Prediction of effective Lens position using anterior segment optical coherence tomography in Chinese subjects with angle closure
Purpose To assess the accuracy of biometric parameters measured by anterior segment optical coherence tomography (AS-OCT) and partial coherence interferometry (PCI) in prediction of effective lens position (ELP) compared with previous formulas in PACG patients. Methods 121 PACG eyes were randomly di...
Ausführliche Beschreibung
Autor*in: |
Wu, Yuzhou [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
Primary angle closure Glaucoma |
---|
Anmerkung: |
© The Author(s) 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC ophthalmology - London : BioMed Central, 2001, 21(2021), 1 vom: 27. Dez. |
---|---|
Übergeordnetes Werk: |
volume:21 ; year:2021 ; number:1 ; day:27 ; month:12 |
Links: |
---|
DOI / URN: |
10.1186/s12886-021-02213-w |
---|
Katalog-ID: |
SPR050387448 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR050387448 | ||
003 | DE-627 | ||
005 | 20230509100430.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12886-021-02213-w |2 doi | |
035 | |a (DE-627)SPR050387448 | ||
035 | |a (SPR)s12886-021-02213-w-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Wu, Yuzhou |e verfasserin |4 aut | |
245 | 1 | 0 | |a Prediction of effective Lens position using anterior segment optical coherence tomography in Chinese subjects with angle closure |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2021 | ||
520 | |a Purpose To assess the accuracy of biometric parameters measured by anterior segment optical coherence tomography (AS-OCT) and partial coherence interferometry (PCI) in prediction of effective lens position (ELP) compared with previous formulas in PACG patients. Methods 121 PACG eyes were randomly divided into training set (85 eyes) and validation set (36 eyes) with same procedure including AS-OCT, PCI, phacoemulsification and IOL implantation surgery. Preoperative anterior chamber depth (pre-ACD), scleral spur depth (SSD), scleral spur width (SSW), lens vault (LV) and cornea thickness (CT) were measured from AS-OCT image. Axial length (AL) and corneal power (K) were measured by PCI. All the 7 parameters were analyzed by multiple linear regression in training set and a statistic regression formula was developed. In validation set, one-way ANOVA was applied to compare the new regression formula with Sanders-Retzlaff-Kraff theoretic (SRK/T), Holladay 1, Haigis, and a regression formula developed in previous study. Results The coefficient of determination ($ R^{2} $) of different parameter combinations are 0.19 (pre-ACD, AL), 0.25 (AL, K) and 0.49 (SSD, AL, SSW) in training set. In validation set, the correlation between predicted and measured ELP are: new formula ($ R^{2} $ = 0.50, P = 0.9947) Holladay 1 ($ R^{2} $ = 0.12, P < 0.0001), SRK/T ($ R^{2} $ = 0.11, P < 0.0001) and Haigis ($ R^{2} $ = 0.06, P < 0.0001). Conclusion Among 7 tested parameters, pre-ACD contribute little in ELP prediction. Formula consist of SSD, AL and SSW showed better accuracy than other formulas tested. | ||
650 | 4 | |a Primary angle closure Glaucoma |7 (dpeaa)DE-He213 | |
650 | 4 | |a Anterior segment optical coherence tomography |7 (dpeaa)DE-He213 | |
650 | 4 | |a Formula |7 (dpeaa)DE-He213 | |
650 | 4 | |a Effective Lens position |7 (dpeaa)DE-He213 | |
700 | 1 | |a Zhang, Shunhua |4 aut | |
700 | 1 | |a Zhong, Yong |4 aut | |
700 | 1 | |a Bian, Ailing |4 aut | |
700 | 1 | |a Zhang, Yang |4 aut | |
700 | 1 | |a Wang, Zaowen |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC ophthalmology |d London : BioMed Central, 2001 |g 21(2021), 1 vom: 27. Dez. |w (DE-627)331018772 |w (DE-600)2050436-6 |x 1471-2415 |7 nnns |
773 | 1 | 8 | |g volume:21 |g year:2021 |g number:1 |g day:27 |g month:12 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12886-021-02213-w |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 21 |j 2021 |e 1 |b 27 |c 12 |
author_variant |
y w yw s z sz y z yz a b ab y z yz z w zw |
