Spatio-temporal distribution and influencing factors of norovirus outbreaks in Beijing, China from 2016 to 2020
Background Noroviruses are a leading cause of acute gastroenteritis (AGE) worldwide. The geographical characteristics of norovirus outbreaks in Beijing and their influencing factors remain unknown. This study aimed to explore the spatial distributions, geographical characteristics, and influencing f...
Ausführliche Beschreibung
Autor*in: |
Chen, Yanwei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC infectious diseases - London : BioMed Central, 2001, 23(2023), 1 vom: 02. Mai |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2023 ; number:1 ; day:02 ; month:05 |
Links: |
---|
DOI / URN: |
10.1186/s12879-023-08243-7 |
---|
Katalog-ID: |
SPR050269941 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR050269941 | ||
003 | DE-627 | ||
005 | 20230503064715.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230503s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12879-023-08243-7 |2 doi | |
035 | |a (DE-627)SPR050269941 | ||
035 | |a (SPR)s12879-023-08243-7-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Chen, Yanwei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Spatio-temporal distribution and influencing factors of norovirus outbreaks in Beijing, China from 2016 to 2020 |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Background Noroviruses are a leading cause of acute gastroenteritis (AGE) worldwide. The geographical characteristics of norovirus outbreaks in Beijing and their influencing factors remain unknown. This study aimed to explore the spatial distributions, geographical characteristics, and influencing factors of norovirus outbreaks in Beijing, China. Methods Epidemiological data and specimens were collected through the AGE outbreak surveillance system in all 16 districts of Beijing. Data on spatial distribution, geographical characteristics, and influencing factors of norovirus outbreaks were analyzed using descriptive statistics methods. We measured spatial, geographical clustering of high- or low-value deviance from random distribution using Z-scores and P-values as statistical significance measures with Global Moran’s I statistics and Getis-Ord Gi in ArcGIS. Linear regression and correlation methods were used to explore influencing factors. Results Between September 2016 and August 2020, 1,193 norovirus outbreaks were laboratory-confirmed. The number of outbreaks varied seasonally, typically peaking in spring (March to May) or winter (October to December). Outbreaks primarily occurred around central districts at the town level, and spatial autocorrelation was evident in both the entire study period and in individual years. Hotspots of norovirus outbreaks in Beijing were primarily found in contiguous areas between three central districts (Chaoyang, Haidian, Fengtai) and four suburban districts (Changping, Daxing, Fangshan, Tongzhou). The average population numbers, mean number of all schools, and mean number of kindergartens and primary schools for towns in central districts and hotspot areas were higher than those in suburban districts and non-hotspot areas respectively. Additionally, population numbers and densities of kindergartens and primary schools were influencing factors at the town level. Conclusions Hotspots of norovirus outbreaks in Beijing were in contiguous areas between central and suburban districts with high populations, and high kindergarten and primary school densities were the likely driving forces. Outbreak surveillance needs to focus on contiguous areas between central and suburban districts with increased monitoring, medical resources, and health education. | ||
650 | 4 | |a Norovirus |7 (dpeaa)DE-He213 | |
650 | 4 | |a Acute gastroenteritis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Outbreaks |7 (dpeaa)DE-He213 | |
650 | 4 | |a Epidemiology |7 (dpeaa)DE-He213 | |
650 | 4 | |a Geographical characteristic |7 (dpeaa)DE-He213 | |
700 | 1 | |a Liu, Baiwei |4 aut | |
700 | 1 | |a Wang, Yu |4 aut | |
700 | 1 | |a Zhang, Yewu |4 aut | |
700 | 1 | |a Yan, Hanqiu |4 aut | |
700 | 1 | |a Li, Weihong |4 aut | |
700 | 1 | |a Shen, Lingyu |4 aut | |
700 | 1 | |a Tian, Yi |4 aut | |
700 | 1 | |a Jia, Lei |4 aut | |
700 | 1 | |a Zhang, Daitao |4 aut | |
700 | 1 | |a Yang, Peng |4 aut | |
700 | 1 | |a Gao, Zhiyong |4 aut | |
700 | 1 | |a Wang, Quanyi |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC infectious diseases |d London : BioMed Central, 2001 |g 23(2023), 1 vom: 02. Mai |w (DE-627)326645381 |w (DE-600)2041550-3 |x 1471-2334 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2023 |g number:1 |g day:02 |g month:05 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12879-023-08243-7 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 23 |j 2023 |e 1 |b 02 |c 05 |
author_variant |
y c yc b l bl y w yw y z yz h y hy w l wl l s ls y t yt l j lj d z dz p y py z g zg q w qw |
---|---|
matchkey_str |
