Optimization of spatial structure designs of control rod using Monte Carlo code RMC
Abstract Control rod is the most important approach to control reactivity in reactors, which is currently a cluster of pins filled with boron carbide ($ B_{4} $C). In this case, neutrons are captured in the outer region, and thus the inner absorber is inefficient. Moreover, the lifetime of the contr...
Ausführliche Beschreibung
Autor*in: |
Luo, Hao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Higher Education Press 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Frontiers of energy and power engineering in China - Beijing : Higher Education Press, 2007, 15(2021), 4 vom: 30. Sept., Seite 974-983 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2021 ; number:4 ; day:30 ; month:09 ; pages:974-983 |
Links: |
---|
DOI / URN: |
10.1007/s11708-021-0769-5 |
---|
Katalog-ID: |
SPR050423584 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR050423584 | ||
003 | DE-627 | ||
005 | 20230507084812.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11708-021-0769-5 |2 doi | |
035 | |a (DE-627)SPR050423584 | ||
035 | |a (SPR)s11708-021-0769-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Luo, Hao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Optimization of spatial structure designs of control rod using Monte Carlo code RMC |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Higher Education Press 2021 | ||
520 | |a Abstract Control rod is the most important approach to control reactivity in reactors, which is currently a cluster of pins filled with boron carbide ($ B_{4} $C). In this case, neutrons are captured in the outer region, and thus the inner absorber is inefficient. Moreover, the lifetime of the control rod is challenged due to the high reactivity worth loss resulted from the excessive degradation of $ B_{4} $C in the high flux area. In this work, some control rod designs are proposed with optimized spatial structures including the spatially mixed rod, radially moderated rod, and composite control rod with small-sized pins. The control rod worth and effective absorption cross section of these designs are computed using the Monte Carlo code RMC. A long-time depletion calculation is conducted to evaluate their burnup stability. For the spatially mixed rod, rare-earth absorbers are combined with $ B_{4} $C in spatial structure. Compared with the homogenous $ B_{4} $C rod, mixed designs ensure more sufficient reactivity worth in the lifetime of the reactor. The minimum reactivity loss at the end of the cycle is only 1.8% from the dysprosium titanate rod, while the loss for pure $ B_{4} $C rod is nearly 12%. For the radially moderated design, a doubled neutronic efficiency is achieved when the volume ratio of moderator equals approximately 0.3, while excessive moderating may lead to the failure of control rods. The control rod with small-sized pins processes an enhanced safety performance and saves the investment in absorbers. The rod worth can be further enhanced by introducing small moderator pins, and the reactivity loss caused by the reduction of absorbers is sustainable. | ||
650 | 4 | |a control rod |7 (dpeaa)DE-He213 | |
650 | 4 | |a optimized spatial structure |7 (dpeaa)DE-He213 | |
650 | 4 | |a neutronic performance |7 (dpeaa)DE-He213 | |
650 | 4 | |a burnup stability |7 (dpeaa)DE-He213 | |
700 | 1 | |a Li, Mancang |4 aut | |
700 | 1 | |a Huang, Shanfang |4 aut | |
700 | 1 | |a Liu, Minyun |4 aut | |
700 | 1 | |a Wang, Kan |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Frontiers of energy and power engineering in China |d Beijing : Higher Education Press, 2007 |g 15(2021), 4 vom: 30. Sept., Seite 974-983 |w (DE-627)546007775 |w (DE-600)2389481-7 |x 1673-7504 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2021 |g number:4 |g day:30 |g month:09 |g pages:974-983 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11708-021-0769-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2005 | ||
951 | |a AR | ||
952 | |d 15 |j 2021 |e 4 |b 30 |c 09 |h 974-983 |
author_variant |
h l hl m l ml s h sh m l ml k w kw |
---|---|
matchkey_str |
