Shifting from homogeneous to heterogeneous surfaces in estimating terrestrial evapotranspiration: Review and perspectives
Abstract Terrestrial evapotranspiration (ET) is a crucial link between Earth’s water cycle and the surface energy budget. Accurate measurement and estimation remain a major challenge in geophysical, biological, and environmental studies. Pioneering work, represented by Dalton and Penman, and the dev...
Ausführliche Beschreibung
Autor*in: |
Liu, Yuanbo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Science in China - Heidelberg : Springer, 1997, 65(2021), 2 vom: 02. Dez., Seite 197-214 |
---|---|
Übergeordnetes Werk: |
volume:65 ; year:2021 ; number:2 ; day:02 ; month:12 ; pages:197-214 |
Links: |
---|
DOI / URN: |
10.1007/s11430-020-9834-y |
---|
Katalog-ID: |
SPR050433415 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR050433415 | ||
003 | DE-627 | ||
005 | 20230507090304.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11430-020-9834-y |2 doi | |
035 | |a (DE-627)SPR050433415 | ||
035 | |a (SPR)s11430-020-9834-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Liu, Yuanbo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Shifting from homogeneous to heterogeneous surfaces in estimating terrestrial evapotranspiration: Review and perspectives |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 | ||
520 | |a Abstract Terrestrial evapotranspiration (ET) is a crucial link between Earth’s water cycle and the surface energy budget. Accurate measurement and estimation remain a major challenge in geophysical, biological, and environmental studies. Pioneering work, represented by Dalton and Penman, and the development of theories and experiments on turbulent exchange in the atmospheric boundary layer (ABL), laid the foundation for mainstream methodologies in ET estimation. Since the 1990s, eddy covariance (EC) systems and satellite remote sensing have been widely applied from cold to tropical and from arid to humid regions. They cover water surfaces, wetlands, forests, croplands, grasslands, barelands, and urban areas, offering an exceptional number of reports on diverse ET processes. Surface nocturnal ET, hysteresis between ET and environmental forces, turbulence intermittency, island effects on heterogeneous surfaces, and phase transition between underlying surfaces are examples of reported new phenomena, posing theoretical and practical challenges to mainstream ET methodologies. Additionally, based on non-conventional theories, new methods have emerged, such as maximum entropy production and nonparametric approaches. Furthermore, high-frequency on-site observation and aerospace remote sensing technology in combination form multi-scale observations across plant stomata, leaves, plants, canopies, landscapes, and basins. This promotes an insightful understanding of diverse ET processes and synthesizes the common mechanisms of the processes between and across spatial and temporal scales. All the recent achievements in conception, model, and technology serve as the basis for breaking through the known difficulties in ET estimation. We expect that they will provide a rigorous, reliable scientific basis and experimental support to address theoretical arguments of global significance, such as the water-heat-carbon cycle, and solve practical needs of national importance, including agricultural irrigation and food security, precise management of water resources and eco-environmental protection, and regulation of the urban thermal environment and climate change adaptation. | ||
650 | 4 | |a Evapotranspiration |7 (dpeaa)DE-He213 | |
650 | 4 | |a Atmospheric boundary layer |7 (dpeaa)DE-He213 | |
650 | 4 | |a Heterogeneous surface |7 (dpeaa)DE-He213 | |
650 | 4 | |a Uncertainty |7 (dpeaa)DE-He213 | |
700 | 1 | |a Qiu, Guoyu |4 aut | |
700 | 1 | |a Zhang, Hongsheng |4 aut | |
700 | 1 | |a Yang, Yonghui |4 aut | |
700 | 1 | |a Zhang, Yinsheng |4 aut | |
700 | 1 | |a Wang, Quan |4 aut | |
700 | 1 | |a Zhao, Wenzhi |4 aut | |
700 | 1 | |a Jia, Li |4 aut | |
700 | 1 | |a Ji, Xibin |4 aut | |
700 | 1 | |a Xiong, Yujiu |4 aut | |
700 | 1 | |a Yan, Chunhua |4 aut | |
700 | 1 | |a Ma, Ning |4 aut | |
700 | 1 | |a Han, Shumin |4 aut | |
700 | 1 | |a Cui, Yifan |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Science in China |d Heidelberg : Springer, 1997 |g 65(2021), 2 vom: 02. Dez., Seite 197-214 |w (DE-627)385614748 |w (DE-600)2142896-7 |x 1862-2801 |7 nnns |