article:14712334:2023----::ptoeprlitiuinnifunigatronrvrsubeki |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1186/s12879-023-08243-7 doi (DE-627)SPR050269941 (SPR)s12879-023-08243-7-e DE-627 ger DE-627 rakwb eng Chen, Yanwei verfasserin aut Spatio-temporal distribution and influencing factors of norovirus outbreaks in Beijing, China from 2016 to 2020 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Noroviruses are a leading cause of acute gastroenteritis (AGE) worldwide. The geographical characteristics of norovirus outbreaks in Beijing and their influencing factors remain unknown. This study aimed to explore the spatial distributions, geographical characteristics, and influencing factors of norovirus outbreaks in Beijing, China. Methods Epidemiological data and specimens were collected through the AGE outbreak surveillance system in all 16 districts of Beijing. Data on spatial distribution, geographical characteristics, and influencing factors of norovirus outbreaks were analyzed using descriptive statistics methods. We measured spatial, geographical clustering of high- or low-value deviance from random distribution using Z-scores and P-values as statistical significance measures with Global Moran’s I statistics and Getis-Ord Gi in ArcGIS. Linear regression and correlation methods were used to explore influencing factors. Results Between September 2016 and August 2020, 1,193 norovirus outbreaks were laboratory-confirmed. The number of outbreaks varied seasonally, typically peaking in spring (March to May) or winter (October to December). Outbreaks primarily occurred around central districts at the town level, and spatial autocorrelation was evident in both the entire study period and in individual years. Hotspots of norovirus outbreaks in Beijing were primarily found in contiguous areas between three central districts (Chaoyang, Haidian, Fengtai) and four suburban districts (Changping, Daxing, Fangshan, Tongzhou). The average population numbers, mean number of all schools, and mean number of kindergartens and primary schools for towns in central districts and hotspot areas were higher than those in suburban districts and non-hotspot areas respectively. Additionally, population numbers and densities of kindergartens and primary schools were influencing factors at the town level. Conclusions Hotspots of norovirus outbreaks in Beijing were in contiguous areas between central and suburban districts with high populations, and high kindergarten and primary school densities were the likely driving forces. Outbreak surveillance needs to focus on contiguous areas between central and suburban districts with increased monitoring, medical resources, and health education. Norovirus (dpeaa)DE-He213 Acute gastroenteritis (dpeaa)DE-He213 Outbreaks (dpeaa)DE-He213 Epidemiology (dpeaa)DE-He213 Geographical characteristic (dpeaa)DE-He213 Liu, Baiwei aut Wang, Yu aut Zhang, Yewu aut Yan, Hanqiu aut Li, Weihong aut Shen, Lingyu aut Tian, Yi aut Jia, Lei aut Zhang, Daitao aut Yang, Peng aut Gao, Zhiyong aut Wang, Quanyi aut Enthalten in BMC infectious diseases London : BioMed Central, 2001 23(2023), 1 vom: 02. Mai (DE-627)326645381 (DE-600)2041550-3 1471-2334 nnns volume:23 year:2023 number:1 day:02 month:05 https://dx.doi.org/10.1186/s12879-023-08243-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 02 05 |
spelling |
10.1186/s12879-023-08243-7 doi (DE-627)SPR050269941 (SPR)s12879-023-08243-7-e DE-627 ger DE-627 rakwb eng Chen, Yanwei verfasserin aut Spatio-temporal distribution and influencing factors of norovirus outbreaks in Beijing, China from 2016 to 2020 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Noroviruses are a leading cause of acute gastroenteritis (AGE) worldwide. The geographical characteristics of norovirus outbreaks in Beijing and their influencing factors remain unknown. This study aimed to explore the spatial distributions, geographical characteristics, and influencing factors of norovirus outbreaks in Beijing, China. Methods Epidemiological data and specimens were collected through the AGE outbreak surveillance system in all 16 districts of Beijing. Data on spatial distribution, geographical characteristics, and influencing factors of norovirus outbreaks were analyzed using descriptive statistics methods. We measured spatial, geographical clustering of high- or low-value deviance from random distribution using Z-scores and P-values as statistical significance measures with Global Moran’s I statistics and Getis-Ord Gi in ArcGIS. Linear regression and correlation methods were used to explore influencing factors. Results Between September 2016 and August 2020, 1,193 norovirus outbreaks were laboratory-confirmed. The number of outbreaks varied seasonally, typically peaking in spring (March to May) or winter (October to December). Outbreaks primarily occurred around central districts at the town level, and spatial autocorrelation was evident in both the entire study period and in individual years. Hotspots of norovirus outbreaks in Beijing were primarily found in contiguous areas between three central districts (Chaoyang, Haidian, Fengtai) and four suburban districts (Changping, Daxing, Fangshan, Tongzhou). The average population numbers, mean number of all schools, and mean number of kindergartens and primary schools for towns in central districts