield code="0">(orcid)0000-0002-6274-5599</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sengupta, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumar, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Indian journal of physics</subfield><subfield code="d">New Delhi : Springer India, 2009</subfield><subfield code="g">97(2022), 6 vom: 12. Nov., Seite 1697-1706</subfield><subfield code="w">(DE-627)606030921</subfield><subfield code="w">(DE-600)2508021-0</subfield><subfield code="x">0974-9845</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:97</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:6</subfield><subfield code="g">day:12</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:1697-1706</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12648-022-02516-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">97</subfield><subfield code="j">2022</subfield><subfield code="e">6</subfield><subfield code="b">12</subfield><subfield code="c">11</subfield><subfield code="h">1697-1706</subfield></datafield></record></collection>
|
author |
Virmani, A. |
spellingShingle |
Virmani, A. misc Sum-frequency generation misc Air–water interface misc Lipid monolayer misc Tetracycline misc Surface active Dynamics of the interaction of tetracycline with a monolayer of model cell membrane using VSFG spectroscopy |
authorStr |
Virmani, A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)606030921 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0974-9845 |
topic_title |
Dynamics of the interaction of tetracycline with a monolayer of model cell membrane using VSFG spectroscopy Sum-frequency generation (dpeaa)DE-He213 Air–water interface (dpeaa)DE-He213 Lipid monolayer (dpeaa)DE-He213 Tetracycline (dpeaa)DE-He213 Surface active (dpeaa)DE-He213 |
topic |
misc Sum-frequency generation misc Air–water interface misc Lipid monolayer misc Tetracycline misc Surface active |
topic_unstemmed |
misc Sum-frequency generation misc Air–water interface misc Lipid monolayer misc Tetracycline misc Surface active |
topic_browse |
misc Sum-frequency generation misc Air–water interface misc Lipid monolayer misc Tetracycline misc Surface active |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Indian journal of physics |
hierarchy_parent_id |
606030921 |
hierarchy_top_title |
Indian journal of physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)606030921 (DE-600)2508021-0 |
title |
Dynamics of the interaction of tetracycline with a monolayer of model cell membrane using VSFG spectroscopy |
ctrlnum |
(DE-627)SPR050230492 (SPR)s12648-022-02516-8-e |
title_full |
Dynamics of the interaction of tetracycline with a monolayer of model cell membrane using VSFG spectroscopy |
author_sort |
Virmani, A. |
journal |
Indian journal of physics |
journalStr |
Indian journal of physics |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
1697 |
author_browse |
Virmani, A. Saha, A. Sengupta, S. Kumar, A. |
container_volume |
97 |
format_se |
Elektronische Aufsätze |
author-letter |
Virmani, A. |
doi_str_mv |
10.1007/s12648-022-02516-8 |
normlink |
(ORCID)0000-0002-6274-5599 |
normlink_prefix_str_mv |
(orcid)0000-0002-6274-5599 |
title_sort |
dynamics of the interaction of tetracycline with a monolayer of model cell membrane using vsfg spectroscopy |
title_auth |
Dynamics of the interaction of tetracycline with a monolayer of model cell membrane using VSFG spectroscopy |
abstract |
Abstract The knowledge of interaction of a drug with the membrane phospholipids is crucial to decipher its penetration mechanism inside the cell. Tetracycline is a widely used antibiotic effective against various classes of bacteria. In this work, we have employed vibrational sum-frequency generation (VSFG) spectroscopy to understand the molecular-level interaction of tetracycline with a model phospholipid monolayer, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), at the air–water interface. Results suggest that tetracycline molecules are not present on the topmost surface of the water and remain mostly in the bulk aqueous phase. However, due to charge–dipole interaction, the orientation of water molecules in the subphase immediately beneath the topmost layer gets randomized due to its presence. Due to their long hydrophobic aliphatic chains, DPPC molecules are surface active and replace the topmost water layer and increase the polar orientation of interfacial water molecules by generating electric field across the interface. In the presence of the DPPC monolayer, tetracycline molecules get adsorbed from the bulk water to the interface due to electrostatic interactions with the ionic headgroups of DPPC. This interaction also results in the ordering of hydrophobic chains as confirmed by an increase in the VSFG intensity of $ CH_{3} $ groups of the hydrocarbon chains. We have been successful in unraveling the changes induced in the hydrocarbon backbone of DPPC as a result of such interaction. The water molecules associated with the DPPC monolayer also get randomized in presence of tetracycline molecules. We, for the first time, have studied the dynamics of interfacial water molecules in presence of tetracycline and tetracycline-DPPC environment. © Indian Association for the Cultivation of Science 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract The knowledge of interaction of a drug with the membrane phospholipids is crucial to decipher its penetration mechanism inside the cell. Tetracycline is a widely used antibiotic effective against various classes of bacteria. In this work, we have employed vibrational sum-frequency generation (VSFG) spectroscopy to understand the molecular-level interaction of tetracycline with a model phospholipid monolayer, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), at the air–water interface. Results suggest that tetracycline molecules are not present on the topmost surface of the water and remain mostly in the bulk aqueous phase. However, due to charge–dipole interaction, the orientation of water molecules in the subphase immediately beneath the topmost layer gets randomized due to its presence. Due to their long hydrophobic aliphatic chains, DPPC molecules are surface active and replace the topmost water layer and increase the polar orientation of interfacial water molecules by generating electric field across the interface. In the presence of the DPPC monolayer, tetracycline molecules get adsorbed from the bulk water to the interface due to electrostatic interactions with the ionic headgroups of DPPC. This interaction also results in the ordering of hydrophobic chains as confirmed by an increase in the VSFG intensity of $ CH_{3} $ groups of the hydrocarbon chains. We have been successful in unraveling the