773 | 1 | 8 | |g volume:65 |g year:2021 |g number:2 |g day:02 |g month:12 |g pages:197-214 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11430-020-9834-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
951 | |a AR | ||
952 | |d 65 |j 2021 |e 2 |b 02 |c 12 |h 197-214 |
author_variant |
y l yl g q gq h z hz y y yy y z yz q w qw w z wz l j lj x j xj y x yx c y cy n m nm s h sh y c yc |
---|---|
matchkey_str |
article:18622801:2021----::hfigrmooeeuthtrgnosufcsnsiaigersraeaornp |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s11430-020-9834-y doi (DE-627)SPR050433415 (SPR)s11430-020-9834-y-e DE-627 ger DE-627 rakwb eng Liu, Yuanbo verfasserin aut Shifting from homogeneous to heterogeneous surfaces in estimating terrestrial evapotranspiration: Review and perspectives 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract Terrestrial evapotranspiration (ET) is a crucial link between Earth’s water cycle and the surface energy budget. Accurate measurement and estimation remain a major challenge in geophysical, biological, and environmental studies. Pioneering work, represented by Dalton and Penman, and the development of theories and experiments on turbulent exchange in the atmospheric boundary layer (ABL), laid the foundation for mainstream methodologies in ET estimation. Since the 1990s, eddy covariance (EC) systems and satellite remote sensing have been widely applied from cold to tropical and from arid to humid regions. They cover water surfaces, wetlands, forests, croplands, grasslands, barelands, and urban areas, offering an exceptional number of reports on diverse ET processes. Surface nocturnal ET, hysteresis between ET and environmental forces, turbulence intermittency, island effects on heterogeneous surfaces, and phase transition between underlying surfaces are examples of reported new phenomena, posing theoretical and practical challenges to mainstream ET methodologies. Additionally, based on non-conventional theories, new methods have emerged, such as maximum entropy production and nonparametric approaches. Furthermore, high-frequency on-site observation and aerospace remote sensing technology in combination form multi-scale observations across plant stomata, leaves, plants, canopies, landscapes, and basins. This promotes an insightful understanding of diverse ET processes and synthesizes the common mechanisms of the processes between and across spatial and temporal scales. All the recent achievements in conception, model, and technology serve as the basis for breaking through the known difficulties in ET estimation. We expect that they will provide a rigorous, reliable scientific basis and experimental support to address theoretical arguments of global significance, such as the water-heat-carbon cycle, and solve practical needs of national importance, including agricultural irrigation and food security, precise management of water resources and eco-environmental protection, and regulation of the urban thermal environment and climate change adaptation. Evapotranspiration (dpeaa)DE-He213 Atmospheric boundary layer (dpeaa)DE-He213 Heterogeneous surface (dpeaa)DE-He213 Uncertainty (dpeaa)DE-He213 Qiu, Guoyu aut Zhang, Hongsheng aut Yang, Yonghui aut Zhang, Yinsheng aut Wang, Quan aut Zhao, Wenzhi aut Jia, Li aut Ji, Xibin aut Xiong, Yujiu aut Yan, Chunhua aut Ma, Ning aut Han, Shumin aut Cui, Yifan aut Enthalten in Science in China Heidelberg : Springer, 1997 65(2021), 2 vom: 02. Dez., Seite 197-214 (DE-627)385614748 (DE-600)2142896-7 1862-2801 nnns volume:65 year:2021 number:2 day:02 month:12 pages:197-214 https://dx.doi.org/10.1007/s11430-020-9834-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 65 2021 2 02 12 197-214 |
spelling |
10.1007/s11430-020-9834-y doi (DE-627)SPR050433415 (SPR)s11430-020-9834-y-e DE-627 ger DE-627 rakwb eng Liu, Yuanbo verfasserin aut Shifting from homogeneous to heterogeneous surfaces in estimating terrestrial evapotranspiration: Review and perspectives 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract Terrestrial evapotranspiration (ET) is a crucial link between Earth’s water cycle and the surface energy budget. Accurate measurement and estimation remain a major challenge in geophysical, biological, and environmental studies. Pioneering work, represented by Dalton and Penman, and the development of theories and experiments on turbulent exchange in the atmospheric boundary layer (ABL), laid the foundation for mainstream methodologies in ET estimation. Since the 1990s, eddy covariance (EC) systems and satellite remote sensing have been widely applied