article:16737504:2021----::piiainfptasrcueeinocnrlou |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s11708-021-0769-5 doi (DE-627)SPR050423584 (SPR)s11708-021-0769-5-e DE-627 ger DE-627 rakwb eng Luo, Hao verfasserin aut Optimization of spatial structure designs of control rod using Monte Carlo code RMC 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Higher Education Press 2021 Abstract Control rod is the most important approach to control reactivity in reactors, which is currently a cluster of pins filled with boron carbide ($ B_{4} $C). In this case, neutrons are captured in the outer region, and thus the inner absorber is inefficient. Moreover, the lifetime of the control rod is challenged due to the high reactivity worth loss resulted from the excessive degradation of $ B_{4} $C in the high flux area. In this work, some control rod designs are proposed with optimized spatial structures including the spatially mixed rod, radially moderated rod, and composite control rod with small-sized pins. The control rod worth and effective absorption cross section of these designs are computed using the Monte Carlo code RMC. A long-time depletion calculation is conducted to evaluate their burnup stability. For the spatially mixed rod, rare-earth absorbers are combined with $ B_{4} $C in spatial structure. Compared with the homogenous $ B_{4} $C rod, mixed designs ensure more sufficient reactivity worth in the lifetime of the reactor. The minimum reactivity loss at the end of the cycle is only 1.8% from the dysprosium titanate rod, while the loss for pure $ B_{4} $C rod is nearly 12%. For the radially moderated design, a doubled neutronic efficiency is achieved when the volume ratio of moderator equals approximately 0.3, while excessive moderating may lead to the failure of control rods. The control rod with small-sized pins processes an enhanced safety performance and saves the investment in absorbers. The rod worth can be further enhanced by introducing small moderator pins, and the reactivity loss caused by the reduction of absorbers is sustainable. control rod (dpeaa)DE-He213 optimized spatial structure (dpeaa)DE-He213 neutronic performance (dpeaa)DE-He213 burnup stability (dpeaa)DE-He213 Li, Mancang aut Huang, Shanfang aut Liu, Minyun aut Wang, Kan aut Enthalten in Frontiers of energy and power engineering in China Beijing : Higher Education Press, 2007 15(2021), 4 vom: 30. Sept., Seite 974-983 (DE-627)546007775 (DE-600)2389481-7 1673-7504 nnns volume:15 year:2021 number:4 day:30 month:09 pages:974-983 https://dx.doi.org/10.1007/s11708-021-0769-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 AR 15 2021 4 30 09 974-983 |
spelling |
10.1007/s11708-021-0769-5 doi (DE-627)SPR050423584 (SPR)s11708-021-0769-5-e DE-627 ger DE-627 rakwb eng Luo, Hao verfasserin aut Optimization of spatial structure designs of control rod using Monte Carlo code RMC 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Higher Education Press 2021 Abstract Control rod is the most important approach to control reactivity in reactors, which is currently a cluster of pins filled with boron carbide ($ B_{4} $C). In this case, neutrons are captured in the outer region, and thus the inner absorber is inefficient. Moreover, the lifetime of the control rod is challenged due to the high reactivity worth loss resulted from the excessive degradation of $ B_{4} $C in the high flux area. In this work, some control rod designs are proposed with optimized spatial structures including the spatially mixed rod, radially moderated rod, and composite control rod with small-sized pins. The control rod worth and effective absorption cross section of these designs are computed using the Monte Carlo code RMC. A long-time depletion calculation is conducted to evaluate their burnup stability. For the spatially mixed rod, rare-earth absorbers are combined with $ B_{4} $C in spatial structure. Compared with the homogenous $ B_{4} $C rod, mixed designs ensure more sufficient reactivity worth in the lifetime of the reactor. The minimum reactivity loss at the end of the cycle is only 1.8% from the dysprosium titanate rod, while the loss for pure $ B_{4} $C rod is nearly 12%. For the radially moderated design, a doubled neutronic efficiency is achieved when the volume ratio of moderator equals approximately 0.3, while excessive moderating may lead to the failure of control rods. The control rod with small-sized pins processes an enhanced safety performance and saves the investment in absorbers. The rod worth can be further enhanced by introducing small moderator pins, and the reactivity loss caused by the reduction of absorbers is sustainable. control rod (dpeaa)DE-He213 optimized spatial structure (dpeaa)DE-He213 neutronic performance (dpeaa)DE-He213 burnup stability (dpeaa)DE-He213 Li, Mancang aut Huang, Shanfang aut Liu, Minyun aut Wang, Kan aut Enthalten in Frontiers of energy and power engineering in China Beijing : Higher Education Press, 2007 15(2021), 4 vom: 30. Sept., Seite 974-983 (DE-627)546007775 (DE-600)2389481-7 1673-7504 nnns volume:15 year:2021 number:4 day:30 month:09 pages:974-983 https://dx.doi.org/10.1007/s11708-021-0769-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 AR 15 2021 4 30 09 974-983 |
allfields_unstemmed |