and hotspot areas were higher than those in suburban districts and non-hotspot areas respectively. Additionally, population numbers and densities of kindergartens and primary schools were influencing factors at the town level. Conclusions Hotspots of norovirus outbreaks in Beijing were in contiguous areas between central and suburban districts with high populations, and high kindergarten and primary school densities were the likely driving forces. Outbreak surveillance needs to focus on contiguous areas between central and suburban districts with increased monitoring, medical resources, and health education. Norovirus (dpeaa)DE-He213 Acute gastroenteritis (dpeaa)DE-He213 Outbreaks (dpeaa)DE-He213 Epidemiology (dpeaa)DE-He213 Geographical characteristic (dpeaa)DE-He213 Liu, Baiwei aut Wang, Yu aut Zhang, Yewu aut Yan, Hanqiu aut Li, Weihong aut Shen, Lingyu aut Tian, Yi aut Jia, Lei aut Zhang, Daitao aut Yang, Peng aut Gao, Zhiyong aut Wang, Quanyi aut Enthalten in BMC infectious diseases London : BioMed Central, 2001 23(2023), 1 vom: 02. Mai (DE-627)326645381 (DE-600)2041550-3 1471-2334 nnns volume:23 year:2023 number:1 day:02 month:05 https://dx.doi.org/10.1186/s12879-023-08243-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 02 05 |
allfields_unstemmed |
10.1186/s12879-023-08243-7 doi (DE-627)SPR050269941 (SPR)s12879-023-08243-7-e DE-627 ger DE-627 rakwb eng Chen, Yanwei verfasserin aut Spatio-temporal distribution and influencing factors of norovirus outbreaks in Beijing, China from 2016 to 2020 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Noroviruses are a leading cause of acute gastroenteritis (AGE) worldwide. The geographical characteristics of norovirus outbreaks in Beijing and their influencing factors remain unknown. This study aimed to explore the spatial distributions, geographical characteristics, and influencing factors of norovirus outbreaks in Beijing, China. Methods Epidemiological data and specimens were collected through the AGE outbreak surveillance system in all 16 districts of Beijing. Data on spatial distribution, geographical characteristics, and influencing factors of norovirus outbreaks were analyzed using descriptive statistics methods. We measured spatial, geographical clustering of high- or low-value deviance from random distribution using Z-scores and P-values as statistical significance measures with Global Moran’s I statistics and Getis-Ord Gi in ArcGIS. Linear regression and correlation methods were used to explore influencing factors. Results Between September 2016 and August 2020, 1,193 norovirus outbreaks were laboratory-confirmed. The number of outbreaks varied seasonally, typically peaking in spring (March to May) or winter (October to December). Outbreaks primarily occurred around central districts at the town level, and spatial autocorrelation was evident in both the entire study period and in individual years. Hotspots of norovirus outbreaks in Beijing were primarily found in contiguous areas between three central districts (Chaoyang, Haidian, Fengtai) and four suburban districts (Changping, Daxing, Fangshan, Tongzhou). The average population numbers, mean number of all schools, and mean number of kindergartens and primary schools for towns in central districts and hotspot areas were higher than those in suburban districts and non-hotspot areas respectively. Additionally, population numbers and densities of kindergartens and primary schools were influencing factors at the town level. Conclusions Hotspots of norovirus outbreaks in Beijing were in contiguous areas between central and suburban districts with high populations, and high kindergarten and primary school densities were the likely driving forces. Outbreak surveillance needs to focus on contiguous areas between central and suburban districts with increased monitoring, medical resources, and health education. Norovirus (dpeaa)DE-He213 Acute gastroenteritis (dpeaa)DE-He213 Outbreaks (dpeaa)DE-He213 Epidemiology (dpeaa)DE-He213 Geographical characteristic (dpeaa)DE-He213 Liu, Baiwei aut Wang, Yu aut Zhang, Yewu aut Yan, Hanqiu aut Li, Weihong aut Shen, Lingyu aut Tian, Yi aut Jia, Lei aut Zhang, Daitao aut Yang, Peng aut Gao, Zhiyong aut Wang, Quanyi aut Enthalten in BMC infectious diseases London : BioMed Central, 2001 23(2023), 1 vom: 02. Mai (DE-627)326645381 (DE-600)2041550-3 1471-2334 nnns volume:23 year:2023 number:1 day:02 month:05 https://dx.doi.org/10.1186/s12879-023-08243-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 02 05 |
allfieldsGer |