changes induced in the hydrocarbon backbone of DPPC as a result of such interaction. The water molecules associated with the DPPC monolayer also get randomized in presence of tetracycline molecules. We, for the first time, have studied the dynamics of interfacial water molecules in presence of tetracycline and tetracycline-DPPC environment. © Indian Association for the Cultivation of Science 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract The knowledge of interaction of a drug with the membrane phospholipids is crucial to decipher its penetration mechanism inside the cell. Tetracycline is a widely used antibiotic effective against various classes of bacteria. In this work, we have employed vibrational sum-frequency generation (VSFG) spectroscopy to understand the molecular-level interaction of tetracycline with a model phospholipid monolayer, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), at the air–water interface. Results suggest that tetracycline molecules are not present on the topmost surface of the water and remain mostly in the bulk aqueous phase. However, due to charge–dipole interaction, the orientation of water molecules in the subphase immediately beneath the topmost layer gets randomized due to its presence. Due to their long hydrophobic aliphatic chains, DPPC molecules are surface active and replace the topmost water layer and increase the polar orientation of interfacial water molecules by generating electric field across the interface. In the presence of the DPPC monolayer, tetracycline molecules get adsorbed from the bulk water to the interface due to electrostatic interactions with the ionic headgroups of DPPC. This interaction also results in the ordering of hydrophobic chains as confirmed by an increase in the VSFG intensity of $ CH_{3} $ groups of the hydrocarbon chains. We have been successful in unraveling the changes induced in the hydrocarbon backbone of DPPC as a result of such interaction. The water molecules associated with the DPPC monolayer also get randomized in presence of tetracycline molecules. We, for the first time, have studied the dynamics of interfacial water molecules in presence of tetracycline and tetracycline-DPPC environment. © Indian Association for the Cultivation of Science 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Dynamics of the interaction of tetracycline with a monolayer of model cell membrane using VSFG spectroscopy |
url |
https://dx.doi.org/10.1007/s12648-022-02516-8 |
remote_bool |
true |
author2 |
Saha, A. Sengupta, S. Kumar, A. |
author2Str |
Saha, A. Sengupta, S. Kumar, A. |
ppnlink |
606030921 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s12648-022-02516-8 |
up_date |
2024-07-03T14:13:08.857Z |
_version_ |
1803567485542203392 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050230492</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230429064745.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12648-022-02516-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050230492</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12648-022-02516-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Virmani, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamics of the interaction of tetracycline with a monolayer of model cell membrane using VSFG spectroscopy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Indian Association for the Cultivation of Science 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The knowledge of interaction of a drug with the membrane phospholipids is crucial to decipher its penetration mechanism inside the cell. Tetracycline is a widely used antibiotic effective against various classes of bacteria. In this work, we have employed vibrational sum-frequency generation (VSFG) spectroscopy to understand the molecular-level interaction of tetracycline with a model phospholipid monolayer, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), at the air–water interface. Results suggest that tetracycline molecules are not present on the topmost surface of the water and remain mostly in the bulk aqueous phase. However, due to charge–dipole interaction, the orientation of water molecules in the subphase immediately beneath the topmost layer gets randomized due to its presence. Due to their long hydrophobic aliphatic chains, DPPC molecules are surface active and replace the topmost water layer and increase the polar orientation of interfacial water molecules by generating electric field across the interface. In the presence of the DPPC monolayer, tetracycline molecules get adsorbed from the bulk water to the interface due to electrostatic interactions with the ionic headgroups of DPPC. This interaction also results in the ordering of hydrophobic chains as confirmed by an increase in the VSFG intensity of $ CH_{3} $ groups of the hydrocarbon chains. We have been successful in unraveling the changes induced in the hydrocarbon backbone of DPPC as a result of such interaction. The water molecules associated with the DPPC monolayer also get randomized in presence of tetracycline molecules. We, for the first time, have studied the dynamics of interfacial water molecules in presence of tetracycline and tetracycline-DPPC environment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sum-frequency generation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air–water interface</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipid monolayer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tetracycline</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface active</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saha, A.</subfield><subfield code="0">(orcid)0000-0002-6274-5599</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sengupta, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumar, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Indian journal of physics</subfield><subfield code="d">New Delhi : Springer India, 2009</subfield><subfield code="g">97(2022), 6 vom: 12. Nov., Seite 1697-1706</subfield><subfield code="w">(DE-627)606030921</subfield><subfield code="w">(DE-600)2508021-0</subfield><subfield code="x">0974-9845</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:97</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:6</subfield><subfield code="g">day:12</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:1697-1706</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12648-022-02516-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">97</subfield><subfield code="j">2022</subfield><subfield code="e">6</subfield><subfield code="b">12</subfield><subfield code="c">11</subfield><subfield code="h">1697-1706</subfield></datafield></record></collection>
|
score |
7.402525 |