---|---|
matchkey_str |
article:14712415:2021----::rdcinffetvlnpstouigneiremnotcloeectmgahici |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1186/s12886-021-02213-w doi (DE-627)SPR050387448 (SPR)s12886-021-02213-w-e DE-627 ger DE-627 rakwb eng Wu, Yuzhou verfasserin aut Prediction of effective Lens position using anterior segment optical coherence tomography in Chinese subjects with angle closure 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Purpose To assess the accuracy of biometric parameters measured by anterior segment optical coherence tomography (AS-OCT) and partial coherence interferometry (PCI) in prediction of effective lens position (ELP) compared with previous formulas in PACG patients. Methods 121 PACG eyes were randomly divided into training set (85 eyes) and validation set (36 eyes) with same procedure including AS-OCT, PCI, phacoemulsification and IOL implantation surgery. Preoperative anterior chamber depth (pre-ACD), scleral spur depth (SSD), scleral spur width (SSW), lens vault (LV) and cornea thickness (CT) were measured from AS-OCT image. Axial length (AL) and corneal power (K) were measured by PCI. All the 7 parameters were analyzed by multiple linear regression in training set and a statistic regression formula was developed. In validation set, one-way ANOVA was applied to compare the new regression formula with Sanders-Retzlaff-Kraff theoretic (SRK/T), Holladay 1, Haigis, and a regression formula developed in previous study. Results The coefficient of determination ($ R^{2} $) of different parameter combinations are 0.19 (pre-ACD, AL), 0.25 (AL, K) and 0.49 (SSD, AL, SSW) in training set. In validation set, the correlation between predicted and measured ELP are: new formula ($ R^{2} $ = 0.50, P = 0.9947) Holladay 1 ($ R^{2} $ = 0.12, P < 0.0001), SRK/T ($ R^{2} $ = 0.11, P < 0.0001) and Haigis ($ R^{2} $ = 0.06, P < 0.0001). Conclusion Among 7 tested parameters, pre-ACD contribute little in ELP prediction. Formula consist of SSD, AL and SSW showed better accuracy than other formulas tested. Primary angle closure Glaucoma (dpeaa)DE-He213 Anterior segment optical coherence tomography (dpeaa)DE-He213 Formula (dpeaa)DE-He213 Effective Lens position (dpeaa)DE-He213 Zhang, Shunhua aut Zhong, Yong aut Bian, Ailing aut Zhang, Yang aut Wang, Zaowen aut Enthalten in BMC ophthalmology London : BioMed Central, 2001 21(2021), 1 vom: 27. Dez. (DE-627)331018772 (DE-600)2050436-6 1471-2415 nnns volume:21 year:2021 number:1 day:27 month:12 https://dx.doi.org/10.1186/s12886-021-02213-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2021 1 27 12 |
spelling |
10.1186/s12886-021-02213-w doi (DE-627)SPR050387448 (SPR)s12886-021-02213-w-e DE-627 ger DE-627 rakwb eng Wu, Yuzhou verfasserin aut Prediction of effective Lens position using anterior segment optical coherence tomography in Chinese subjects with angle closure 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Purpose To assess the accuracy of biometric parameters measured by anterior segment optical coherence tomography (AS-OCT) and partial coherence interferometry (PCI) in prediction of effective lens position (ELP) compared with previous formulas in PACG patients. Methods 121 PACG eyes were randomly divided into training set (85 eyes) and validation set (36 eyes) with same procedure including AS-OCT, PCI, phacoemulsification and IOL implantation surgery. Preoperative anterior chamber depth (pre-ACD), scleral spur depth (SSD), scleral spur width (SSW), lens vault (LV) and cornea thickness (CT) were measured from AS-OCT image. Axial length (AL) and corneal power (K) were measured by PCI. All the 7 parameters were analyzed by multiple linear regression in training set and a statistic regression formula was developed. In validation set, one-way ANOVA was applied to compare the new regression formula with Sanders-Retzlaff-Kraff theoretic (SRK/T), Holladay 1, Haigis, and a regression formula developed in previous