10.1186/s12879-023-08243-7 doi (DE-627)SPR050269941 (SPR)s12879-023-08243-7-e DE-627 ger DE-627 rakwb eng Chen, Yanwei verfasserin aut Spatio-temporal distribution and influencing factors of norovirus outbreaks in Beijing, China from 2016 to 2020 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Noroviruses are a leading cause of acute gastroenteritis (AGE) worldwide. The geographical characteristics of norovirus outbreaks in Beijing and their influencing factors remain unknown. This study aimed to explore the spatial distributions, geographical characteristics, and influencing factors of norovirus outbreaks in Beijing, China. Methods Epidemiological data and specimens were collected through the AGE outbreak surveillance system in all 16 districts of Beijing. Data on spatial distribution, geographical characteristics, and influencing factors of norovirus outbreaks were analyzed using descriptive statistics methods. We measured spatial, geographical clustering of high- or low-value deviance from random distribution using Z-scores and P-values as statistical significance measures with Global Moran’s I statistics and Getis-Ord Gi in ArcGIS. Linear regression and correlation methods were used to explore influencing factors. Results Between September 2016 and August 2020, 1,193 norovirus outbreaks were laboratory-confirmed. The number of outbreaks varied seasonally, typically peaking in spring (March to May) or winter (October to December). Outbreaks primarily occurred around central districts at the town level, and spatial autocorrelation was evident in both the entire study period and in individual years. Hotspots of norovirus outbreaks in Beijing were primarily found in contiguous areas between three central districts (Chaoyang, Haidian, Fengtai) and four suburban districts (Changping, Daxing, Fangshan, Tongzhou). The average population numbers, mean number of all schools, and mean number of kindergartens and primary schools for towns in central districts and hotspot areas were higher than those in suburban districts and non-hotspot areas respectively. Additionally, population numbers and densities of kindergartens and primary schools were influencing factors at the town level. Conclusions Hotspots of norovirus outbreaks in Beijing were in contiguous areas between central and suburban districts with high populations, and high kindergarten and primary school densities were the likely driving forces. Outbreak surveillance needs to focus on contiguous areas between central and suburban districts with increased monitoring, medical resources, and health education. Norovirus (dpeaa)DE-He213 Acute gastroenteritis (dpeaa)DE-He213 Outbreaks (dpeaa)DE-He213 Epidemiology (dpeaa)DE-He213 Geographical characteristic (dpeaa)DE-He213 Liu, Baiwei aut Wang, Yu aut Zhang, Yewu aut Yan, Hanqiu aut Li, Weihong aut Shen, Lingyu aut Tian, Yi aut Jia, Lei aut Zhang, Daitao aut Yang, Peng aut Gao, Zhiyong aut Wang, Quanyi aut Enthalten in BMC infectious diseases London : BioMed Central, 2001 23(2023), 1 vom: 02. Mai (DE-627)326645381 (DE-600)2041550-3 1471-2334 nnns volume:23 year:2023 number:1 day:02 month:05 https://dx.doi.org/10.1186/s12879-023-08243-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 02 05 |
allfieldsSound |
10.1186/s12879-023-08243-7 doi (DE-627)SPR050269941 (SPR)s12879-023-08243-7-e DE-627 ger DE-627 rakwb eng Chen, Yanwei verfasserin aut Spatio-temporal distribution and influencing factors of norovirus outbreaks in Beijing, China from 2016 to 2020 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Noroviruses are a leading cause of acute gastroenteritis (AGE) worldwide. The geographical characteristics of norovirus outbreaks in Beijing and their influencing factors remain unknown. This study aimed to explore the spatial distributions, geographical characteristics, and influencing factors of norovirus outbreaks in Beijing, China. Methods Epidemiological data and specimens were collected through the AGE outbreak surveillance system in all 16 districts of Beijing. Data on spatial distribution, geographical characteristics, and influencing factors of norovirus outbreaks were analyzed using descriptive statistics methods. We measured spatial, geographical clustering of high- or low-value deviance from random distribution using Z-scores and P-values as statistical significance measures with Global Moran’s I statistics and Getis-Ord Gi in ArcGIS. Linear regression and correlation methods were used to explore influencing factors. Results Between September 2016 and August 2020, 1,193 norovirus outbreaks were laboratory-confirmed. The number of outbreaks varied seasonally, typically peaking in spring (March to May) or winter (October to December). Outbreaks primarily occurred around central districts at the town level, and spatial autocorrelation was evident in both the entire study period and in individual years. Hotspots of norovirus outbreaks in Beijing were primarily found in contiguous areas between three central districts (Chaoyang, Haidian, Fengtai) and four suburban districts (Changping, Daxing, Fangshan, Tongzhou). The average population numbers, mean number of all schools, and mean number of kindergartens and primary schools for towns in central districts and hotspot areas were higher than those in suburban districts and non-hotspot areas respectively. Additionally, population numbers and densities of kindergartens and primary schools were influencing factors at the town level. Conclusions Hotspots of norovirus outbreaks in Beijing were in contiguous areas between central and suburban districts with high populations, and high kindergarten and primary school densities were the likely driving forces. Outbreak surveillance needs to focus on contiguous areas between central and suburban districts with increased monitoring, medical resources, and health education. Norovirus (dpeaa)DE-He213 Acute gastroenteritis (dpeaa)DE-He213 Outbreaks (dpeaa)DE-He213 Epidemiology (dpeaa)DE-He213 Geographical characteristic (dpeaa)DE-He213 Liu, Baiwei aut Wang, Yu aut Zhang, Yewu aut Yan, Hanqiu aut Li, Weihong aut Shen, Lingyu aut Tian, Yi aut Jia, Lei aut Zhang, Daitao aut Yang, Peng aut Gao, Zhiyong aut Wang, Quanyi aut Enthalten in BMC infectious diseases London : BioMed Central, 2001 23(2023), 1 vom: 02. Mai (DE-627)326645381 (DE-600)2041550-3 1471-2334 nnns volume:23 year:2023 number:1 day:02 month:05 https://dx.doi.org/10.1186/s12879-023-08243-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 02 05 |