10.1007/s11708-021-0769-5 doi (DE-627)SPR050423584 (SPR)s11708-021-0769-5-e DE-627 ger DE-627 rakwb eng Luo, Hao verfasserin aut Optimization of spatial structure designs of control rod using Monte Carlo code RMC 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Higher Education Press 2021 Abstract Control rod is the most important approach to control reactivity in reactors, which is currently a cluster of pins filled with boron carbide ($ B_{4} $C). In this case, neutrons are captured in the outer region, and thus the inner absorber is inefficient. Moreover, the lifetime of the control rod is challenged due to the high reactivity worth loss resulted from the excessive degradation of $ B_{4} $C in the high flux area. In this work, some control rod designs are proposed with optimized spatial structures including the spatially mixed rod, radially moderated rod, and composite control rod with small-sized pins. The control rod worth and effective absorption cross section of these designs are computed using the Monte Carlo code RMC. A long-time depletion calculation is conducted to evaluate their burnup stability. For the spatially mixed rod, rare-earth absorbers are combined with $ B_{4} $C in spatial structure. Compared with the homogenous $ B_{4} $C rod, mixed designs ensure more sufficient reactivity worth in the lifetime of the reactor. The minimum reactivity loss at the end of the cycle is only 1.8% from the dysprosium titanate rod, while the loss for pure $ B_{4} $C rod is nearly 12%. For the radially moderated design, a doubled neutronic efficiency is achieved when the volume ratio of moderator equals approximately 0.3, while excessive moderating may lead to the failure of control rods. The control rod with small-sized pins processes an enhanced safety performance and saves the investment in absorbers. The rod worth can be further enhanced by introducing small moderator pins, and the reactivity loss caused by the reduction of absorbers is sustainable. control rod (dpeaa)DE-He213 optimized spatial structure (dpeaa)DE-He213 neutronic performance (dpeaa)DE-He213 burnup stability (dpeaa)DE-He213 Li, Mancang aut Huang, Shanfang aut Liu, Minyun aut Wang, Kan aut Enthalten in Frontiers of energy and power engineering in China Beijing : Higher Education Press, 2007 15(2021), 4 vom: 30. Sept., Seite 974-983 (DE-627)546007775 (DE-600)2389481-7 1673-7504 nnns volume:15 year:2021 number:4 day:30 month:09 pages:974-983 https://dx.doi.org/10.1007/s11708-021-0769-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 AR 15 2021 4 30 09 974-983 |
allfieldsGer |
10.1007/s11708-021-0769-5 doi (DE-627)SPR050423584 (SPR)s11708-021-0769-5-e DE-627 ger DE-627 rakwb eng Luo, Hao verfasserin aut Optimization of spatial structure designs of control rod using Monte Carlo code RMC 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Higher Education Press 2021 Abstract Control rod is the most important approach to control reactivity in reactors, which is currently a cluster of pins filled with boron carbide ($ B_{4} $C). In this case, neutrons are captured in the outer region, and thus the inner absorber is inefficient. Moreover, the lifetime of the control rod is challenged due to the high reactivity worth loss resulted from the excessive degradation of $ B_{4} $C in the high flux area. In this work, some control rod designs are proposed with optimized spatial structures including the spatially mixed rod, radially moderated rod, and composite control rod with small-sized pins. The control rod worth and effective absorption cross section of these designs are computed using the Monte Carlo code RMC. A long-time depletion calculation is conducted to evaluate their burnup stability. For the spatially mixed rod, rare-earth absorbers are combined with $ B_{4} $C in spatial structure. Compared with the homogenous $ B_{4} $C rod, mixed designs ensure more sufficient reactivity worth in the lifetime of the reactor. The minimum reactivity loss at the end of the cycle is only 1.8% from the dysprosium titanate rod, while the loss for pure $ B_{4} $C rod is nearly 12%. For the radially moderated design, a doubled neutronic efficiency is achieved when the volume ratio of moderator equals approximately 0.3, while excessive moderating may lead to the failure of control rods. The control rod with small-sized pins processes an enhanced safety performance and saves the investment in absorbers. The rod worth can be further enhanced by introducing small moderator pins, and the reactivity loss caused by the reduction of absorbers is sustainable. control rod (dpeaa)DE-He213 optimized spatial structure (dpeaa)DE-He213 neutronic performance (dpeaa)DE-He213 burnup stability (dpeaa)DE-He213 Li, Mancang aut Huang, Shanfang aut Liu, Minyun aut Wang, Kan aut Enthalten in Frontiers of energy and power engineering in China Beijing : Higher Education Press, 2007 15(2021), 4 vom: 30. Sept., Seite 974-983 (DE-627)546007775 (DE-600)2389481-7 1673-7504 nnns volume:15 year:2021 number:4 day:30 month:09 pages:974-983 https://dx.doi.org/10.1007/s11708-021-0769-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 AR 15 2021 4 30 09 974-983 |