study. Results The coefficient of determination ($ R^{2} $) of different parameter combinations are 0.19 (pre-ACD, AL), 0.25 (AL, K) and 0.49 (SSD, AL, SSW) in training set. In validation set, the correlation between predicted and measured ELP are: new formula ($ R^{2} $ = 0.50, P = 0.9947) Holladay 1 ($ R^{2} $ = 0.12, P < 0.0001), SRK/T ($ R^{2} $ = 0.11, P < 0.0001) and Haigis ($ R^{2} $ = 0.06, P < 0.0001). Conclusion Among 7 tested parameters, pre-ACD contribute little in ELP prediction. Formula consist of SSD, AL and SSW showed better accuracy than other formulas tested. Primary angle closure Glaucoma (dpeaa)DE-He213 Anterior segment optical coherence tomography (dpeaa)DE-He213 Formula (dpeaa)DE-He213 Effective Lens position (dpeaa)DE-He213 Zhang, Shunhua aut Zhong, Yong aut Bian, Ailing aut Zhang, Yang aut Wang, Zaowen aut Enthalten in BMC ophthalmology London : BioMed Central, 2001 21(2021), 1 vom: 27. Dez. (DE-627)331018772 (DE-600)2050436-6 1471-2415 nnns volume:21 year:2021 number:1 day:27 month:12 https://dx.doi.org/10.1186/s12886-021-02213-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2021 1 27 12 |
allfields_unstemmed |
10.1186/s12886-021-02213-w doi (DE-627)SPR050387448 (SPR)s12886-021-02213-w-e DE-627 ger DE-627 rakwb eng Wu, Yuzhou verfasserin aut Prediction of effective Lens position using anterior segment optical coherence tomography in Chinese subjects with angle closure 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Purpose To assess the accuracy of biometric parameters measured by anterior segment optical coherence tomography (AS-OCT) and partial coherence interferometry (PCI) in prediction of effective lens position (ELP) compared with previous formulas in PACG patients. Methods 121 PACG eyes were randomly divided into training set (85 eyes) and validation set (36 eyes) with same procedure including AS-OCT, PCI, phacoemulsification and IOL implantation surgery. Preoperative anterior chamber depth (pre-ACD), scleral spur depth (SSD), scleral spur width (SSW), lens vault (LV) and cornea thickness (CT) were measured from AS-OCT image. Axial length (AL) and corneal power (K) were measured by PCI. All the 7 parameters were analyzed by multiple linear regression in training set and a statistic regression formula was developed. In validation set, one-way ANOVA was applied to compare the new regression formula with Sanders-Retzlaff-Kraff theoretic (SRK/T), Holladay 1, Haigis, and a regression formula developed in previous study. Results The coefficient of determination ($ R^{2} $) of different parameter combinations are 0.19 (pre-ACD, AL), 0.25 (AL, K) and 0.49 (SSD, AL, SSW) in training set. In validation set, the correlation between predicted and measured ELP are: new formula ($ R^{2} $ = 0.50, P = 0.9947) Holladay 1 ($ R^{2} $ = 0.12, P < 0.0001), SRK/T ($ R^{2} $ = 0.11, P < 0.0001) and Haigis ($ R^{2} $ = 0.06, P < 0.0001). Conclusion Among 7 tested parameters, pre-ACD contribute little in ELP prediction. Formula consist of SSD, AL and SSW showed better accuracy than other formulas tested. Primary angle closure Glaucoma (dpeaa)DE-He213 Anterior segment optical coherence tomography (dpeaa)DE-He213 Formula (dpeaa)DE-He213 Effective Lens position (dpeaa)DE-He213 Zhang, Shunhua aut Zhong, Yong aut Bian, Ailing aut Zhang, Yang aut Wang, Zaowen aut Enthalten in BMC ophthalmology London : BioMed Central, 2001 21(2021), 1 vom: 27. Dez. (DE-627)331018772 (DE-600)2050436-6 1471-2415 nnns volume:21 year:2021 number:1 day:27 month:12 https://dx.doi.org/10.1186/s12886-021-02213-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2021 1 27 12 |
allfieldsGer |