language |
English |
source |
Enthalten in BMC infectious diseases 23(2023), 1 vom: 02. Mai volume:23 year:2023 number:1 day:02 month:05 |
sourceStr |
Enthalten in BMC infectious diseases 23(2023), 1 vom: 02. Mai volume:23 year:2023 number:1 day:02 month:05 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Norovirus Acute gastroenteritis Outbreaks Epidemiology Geographical characteristic |
isfreeaccess_bool |
true |
container_title |
BMC infectious diseases |
authorswithroles_txt_mv |
Chen, Yanwei @@aut@@ Liu, Baiwei @@aut@@ Wang, Yu @@aut@@ Zhang, Yewu @@aut@@ Yan, Hanqiu @@aut@@ Li, Weihong @@aut@@ Shen, Lingyu @@aut@@ Tian, Yi @@aut@@ Jia, Lei @@aut@@ Zhang, Daitao @@aut@@ Yang, Peng @@aut@@ Gao, Zhiyong @@aut@@ Wang, Quanyi @@aut@@ |
publishDateDaySort_date |
2023-05-02T00:00:00Z |
hierarchy_top_id |
326645381 |
id |
SPR050269941 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050269941</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503064715.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230503s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12879-023-08243-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050269941</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12879-023-08243-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Yanwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatio-temporal distribution and influencing factors of norovirus outbreaks in Beijing, China from 2016 to 2020</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Noroviruses are a leading cause of acute gastroenteritis (AGE) worldwide. The geographical characteristics of norovirus outbreaks in Beijing and their influencing factors remain unknown. This study aimed to explore the spatial distributions, geographical characteristics, and influencing factors of norovirus outbreaks in Beijing, China. Methods Epidemiological data and specimens were collected through the AGE outbreak surveillance system in all 16 districts of Beijing. Data on spatial distribution, geographical characteristics, and influencing factors of norovirus outbreaks were analyzed using descriptive statistics methods. We measured spatial, geographical clustering of high- or low-value deviance from random distribution using Z-scores and P-values as statistical significance measures with Global Moran’s I statistics and Getis-Ord Gi in ArcGIS. Linear regression and correlation methods were used to explore influencing factors. Results Between September 2016 and August 2020, 1,193 norovirus outbreaks were laboratory-confirmed. The number of outbreaks varied seasonally, typically peaking in spring (March to May) or winter (October to December). Outbreaks primarily occurred around central districts at the town level, and spatial autocorrelation was evident in both the entire study period and in individual years. Hotspots of norovirus outbreaks in Beijing were primarily found in contiguous areas between three central districts (Chaoyang, Haidian, Fengtai) and four suburban districts (Changping, Daxing, Fangshan, Tongzhou). The average population numbers, mean number of all schools, and mean number of kindergartens and primary schools for towns in central districts and hotspot areas were higher than those in suburban districts and non-hotspot areas respectively. Additionally, population numbers and densities of kindergartens and primary schools were influencing factors at the town level. Conclusions Hotspots of norovirus outbreaks in Beijing were in contiguous areas between central and suburban districts with high populations, and high kindergarten and primary school densities were the likely driving forces. Outbreak surveillance needs to focus on contiguous areas between central and suburban districts with increased monitoring, medical resources, and health education.