allfieldsSound |
10.1007/s11708-021-0769-5 doi (DE-627)SPR050423584 (SPR)s11708-021-0769-5-e DE-627 ger DE-627 rakwb eng Luo, Hao verfasserin aut Optimization of spatial structure designs of control rod using Monte Carlo code RMC 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Higher Education Press 2021 Abstract Control rod is the most important approach to control reactivity in reactors, which is currently a cluster of pins filled with boron carbide ($ B_{4} $C). In this case, neutrons are captured in the outer region, and thus the inner absorber is inefficient. Moreover, the lifetime of the control rod is challenged due to the high reactivity worth loss resulted from the excessive degradation of $ B_{4} $C in the high flux area. In this work, some control rod designs are proposed with optimized spatial structures including the spatially mixed rod, radially moderated rod, and composite control rod with small-sized pins. The control rod worth and effective absorption cross section of these designs are computed using the Monte Carlo code RMC. A long-time depletion calculation is conducted to evaluate their burnup stability. For the spatially mixed rod, rare-earth absorbers are combined with $ B_{4} $C in spatial structure. Compared with the homogenous $ B_{4} $C rod, mixed designs ensure more sufficient reactivity worth in the lifetime of the reactor. The minimum reactivity loss at the end of the cycle is only 1.8% from the dysprosium titanate rod, while the loss for pure $ B_{4} $C rod is nearly 12%. For the radially moderated design, a doubled neutronic efficiency is achieved when the volume ratio of moderator equals approximately 0.3, while excessive moderating may lead to the failure of control rods. The control rod with small-sized pins processes an enhanced safety performance and saves the investment in absorbers. The rod worth can be further enhanced by introducing small moderator pins, and the reactivity loss caused by the reduction of absorbers is sustainable. control rod (dpeaa)DE-He213 optimized spatial structure (dpeaa)DE-He213 neutronic performance (dpeaa)DE-He213 burnup stability (dpeaa)DE-He213 Li, Mancang aut Huang, Shanfang aut Liu, Minyun aut Wang, Kan aut Enthalten in Frontiers of energy and power engineering in China Beijing : Higher Education Press, 2007 15(2021), 4 vom: 30. Sept., Seite 974-983 (DE-627)546007775 (DE-600)2389481-7 1673-7504 nnns volume:15 year:2021 number:4 day:30 month:09 pages:974-983 https://dx.doi.org/10.1007/s11708-021-0769-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 AR 15 2021 4 30 09 974-983 |
language |
English |
source |
Enthalten in Frontiers of energy and power engineering in China 15(2021), 4 vom: 30. Sept., Seite 974-983 volume:15 year:2021 number:4 day:30 month:09 pages:974-983 |
sourceStr |
Enthalten in Frontiers of energy and power engineering in China 15(2021), 4 vom: 30. Sept., Seite 974-983 volume:15 year:2021 number:4 day:30 month:09 pages:974-983 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
control rod optimized spatial structure neutronic performance burnup stability |
isfreeaccess_bool |
false |
container_title |
Frontiers of energy and power engineering in China |
authorswithroles_txt_mv |
Luo, Hao @@aut@@ Li, Mancang @@aut@@ Huang, Shanfang @@aut@@ Liu, Minyun @@aut@@ Wang, Kan @@aut@@ |
publishDateDaySort_date |
2021-09-30T00:00:00Z |
hierarchy_top_id |
546007775 |
id |
SPR050423584 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050423584</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507084812.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11708-021-0769-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050423584</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11708-021-0769-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Luo, Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization of spatial structure designs of control rod using Monte Carlo code RMC</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Higher Education Press 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Control rod is the most important approach to control reactivity in reactors, which is currently a cluster of pins filled with boron carbide ($ B_{4} $C). In this case, neutrons are captured in the outer region, and thus the inner absorber is inefficient. Moreover, the lifetime of the control rod is challenged due to the high reactivity worth loss resulted from