10.1186/s12886-021-02213-w doi (DE-627)SPR050387448 (SPR)s12886-021-02213-w-e DE-627 ger DE-627 rakwb eng Wu, Yuzhou verfasserin aut Prediction of effective Lens position using anterior segment optical coherence tomography in Chinese subjects with angle closure 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Purpose To assess the accuracy of biometric parameters measured by anterior segment optical coherence tomography (AS-OCT) and partial coherence interferometry (PCI) in prediction of effective lens position (ELP) compared with previous formulas in PACG patients. Methods 121 PACG eyes were randomly divided into training set (85 eyes) and validation set (36 eyes) with same procedure including AS-OCT, PCI, phacoemulsification and IOL implantation surgery. Preoperative anterior chamber depth (pre-ACD), scleral spur depth (SSD), scleral spur width (SSW), lens vault (LV) and cornea thickness (CT) were measured from AS-OCT image. Axial length (AL) and corneal power (K) were measured by PCI. All the 7 parameters were analyzed by multiple linear regression in training set and a statistic regression formula was developed. In validation set, one-way ANOVA was applied to compare the new regression formula with Sanders-Retzlaff-Kraff theoretic (SRK/T), Holladay 1, Haigis, and a regression formula developed in previous study. Results The coefficient of determination ($ R^{2} $) of different parameter combinations are 0.19 (pre-ACD, AL), 0.25 (AL, K) and 0.49 (SSD, AL, SSW) in training set. In validation set, the correlation between predicted and measured ELP are: new formula ($ R^{2} $ = 0.50, P = 0.9947) Holladay 1 ($ R^{2} $ = 0.12, P < 0.0001), SRK/T ($ R^{2} $ = 0.11, P < 0.0001) and Haigis ($ R^{2} $ = 0.06, P < 0.0001). Conclusion Among 7 tested parameters, pre-ACD contribute little in ELP prediction. Formula consist of SSD, AL and SSW showed better accuracy than other formulas tested. Primary angle closure Glaucoma (dpeaa)DE-He213 Anterior segment optical coherence tomography (dpeaa)DE-He213 Formula (dpeaa)DE-He213 Effective Lens position (dpeaa)DE-He213 Zhang, Shunhua aut Zhong, Yong aut Bian, Ailing aut Zhang, Yang aut Wang, Zaowen aut Enthalten in BMC ophthalmology London : BioMed Central, 2001 21(2021), 1 vom: 27. Dez. (DE-627)331018772 (DE-600)2050436-6 1471-2415 nnns volume:21 year:2021 number:1 day:27 month:12 https://dx.doi.org/10.1186/s12886-021-02213-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2021 1 27 12 |
allfieldsSound |
10.1186/s12886-021-02213-w doi (DE-627)SPR050387448 (SPR)s12886-021-02213-w-e DE-627 ger DE-627 rakwb eng Wu, Yuzhou verfasserin aut Prediction of effective Lens position using anterior segment optical coherence tomography in Chinese subjects with angle closure 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Purpose To assess the accuracy of biometric parameters measured by anterior segment optical coherence tomography (AS-OCT) and partial coherence interferometry (PCI) in prediction of effective lens position (ELP) compared with previous formulas in PACG patients. Methods 121 PACG eyes were randomly divided into training set (85 eyes) and validation set (36 eyes) with same procedure including AS-OCT, PCI, phacoemulsification and IOL implantation surgery. Preoperative anterior chamber depth (pre-ACD), scleral spur depth (SSD), scleral spur width (SSW), lens vault (LV) and cornea thickness (CT) were measured from AS-OCT image. Axial length (AL) and corneal power (K) were measured by PCI. All the 7 parameters were analyzed by multiple linear regression in training set and a statistic regression formula was developed. In validation set, one-way ANOVA was applied to compare the new regression formula with Sanders-Retzlaff-Kraff theoretic (SRK/T), Holladay 1, Haigis, and a regression formula developed in previous study. Results The coefficient of determination ($ R^{2} $) of different parameter combinations are 0.19 (pre-ACD, AL), 0.25 (AL, K) and 0.49 (SSD, AL, SSW) in training set. In validation set, the correlation between predicted and measured ELP are: new formula ($ R^{2} $ = 0.50, P = 0.9947) Holladay 1 ($ R^{2} $ = 0.12, P < 0.0001), SRK/T ($ R^{2} $ = 0.11, P < 0.0001) and Haigis ($ R^{2} $ = 0.06, P < 0.0001). Conclusion Among 7 tested parameters, pre-ACD contribute little in ELP prediction. Formula