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Norovirus</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acute gastroenteritis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Outbreaks</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epidemiology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geographical characteristic</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Baiwei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yewu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Hanqiu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Weihong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Lingyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Yi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jia, Lei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Daitao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Peng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Zhiyong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Quanyi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC infectious diseases</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">23(2023), 1 vom: 02. Mai</subfield><subfield code="w">(DE-627)326645381</subfield><subfield code="w">(DE-600)2041550-3</subfield><subfield code="x">1471-2334</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:02</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12879-023-08243-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">02</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
author |
Chen, Yanwei |
spellingShingle |
Chen, Yanwei misc Norovirus misc Acute gastroenteritis misc Outbreaks misc Epidemiology misc Geographical characteristic Spatio-temporal distribution and influencing factors of norovirus outbreaks in Beijing, China from 2016 to 2020 |
authorStr |
Chen, Yanwei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326645381 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2334 |
topic_title |
Spatio-temporal distribution and influencing factors of norovirus outbreaks in Beijing, China from 2016 to 2020 Norovirus (dpeaa)DE-He213 Acute gastroenteritis (dpeaa)DE-He213 Outbreaks (dpeaa)DE-He213 Epidemiology (dpeaa)DE-He213 Geographical characteristic (dpeaa)DE-He213 |
topic |
misc Norovirus misc Acute gastroenteritis misc Outbreaks misc Epidemiology misc Geographical characteristic |
topic_unstemmed |
misc Norovirus misc Acute gastroenteritis misc Outbreaks misc Epidemiology misc Geographical characteristic |
topic_browse |
misc Norovirus misc Acute gastroenteritis misc Outbreaks misc Epidemiology misc Geographical characteristic |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC infectious diseases |
hierarchy_parent_id |
326645381 |
hierarchy_top_title |
BMC infectious diseases |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326645381 (DE-600)2041550-3 |
title |
Spatio-temporal distribution and influencing factors of norovirus outbreaks in Beijing, China from 2016 to 2020 |
ctrlnum |
(DE-627)SPR050269941 (SPR)s12879-023-08243-7-e |
title_full |
Spatio-temporal distribution and influencing factors of norovirus outbreaks in Beijing, China from 2016 to 2020 |
author_sort |
Chen, Yanwei |
journal |
BMC infectious diseases |
journalStr |
BMC infectious diseases |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Chen, Yanwei Liu, Baiwei Wang, Yu Zhang, Yewu Yan, Hanqiu Li, Weihong Shen, Lingyu Tian, Yi Jia, Lei Zhang, Daitao Yang, Peng Gao, Zhiyong Wang, Quanyi |
container_volume |
23 |
format_se |
Elektronische Aufsätze |
author-letter |
Chen, Yanwei |
doi_str_mv |
10.1186/s12879-023-08243-7 |
title_sort |
spatio-temporal distribution and influencing factors of norovirus outbreaks in beijing, china from 2016 to 2020 |
title_auth |
Spatio-temporal distribution and influencing factors of norovirus outbreaks in Beijing, China from 2016 to 2020 |
abstract |
Background Noroviruses are a leading cause of acute gastroenteritis (AGE) worldwide. The geographical characteristics of norovirus outbreaks in Beijing and their influencing factors remain unknown. This study aimed to explore the spatial distributions, geographical characteristics, and influencing factors of norovirus outbreaks in Beijing, China. Methods Epidemiological data and specimens were collected through the AGE outbreak surveillance system in all 16 districts of Beijing. Data on spatial distribution, geographical characteristics, and influencing factors of norovirus outbreaks were analyzed using descriptive statistics methods. We measured spatial, geographical clustering of high- or low-value deviance from random distribution using Z-scores and P-values as statistical significance measures with Global Moran’s I statistics and Getis-Ord Gi in ArcGIS. Linear regression and correlation methods were used to explore influencing factors. Results Between September 2016 and August 2020, 1,193 norovirus outbreaks were laboratory-confirmed. The number of outbreaks varied seasonally, typically peaking in spring (March to May) or winter (October to December). Outbreaks primarily occurred around central districts at the town level, and spatial autocorrelation was evident in both the entire study period and in individual years. Hotspots of norovirus outbreaks in Beijing were primarily found in contiguous areas between three central districts (Chaoyang, Haidian, Fengtai) and four suburban districts (Changping, Daxing, Fangshan, Tongzhou). The average population numbers, mean number of all schools, and mean number of kindergartens and primary schools for towns in central districts and hotspot areas were higher than those in suburban districts and non-hotspot areas respectively. Additionally, population numbers and densities of kindergartens and primary schools were influencing factors at the town level. Conclusions Hotspots of norovirus outbreaks in Beijing were in contiguous areas between central and suburban districts with high populations, and high kindergarten and primary school densities were the likely driving forces. Outbreak surveillance needs to focus on contiguous areas between central and suburban districts with increased monitoring, medical resources, and health education. © The Author(s) 2023 |