the excessive degradation of $ B_{4} $C in the high flux area. In this work, some control rod designs are proposed with optimized spatial structures including the spatially mixed rod, radially moderated rod, and composite control rod with small-sized pins. The control rod worth and effective absorption cross section of these designs are computed using the Monte Carlo code RMC. A long-time depletion calculation is conducted to evaluate their burnup stability. For the spatially mixed rod, rare-earth absorbers are combined with $ B_{4} $C in spatial structure. Compared with the homogenous $ B_{4} $C rod, mixed designs ensure more sufficient reactivity worth in the lifetime of the reactor. The minimum reactivity loss at the end of the cycle is only 1.8% from the dysprosium titanate rod, while the loss for pure $ B_{4} $C rod is nearly 12%. For the radially moderated design, a doubled neutronic efficiency is achieved when the volume ratio of moderator equals approximately 0.3, while excessive moderating may lead to the failure of control rods. The control rod with small-sized pins processes an enhanced safety performance and saves the investment in absorbers. The rod worth can be further enhanced by introducing small moderator pins, and the reactivity loss caused by the reduction of absorbers is sustainable.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">control rod</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimized spatial structure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neutronic performance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">burnup stability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Mancang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Shanfang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Minyun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Kan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Frontiers of energy and power engineering in China</subfield><subfield code="d">Beijing : Higher Education Press, 2007</subfield><subfield code="g">15(2021), 4 vom: 30. Sept., Seite 974-983</subfield><subfield code="w">(DE-627)546007775</subfield><subfield code="w">(DE-600)2389481-7</subfield><subfield code="x">1673-7504</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4</subfield><subfield code="g">day:30</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:974-983</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11708-021-0769-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2021</subfield><subfield code="e">4</subfield><subfield code="b">30</subfield><subfield code="c">09</subfield><subfield code="h">974-983</subfield></datafield></record></collection>
|
author |
Luo, Hao |
spellingShingle |
Luo, Hao misc control rod misc optimized spatial structure misc neutronic performance misc burnup stability Optimization of spatial structure designs of control rod using Monte Carlo code RMC |
authorStr |
Luo, Hao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)546007775 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1673-7504 |
topic_title |
Optimization of spatial structure designs of control rod using Monte Carlo code RMC control rod (dpeaa)DE-He213 optimized spatial structure (dpeaa)DE-He213 neutronic performance (dpeaa)DE-He213 burnup stability (dpeaa)DE-He213 |
topic |
misc control rod misc optimized spatial structure misc neutronic performance misc burnup stability |
topic_unstemmed |
misc control rod misc optimized spatial structure misc neutronic performance misc burnup stability |
topic_browse |
misc control rod misc optimized spatial structure misc neutronic performance misc burnup stability |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers of energy and power engineering in China |
hierarchy_parent_id |
546007775 |
hierarchy_top_title |
Frontiers of energy and power engineering in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)546007775 (DE-600)2389481-7 |
title |
Optimization of spatial structure designs of control rod using Monte Carlo code RMC |
ctrlnum |
(DE-627)SPR050423584 (SPR)s11708-021-0769-5-e |
title_full |
Optimization of spatial structure designs of control rod using Monte Carlo code RMC |
author_sort |
Luo, Hao |
journal |
Frontiers of energy and power engineering in China |
journalStr |
Frontiers of energy and power engineering in China |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
974 |
author_browse |
Luo, Hao Li, Mancang Huang, Shanfang Liu, Minyun Wang, Kan |
container_volume |
15 |
format_se |
Elektronische Aufsätze |
author-letter |
Luo, Hao |
doi_str_mv |
10.1007/s11708-021-0769-5 |
title_sort |
optimization of spatial structure designs of control rod using monte carlo code rmc |
title_auth |
Optimization of spatial structure designs of control rod using Monte Carlo code RMC |