consist of SSD, AL and SSW showed better accuracy than other formulas tested. Primary angle closure Glaucoma (dpeaa)DE-He213 Anterior segment optical coherence tomography (dpeaa)DE-He213 Formula (dpeaa)DE-He213 Effective Lens position (dpeaa)DE-He213 Zhang, Shunhua aut Zhong, Yong aut Bian, Ailing aut Zhang, Yang aut Wang, Zaowen aut Enthalten in BMC ophthalmology London : BioMed Central, 2001 21(2021), 1 vom: 27. Dez. (DE-627)331018772 (DE-600)2050436-6 1471-2415 nnns volume:21 year:2021 number:1 day:27 month:12 https://dx.doi.org/10.1186/s12886-021-02213-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2021 1 27 12 |
language |
English |
source |
Enthalten in BMC ophthalmology 21(2021), 1 vom: 27. Dez. volume:21 year:2021 number:1 day:27 month:12 |
sourceStr |
Enthalten in BMC ophthalmology 21(2021), 1 vom: 27. Dez. volume:21 year:2021 number:1 day:27 month:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Primary angle closure Glaucoma Anterior segment optical coherence tomography Formula Effective Lens position |
isfreeaccess_bool |
true |
container_title |
BMC ophthalmology |
authorswithroles_txt_mv |
Wu, Yuzhou @@aut@@ Zhang, Shunhua @@aut@@ Zhong, Yong @@aut@@ Bian, Ailing @@aut@@ Zhang, Yang @@aut@@ Wang, Zaowen @@aut@@ |
publishDateDaySort_date |
2021-12-27T00:00:00Z |
hierarchy_top_id |
331018772 |
id |
SPR050387448 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR050387448</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509100430.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12886-021-02213-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050387448</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12886-021-02213-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Yuzhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Prediction of effective Lens position using anterior segment optical coherence tomography in Chinese subjects with angle closure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose To assess the accuracy of biometric parameters measured by anterior segment optical coherence tomography (AS-OCT) and partial coherence interferometry (PCI) in prediction of effective lens position (ELP) compared with previous formulas in PACG patients. Methods 121 PACG eyes were randomly divided into training set (85 eyes) and validation set (36 eyes) with same procedure including AS-OCT, PCI, phacoemulsification and IOL implantation surgery. Preoperative anterior chamber depth (pre-ACD), scleral spur depth (SSD), scleral spur width (SSW), lens vault (LV) and cornea thickness (CT) were measured from AS-OCT image. Axial length (AL) and corneal power (K) were measured by PCI. All the 7 parameters were analyzed by multiple linear regression in training set and a statistic regression formula was developed. In validation set, one-way ANOVA was applied to compare the new regression formula with Sanders-Retzlaff-Kraff theoretic (SRK/T), Holladay 1, Haigis, and a regression formula developed in previous study. Results The coefficient of determination ($ R^{2} $) of different parameter combinations are 0.19 (pre-ACD, AL), 0.25 (AL, K) and 0.49 (SSD, AL, SSW) in training set. In validation set, the correlation between predicted and measured ELP are: new formula ($ R^{2} $ = 0.50, P = 0.9947) Holladay 1 ($ R^{2} $ = 0.12, P < 0.0001), SRK/T ($ R^{2} $ = 0.11, P < 0.0001) and Haigis ($ R^{2} $ = 0.06, P < 0.0001). Conclusion Among 7 tested parameters, pre-ACD contribute little in ELP prediction. Formula consist of SSD, AL and SSW showed better accuracy than other formulas tested.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Primary angle closure Glaucoma</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anterior segment optical coherence tomography</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Formula</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Effective Lens position</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Shunhua</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhong, Yong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bian, Ailing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zaowen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC ophthalmology</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">21(2021), 1 vom: 27. Dez.