abstractGer |
Background Noroviruses are a leading cause of acute gastroenteritis (AGE) worldwide. The geographical characteristics of norovirus outbreaks in Beijing and their influencing factors remain unknown. This study aimed to explore the spatial distributions, geographical characteristics, and influencing factors of norovirus outbreaks in Beijing, China. Methods Epidemiological data and specimens were collected through the AGE outbreak surveillance system in all 16 districts of Beijing. Data on spatial distribution, geographical characteristics, and influencing factors of norovirus outbreaks were analyzed using descriptive statistics methods. We measured spatial, geographical clustering of high- or low-value deviance from random distribution using Z-scores and P-values as statistical significance measures with Global Moran’s I statistics and Getis-Ord Gi in ArcGIS. Linear regression and correlation methods were used to explore influencing factors. Results Between September 2016 and August 2020, 1,193 norovirus outbreaks were laboratory-confirmed. The number of outbreaks varied seasonally, typically peaking in spring (March to May) or winter (October to December). Outbreaks primarily occurred around central districts at the town level, and spatial autocorrelation was evident in both the entire study period and in individual years. Hotspots of norovirus outbreaks in Beijing were primarily found in contiguous areas between three central districts (Chaoyang, Haidian, Fengtai) and four suburban districts (Changping, Daxing, Fangshan, Tongzhou). The average population numbers, mean number of all schools, and mean number of kindergartens and primary schools for towns in central districts and hotspot areas were higher than those in suburban districts and non-hotspot areas respectively. Additionally, population numbers and densities of kindergartens and primary schools were influencing factors at the town level. Conclusions Hotspots of norovirus outbreaks in Beijing were in contiguous areas between central and suburban districts with high populations, and high kindergarten and primary school densities were the likely driving forces. Outbreak surveillance needs to focus on contiguous areas between central and suburban districts with increased monitoring, medical resources, and health education. © The Author(s) 2023 |
abstract_unstemmed |
Background Noroviruses are a leading cause of acute gastroenteritis (AGE) worldwide. The geographical characteristics of norovirus outbreaks in Beijing and their influencing factors remain unknown. This study aimed to explore the spatial distributions, geographical characteristics, and influencing factors of norovirus outbreaks in Beijing, China. Methods Epidemiological data and specimens were collected through the AGE outbreak surveillance system in all 16 districts of Beijing. Data on spatial distribution, geographical characteristics, and influencing factors of norovirus outbreaks were analyzed using descriptive statistics methods. We measured spatial, geographical clustering of high- or low-value deviance from random distribution using Z-scores and P-values as statistical significance measures with Global Moran’s I statistics and Getis-Ord Gi in ArcGIS. Linear regression and correlation methods were used to explore influencing factors. Results Between September 2016 and August 2020, 1,193 norovirus outbreaks were laboratory-confirmed. The number of outbreaks varied seasonally, typically peaking in spring (March to May) or winter (October to December). Outbreaks primarily occurred around central districts at the town level, and spatial autocorrelation was evident in both the entire study period and in individual years. Hotspots of norovirus outbreaks in Beijing were primarily found in contiguous areas between three central districts (Chaoyang, Haidian, Fengtai) and four suburban districts (Changping, Daxing, Fangshan, Tongzhou). The average population numbers, mean number of all schools, and mean number of kindergartens and primary schools for towns in central districts and hotspot areas were higher than those in suburban districts and non-hotspot areas respectively. Additionally, population numbers and densities of kindergartens and primary schools were influencing factors at the town level. Conclusions Hotspots of norovirus outbreaks in Beijing were in contiguous areas between central and suburban districts with high populations, and high kindergarten and primary school densities were the likely driving forces. Outbreak surveillance needs to focus on contiguous areas between central and suburban districts with increased monitoring, medical resources, and health education. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Spatio-temporal distribution and influencing factors of norovirus outbreaks in Beijing, China from 2016 to 2020 |