abstract |
Abstract Control rod is the most important approach to control reactivity in reactors, which is currently a cluster of pins filled with boron carbide ($ B_{4} $C). In this case, neutrons are captured in the outer region, and thus the inner absorber is inefficient. Moreover, the lifetime of the control rod is challenged due to the high reactivity worth loss resulted from the excessive degradation of $ B_{4} $C in the high flux area. In this work, some control rod designs are proposed with optimized spatial structures including the spatially mixed rod, radially moderated rod, and composite control rod with small-sized pins. The control rod worth and effective absorption cross section of these designs are computed using the Monte Carlo code RMC. A long-time depletion calculation is conducted to evaluate their burnup stability. For the spatially mixed rod, rare-earth absorbers are combined with $ B_{4} $C in spatial structure. Compared with the homogenous $ B_{4} $C rod, mixed designs ensure more sufficient reactivity worth in the lifetime of the reactor. The minimum reactivity loss at the end of the cycle is only 1.8% from the dysprosium titanate rod, while the loss for pure $ B_{4} $C rod is nearly 12%. For the radially moderated design, a doubled neutronic efficiency is achieved when the volume ratio of moderator equals approximately 0.3, while excessive moderating may lead to the failure of control rods. The control rod with small-sized pins processes an enhanced safety performance and saves the investment in absorbers. The rod worth can be further enhanced by introducing small moderator pins, and the reactivity loss caused by the reduction of absorbers is sustainable. © Higher Education Press 2021 |
abstractGer |
Abstract Control rod is the most important approach to control reactivity in reactors, which is currently a cluster of pins filled with boron carbide ($ B_{4} $C). In this case, neutrons are captured in the outer region, and thus the inner absorber is inefficient. Moreover, the lifetime of the control rod is challenged due to the high reactivity worth loss resulted from the excessive degradation of $ B_{4} $C in the high flux area. In this work, some control rod designs are proposed with optimized spatial structures including the spatially mixed rod, radially moderated rod, and composite control rod with small-sized pins. The control rod worth and effective absorption cross section of these designs are computed using the Monte Carlo code RMC. A long-time depletion calculation is conducted to evaluate their burnup stability. For the spatially mixed rod, rare-earth absorbers are combined with $ B_{4} $C in spatial structure. Compared with the homogenous $ B_{4} $C rod, mixed designs ensure more sufficient reactivity worth in the lifetime of the reactor. The minimum reactivity loss at the end of the cycle is only 1.8% from the dysprosium titanate rod, while the loss for pure $ B_{4} $C rod is nearly 12%. For the radially moderated design, a doubled neutronic efficiency is achieved when the volume ratio of moderator equals approximately 0.3, while excessive moderating may lead to the failure of control rods. The control rod with small-sized pins processes an enhanced safety performance and saves the investment in absorbers. The rod worth can be further enhanced by introducing small moderator pins, and the reactivity loss caused by the reduction of absorbers is sustainable. © Higher Education Press 2021 |
abstract_unstemmed |
Abstract Control rod is the most important approach to control reactivity in reactors, which is currently a cluster of pins filled with boron carbide ($ B_{4} $C). In this case, neutrons are captured in the outer region, and thus the inner absorber is inefficient. Moreover, the lifetime of the control rod is challenged due to the high reactivity worth loss resulted from the excessive degradation of $ B_{4} $C in the high flux area. In this work, some control rod designs are proposed with optimized spatial structures including the spatially mixed rod, radially moderated rod, and composite control rod with small-sized pins. The control rod worth and effective absorption cross section of these designs are computed using the Monte Carlo code RMC. A long-time depletion calculation is conducted to evaluate their burnup stability. For the spatially mixed rod, rare-earth absorbers are combined with $ B_{4} $C in spatial structure. Compared with the homogenous $ B_{4} $C rod, mixed designs ensure more sufficient reactivity worth in the lifetime of the reactor. The minimum reactivity loss at the end of the cycle is only 1.8% from the dysprosium titanate rod, while the loss for pure $ B_{4} $C rod is nearly 12%. For the radially moderated design, a doubled neutronic efficiency is achieved when the volume ratio of moderator equals approximately 0.3, while excessive moderating may lead to the failure of control rods. The control rod with small-sized pins processes an enhanced safety performance and saves the investment in absorbers. The rod worth can be further enhanced by introducing small moderator pins, and the reactivity loss caused by the reduction of absorbers is sustainable. © Higher Education Press 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 |