from cold to tropical and from arid to humid regions. They cover water surfaces, wetlands, forests, croplands, grasslands, barelands, and urban areas, offering an exceptional number of reports on diverse ET processes. Surface nocturnal ET, hysteresis between ET and environmental forces, turbulence intermittency, island effects on heterogeneous surfaces, and phase transition between underlying surfaces are examples of reported new phenomena, posing theoretical and practical challenges to mainstream ET methodologies. Additionally, based on non-conventional theories, new methods have emerged, such as maximum entropy production and nonparametric approaches. Furthermore, high-frequency on-site observation and aerospace remote sensing technology in combination form multi-scale observations across plant stomata, leaves, plants, canopies, landscapes, and basins. This promotes an insightful understanding of diverse ET processes and synthesizes the common mechanisms of the processes between and across spatial and temporal scales. All the recent achievements in conception, model, and technology serve as the basis for breaking through the known difficulties in ET estimation. We expect that they will provide a rigorous, reliable scientific basis and experimental support to address theoretical arguments of global significance, such as the water-heat-carbon cycle, and solve practical needs of national importance, including agricultural irrigation and food security, precise management of water resources and eco-environmental protection, and regulation of the urban thermal environment and climate change adaptation. Evapotranspiration (dpeaa)DE-He213 Atmospheric boundary layer (dpeaa)DE-He213 Heterogeneous surface (dpeaa)DE-He213 Uncertainty (dpeaa)DE-He213 Qiu, Guoyu aut Zhang, Hongsheng aut Yang, Yonghui aut Zhang, Yinsheng aut Wang, Quan aut Zhao, Wenzhi aut Jia, Li aut Ji, Xibin aut Xiong, Yujiu aut Yan, Chunhua aut Ma, Ning aut Han, Shumin aut Cui, Yifan aut Enthalten in Science in China Heidelberg : Springer, 1997 65(2021), 2 vom: 02. Dez., Seite 197-214 (DE-627)385614748 (DE-600)2142896-7 1862-2801 nnns volume:65 year:2021 number:2 day:02 month:12 pages:197-214 https://dx.doi.org/10.1007/s11430-020-9834-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 65 2021 2 02 12 197-214 |
allfields_unstemmed |
10.1007/s11430-020-9834-y doi (DE-627)SPR050433415 (SPR)s11430-020-9834-y-e DE-627 ger DE-627 rakwb eng Liu, Yuanbo verfasserin aut Shifting from homogeneous to heterogeneous surfaces in estimating terrestrial evapotranspiration: Review and perspectives 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract Terrestrial evapotranspiration (ET) is a crucial link between Earth’s water cycle and the surface energy budget. Accurate measurement and estimation remain a major challenge in geophysical, biological, and environmental studies. Pioneering work, represented by Dalton and Penman, and the development of theories and experiments on turbulent exchange in the atmospheric boundary layer (ABL), laid the foundation for mainstream methodologies in ET estimation. Since the 1990s, eddy covariance (EC) systems and satellite remote sensing have been widely applied from cold to tropical and from arid to humid regions. They cover water surfaces, wetlands, forests, croplands, grasslands, barelands, and urban areas, offering an exceptional number of reports on diverse ET processes. Surface nocturnal ET, hysteresis between ET and environmental forces, turbulence intermittency, island effects on heterogeneous surfaces, and phase transition between underlying surfaces are examples of reported new phenomena, posing theoretical and practical challenges to mainstream ET methodologies. Additionally, based on non-conventional theories, new methods have emerged, such as maximum entropy production and nonparametric approaches. Furthermore, high-frequency on-site observation and aerospace remote sensing technology in combination form multi-scale observations across plant stomata, leaves, plants, canopies, landscapes, and basins. This promotes an insightful understanding of diverse ET processes and synthesizes the common mechanisms of the processes between and across spatial and temporal scales. All the recent achievements in conception, model, and technology serve as the basis for breaking through the known difficulties in ET estimation. We expect that they will provide a rigorous, reliable scientific basis and experimental support to address theoretical arguments of global