url |
https://dx.doi.org/10.1186/s12879-023-08243-7 |
remote_bool |
true |
author2 |
Liu, Baiwei Wang, Yu Zhang, Yewu Yan, Hanqiu Li, Weihong Shen, Lingyu Tian, Yi Jia, Lei Zhang, Daitao Yang, Peng Gao, Zhiyong Wang, Quanyi |
author2Str |
Liu, Baiwei Wang, Yu Zhang, Yewu Yan, Hanqiu Li, Weihong Shen, Lingyu Tian, Yi Jia, Lei Zhang, Daitao Yang, Peng Gao, Zhiyong Wang, Quanyi |
ppnlink |
326645381 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12879-023-08243-7 |
up_date |
2024-07-03T14:27:58.277Z |
_version_ |
1803568418162475010 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050269941</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503064715.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230503s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12879-023-08243-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050269941</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12879-023-08243-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Yanwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatio-temporal distribution and influencing factors of norovirus outbreaks in Beijing, China from 2016 to 2020</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Noroviruses are a leading cause of acute gastroenteritis (AGE) worldwide. The geographical characteristics of norovirus outbreaks in Beijing and their influencing factors remain unknown. This study aimed to explore the spatial distributions, geographical characteristics, and influencing factors of norovirus outbreaks in Beijing, China. Methods Epidemiological data and specimens were collected through the AGE outbreak surveillance system in all 16 districts of Beijing. Data on spatial distribution, geographical characteristics, and influencing factors of norovirus outbreaks were analyzed using descriptive statistics methods. We measured spatial, geographical clustering of high- or low-value deviance from random distribution using Z-scores and P-values as statistical significance measures with Global Moran’s I statistics and Getis-Ord Gi in ArcGIS. Linear regression and correlation methods were used to explore influencing factors. Results Between September 2016 and August 2020, 1,193 norovirus outbreaks were laboratory-confirmed. The number of outbreaks varied seasonally, typically peaking in spring (March to May) or winter (October to December). Outbreaks primarily occurred around central districts at the town level, and spatial autocorrelation was evident in both the entire study period and in individual years. Hotspots of norovirus outbreaks in Beijing were primarily found in contiguous areas between three central districts (Chaoyang, Haidian, Fengtai) and four suburban districts (Changping, Daxing, Fangshan, Tongzhou). The average population numbers, mean number of all schools, and mean number of kindergartens and primary schools for towns in central districts and hotspot areas were higher than those in suburban districts and non-hotspot areas respectively. Additionally, population numbers and densities of kindergartens and primary schools were influencing factors at the town level. Conclusions Hotspots of norovirus outbreaks in Beijing were in contiguous areas between central and suburban districts with high populations, and high kindergarten and primary school densities were the likely driving forces. Outbreak surveillance needs to focus on contiguous areas between central and suburban districts with increased monitoring, medical resources, and health education.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Norovirus</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acute gastroenteritis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Outbreaks</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epidemiology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geographical characteristic</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Baiwei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yewu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Hanqiu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Weihong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Lingyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Yi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jia, Lei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Daitao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Peng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Zhiyong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Quanyi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC infectious diseases</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">23(2023), 1 vom: 02. Mai</subfield><subfield code="w">(DE-627)326645381</subfield><subfield code="w">(DE-600)2041550-3</subfield><subfield code="x">1471-2334</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:02</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12879-023-08243-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">02</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
score |
7.3985195 |