</subfield><subfield code="w">(DE-627)331018772</subfield><subfield code="w">(DE-600)2050436-6</subfield><subfield code="x">1471-2415</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:27</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12886-021-02213-w</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">27</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
author |
Wu, Yuzhou |
spellingShingle |
Wu, Yuzhou misc Primary angle closure Glaucoma misc Anterior segment optical coherence tomography misc Formula misc Effective Lens position Prediction of effective Lens position using anterior segment optical coherence tomography in Chinese subjects with angle closure |
authorStr |
Wu, Yuzhou |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331018772 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2415 |
topic_title |
Prediction of effective Lens position using anterior segment optical coherence tomography in Chinese subjects with angle closure Primary angle closure Glaucoma (dpeaa)DE-He213 Anterior segment optical coherence tomography (dpeaa)DE-He213 Formula (dpeaa)DE-He213 Effective Lens position (dpeaa)DE-He213 |
topic |
misc Primary angle closure Glaucoma misc Anterior segment optical coherence tomography misc Formula misc Effective Lens position |
topic_unstemmed |
misc Primary angle closure Glaucoma misc Anterior segment optical coherence tomography misc Formula misc Effective Lens position |
topic_browse |
misc Primary angle closure Glaucoma misc Anterior segment optical coherence tomography misc Formula misc Effective Lens position |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC ophthalmology |
hierarchy_parent_id |
331018772 |
hierarchy_top_title |
BMC ophthalmology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331018772 (DE-600)2050436-6 |
title |
Prediction of effective Lens position using anterior segment optical coherence tomography in Chinese subjects with angle closure |
ctrlnum |
(DE-627)SPR050387448 (SPR)s12886-021-02213-w-e |
title_full |
Prediction of effective Lens position using anterior segment optical coherence tomography in Chinese subjects with angle closure |
author_sort |
Wu, Yuzhou |
journal |
BMC ophthalmology |
journalStr |
BMC ophthalmology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Wu, Yuzhou Zhang, Shunhua Zhong, Yong Bian, Ailing Zhang, Yang Wang, Zaowen |
container_volume |
21 |
format_se |
Elektronische Aufsätze |
author-letter |
Wu, Yuzhou |
doi_str_mv |
10.1186/s12886-021-02213-w |
title_sort |
prediction of effective lens position using anterior segment optical coherence tomography in chinese subjects with angle closure |
title_auth |
Prediction of effective Lens position using anterior segment optical coherence tomography in Chinese subjects with angle closure |
abstract |
Purpose To assess the accuracy of biometric parameters measured by anterior segment optical coherence tomography (AS-OCT) and partial coherence interferometry (PCI) in prediction of effective lens position (ELP) compared with previous formulas in PACG patients. Methods 121 PACG eyes were randomly divided into training set (85 eyes) and validation set (36 eyes) with same procedure including AS-OCT, PCI, phacoemulsification and IOL implantation surgery. Preoperative anterior chamber depth (pre-ACD), scleral spur depth (SSD), scleral spur width (SSW), lens vault (LV) and cornea thickness (CT) were measured from AS-OCT image. Axial length (AL) and corneal power (K) were measured by PCI. All the 7 parameters were analyzed by multiple linear regression in training set and a statistic regression formula was developed. In validation set, one-way ANOVA was