container_issue |
4 |
title_short |
Optimization of spatial structure designs of control rod using Monte Carlo code RMC |
url |
https://dx.doi.org/10.1007/s11708-021-0769-5 |
remote_bool |
true |
author2 |
Li, Mancang Huang, Shanfang Liu, Minyun Wang, Kan |
author2Str |
Li, Mancang Huang, Shanfang Liu, Minyun Wang, Kan |
ppnlink |
546007775 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11708-021-0769-5 |
up_date |
2024-07-03T15:26:50.774Z |
_version_ |
1803572122250903552 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050423584</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507084812.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11708-021-0769-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050423584</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11708-021-0769-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Luo, Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization of spatial structure designs of control rod using Monte Carlo code RMC</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Higher Education Press 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Control rod is the most important approach to control reactivity in reactors, which is currently a cluster of pins filled with boron carbide ($ B_{4} $C). In this case, neutrons are captured in the outer region, and thus the inner absorber is inefficient. Moreover, the lifetime of the control rod is challenged due to the high reactivity worth loss resulted from the excessive degradation of $ B_{4} $C in the high flux area. In this work, some control rod designs are proposed with optimized spatial structures including the spatially mixed rod, radially moderated rod, and composite control rod with small-sized pins. The control rod worth and effective absorption cross section of these designs are computed using the Monte Carlo code RMC. A long-time depletion calculation is conducted to evaluate their burnup stability. For the spatially mixed rod, rare-earth absorbers are combined with $ B_{4} $C in spatial structure. Compared with the homogenous $ B_{4} $C rod, mixed designs ensure more sufficient reactivity worth in the lifetime of the reactor. The minimum reactivity loss at the end of the cycle is only 1.8% from the dysprosium titanate rod, while the loss for pure $ B_{4} $C rod is nearly 12%. For the radially moderated design, a doubled neutronic efficiency is achieved when the volume ratio of moderator equals approximately 0.3, while excessive moderating may lead to the failure of control rods. The control rod with small-sized pins processes an enhanced safety performance and saves the investment in absorbers. The rod worth can be further enhanced by introducing small moderator pins, and the reactivity loss caused by the reduction of absorbers is sustainable.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">control rod</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimized spatial structure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neutronic performance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">burnup stability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Mancang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Shanfang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Minyun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Kan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Frontiers of energy and power engineering in China</subfield><subfield code="d">Beijing : Higher Education Press, 2007</subfield><subfield code="g">15(2021), 4 vom: 30. Sept., Seite 974-983</subfield><subfield code="w">(DE-627)546007775</subfield><subfield code="w">(DE-600)2389481-7</subfield><subfield code="x">1673-7504</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4</subfield><subfield code="g">day:30</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:974-983</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11708-021-0769-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2021</subfield><subfield code="e">4</subfield><subfield code="b">30</subfield><subfield code="c">09</subfield><subfield code="h">974-983</subfield></datafield></record></collection>
|
score |
7.402669 |