applied to compare the new regression formula with Sanders-Retzlaff-Kraff theoretic (SRK/T), Holladay 1, Haigis, and a regression formula developed in previous study. Results The coefficient of determination ($ R^{2} $) of different parameter combinations are 0.19 (pre-ACD, AL), 0.25 (AL, K) and 0.49 (SSD, AL, SSW) in training set. In validation set, the correlation between predicted and measured ELP are: new formula ($ R^{2} $ = 0.50, P = 0.9947) Holladay 1 ($ R^{2} $ = 0.12, P < 0.0001), SRK/T ($ R^{2} $ = 0.11, P < 0.0001) and Haigis ($ R^{2} $ = 0.06, P < 0.0001). Conclusion Among 7 tested parameters, pre-ACD contribute little in ELP prediction. Formula consist of SSD, AL and SSW showed better accuracy than other formulas tested. © The Author(s) 2021 |
abstractGer |
Purpose To assess the accuracy of biometric parameters measured by anterior segment optical coherence tomography (AS-OCT) and partial coherence interferometry (PCI) in prediction of effective lens position (ELP) compared with previous formulas in PACG patients. Methods 121 PACG eyes were randomly divided into training set (85 eyes) and validation set (36 eyes) with same procedure including AS-OCT, PCI, phacoemulsification and IOL implantation surgery. Preoperative anterior chamber depth (pre-ACD), scleral spur depth (SSD), scleral spur width (SSW), lens vault (LV) and cornea thickness (CT) were measured from AS-OCT image. Axial length (AL) and corneal power (K) were measured by PCI. All the 7 parameters were analyzed by multiple linear regression in training set and a statistic regression formula was developed. In validation set, one-way ANOVA was applied to compare the new regression formula with Sanders-Retzlaff-Kraff theoretic (SRK/T), Holladay 1, Haigis, and a regression formula developed in previous study. Results The coefficient of determination ($ R^{2} $) of different parameter combinations are 0.19 (pre-ACD, AL), 0.25 (AL, K) and 0.49 (SSD, AL, SSW) in training set. In validation set, the correlation between predicted and measured ELP are: new formula ($ R^{2} $ = 0.50, P = 0.9947) Holladay 1 ($ R^{2} $ = 0.12, P < 0.0001), SRK/T ($ R^{2} $ = 0.11, P < 0.0001) and Haigis ($ R^{2} $ = 0.06, P < 0.0001). Conclusion Among 7 tested parameters, pre-ACD contribute little in ELP prediction. Formula consist of SSD, AL and SSW showed better accuracy than other formulas tested. © The Author(s) 2021 |
abstract_unstemmed |
Purpose To assess the accuracy of biometric parameters measured by anterior segment optical coherence tomography (AS-OCT) and partial coherence interferometry (PCI) in prediction of effective lens position (ELP) compared with previous formulas in PACG patients. Methods 121 PACG eyes were randomly divided into training set (85 eyes) and validation set (36 eyes) with same procedure including AS-OCT, PCI, phacoemulsification and IOL implantation surgery. Preoperative anterior chamber depth (pre-ACD), scleral spur depth (SSD), scleral spur width (SSW), lens vault (LV) and cornea thickness (CT) were measured from AS-OCT image. Axial length (AL) and corneal power (K) were measured by PCI. All the 7 parameters were analyzed by multiple linear regression in training set and a statistic regression formula was developed. In validation set, one-way ANOVA was applied to compare the new regression formula with Sanders-Retzlaff-Kraff theoretic (SRK/T), Holladay 1, Haigis, and a regression formula developed in previous study. Results The coefficient of determination ($ R^{2} $) of different parameter combinations are 0.19 (pre-ACD, AL), 0.25 (AL, K) and 0.49 (SSD, AL, SSW) in training set. In validation set, the correlation between predicted and measured ELP are: new formula ($ R^{2} $ = 0.50, P = 0.9947) Holladay 1 ($ R^{2} $ = 0.12, P < 0.0001), SRK/T ($ R^{2} $ = 0.11, P < 0.0001) and Haigis ($ R^{2} $ = 0.06, P < 0.0001). Conclusion Among 7 tested parameters, pre-ACD contribute little in ELP prediction. Formula consist of SSD, AL and SSW showed better accuracy than other formulas tested. © The Author(s) 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Prediction of effective Lens position using anterior segment optical coherence tomography in Chinese subjects with angle closure |
url |
https://dx.doi.org/10.1186/s12886-021-02213-w |
remote_bool |
true |
author2 |
Zhang, Shunhua Zhong, Yong Bian, Ailing Zhang, Yang Wang, Zaowen |
author2Str |
Zhang, Shunhua Zhong, Yong Bian, Ailing Zhang, Yang Wang, Zaowen |
ppnlink |
331018772 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12886-021-02213-w |
up_date |
2024-07-03T15:12:57.747Z |
_version_ |
1803571248766124032 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR050387448</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509100430.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12886-021-02213-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050387448</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12886-021-02213-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Yuzhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Prediction of effective Lens position using anterior segment optical coherence tomography in Chinese subjects with angle closure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose To assess the accuracy of biometric parameters measured by anterior segment optical coherence tomography (AS-OCT) and partial coherence interferometry (PCI) in prediction of effective lens position (ELP) compared with previous formulas in PACG patients. Methods 121 PACG eyes were randomly divided into training set (85 eyes) and validation set (36 eyes) with same procedure including AS-OCT, PCI, phacoemulsification and IOL implantation surgery. Preoperative anterior chamber depth (pre-ACD), scleral spur depth (SSD), scleral spur width (SSW), lens vault (LV) and cornea thickness (CT) were measured from AS-OCT image. Axial length (AL) and corneal power (K) were measured by PCI. All the 7 parameters were analyzed by multiple linear regression in training set and a statistic regression formula was developed. In validation set, one-way ANOVA was applied to compare the new regression formula with Sanders-Retzlaff-Kraff theoretic (SRK/T), Holladay 1, Haigis, and a regression formula developed in previous study. Results The coefficient of determination ($ R^{2} $) of different parameter combinations are 0.19 (pre-ACD, AL), 0.25 (AL, K) and 0.49 (SSD, AL, SSW) in training set. In validation set, the correlation between predicted and measured ELP are: new formula ($ R^{2} $ = 0.50, P = 0.9947) Holladay 1 ($ R^{2} $ = 0.12, P < 0.0001), SRK/T ($ R^{2} $ = 0.11, P < 0.0001) and Haigis ($ R^{2} $ = 0.06, P < 0.0001). Conclusion Among 7 tested parameters, pre-ACD contribute little in ELP prediction. Formula consist of SSD, AL and SSW showed better accuracy than other formulas tested.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Primary angle closure Glaucoma</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anterior segment optical coherence tomography</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Formula</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Effective Lens position</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Shunhua</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhong, Yong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bian, Ailing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zaowen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC ophthalmology</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">21(2021), 1 vom: 27. Dez.</subfield><subfield code="w">(DE-627)331018772</subfield><subfield code="w">(DE-600)2050436-6</subfield><subfield code="x">1471-2415</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:27</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12886-021-02213-w</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">27</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
score |
7.399728 |