significance, such as the water-heat-carbon cycle, and solve practical needs of national importance, including agricultural irrigation and food security, precise management of water resources and eco-environmental protection, and regulation of the urban thermal environment and climate change adaptation. Evapotranspiration (dpeaa)DE-He213 Atmospheric boundary layer (dpeaa)DE-He213 Heterogeneous surface (dpeaa)DE-He213 Uncertainty (dpeaa)DE-He213 Qiu, Guoyu aut Zhang, Hongsheng aut Yang, Yonghui aut Zhang, Yinsheng aut Wang, Quan aut Zhao, Wenzhi aut Jia, Li aut Ji, Xibin aut Xiong, Yujiu aut Yan, Chunhua aut Ma, Ning aut Han, Shumin aut Cui, Yifan aut Enthalten in Science in China Heidelberg : Springer, 1997 65(2021), 2 vom: 02. Dez., Seite 197-214 (DE-627)385614748 (DE-600)2142896-7 1862-2801 nnns volume:65 year:2021 number:2 day:02 month:12 pages:197-214 https://dx.doi.org/10.1007/s11430-020-9834-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 65 2021 2 02 12 197-214 |
allfieldsGer |
10.1007/s11430-020-9834-y doi (DE-627)SPR050433415 (SPR)s11430-020-9834-y-e DE-627 ger DE-627 rakwb eng Liu, Yuanbo verfasserin aut Shifting from homogeneous to heterogeneous surfaces in estimating terrestrial evapotranspiration: Review and perspectives 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract Terrestrial evapotranspiration (ET) is a crucial link between Earth’s water cycle and the surface energy budget. Accurate measurement and estimation remain a major challenge in geophysical, biological, and environmental studies. Pioneering work, represented by Dalton and Penman, and the development of theories and experiments on turbulent exchange in the atmospheric boundary layer (ABL), laid the foundation for mainstream methodologies in ET estimation. Since the 1990s, eddy covariance (EC) systems and satellite remote sensing have been widely applied from cold to tropical and from arid to humid regions. They cover water surfaces, wetlands, forests, croplands, grasslands, barelands, and urban areas, offering an exceptional number of reports on diverse ET processes. Surface nocturnal ET, hysteresis between ET and environmental forces, turbulence intermittency, island effects on heterogeneous surfaces, and phase transition between underlying surfaces are examples of reported new phenomena, posing theoretical and practical challenges to mainstream ET methodologies. Additionally, based on non-conventional theories, new methods have emerged, such as maximum entropy production and nonparametric approaches. Furthermore, high-frequency on-site observation and aerospace remote sensing technology in combination form multi-scale observations across plant stomata, leaves, plants, canopies, landscapes, and basins. This promotes an insightful understanding of diverse ET processes and synthesizes the common mechanisms of the processes between and across spatial and temporal scales. All the recent achievements in conception, model, and technology serve as the basis for breaking through the known difficulties in ET estimation. We expect that they will provide a rigorous, reliable scientific basis and experimental support to address theoretical arguments of global significance, such as the water-heat-carbon cycle, and solve practical needs of national importance, including agricultural irrigation and food security, precise management of water resources and eco-environmental protection, and regulation of the urban thermal environment and climate change adaptation. Evapotranspiration (dpeaa)DE-He213 Atmospheric boundary layer (dpeaa)DE-He213 Heterogeneous surface (dpeaa)DE-He213 Uncertainty (dpeaa)DE-He213 Qiu, Guoyu aut Zhang, Hongsheng aut Yang, Yonghui aut Zhang, Yinsheng aut Wang, Quan aut Zhao, Wenzhi aut Jia, Li aut Ji, Xibin aut Xiong, Yujiu aut Yan, Chunhua aut Ma, Ning aut Han, Shumin aut Cui, Yifan aut Enthalten in Science in China Heidelberg : Springer, 1997 65(2021), 2 vom: 02. Dez., Seite 197-214 (DE-627)385614748 (DE-600)2142896-7 1862-2801 nnns volume:65 year:2021 number:2 day:02 month:12 pages:197-214 https://dx.doi.org/10.1007/s11430-020-9834-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 65 2021 2 02 12 197-214 |
allfieldsSound |
10.1007/s11430-020-9834-y doi (DE-627)SPR050433415 (SPR)s11430-020-9834-y-e DE-627 ger DE-627 rakwb eng Liu, Yuanbo verfasserin aut Shifting from homogeneous to heterogeneous surfaces in estimating terrestrial evapotranspiration: Review and perspectives 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract Terrestrial evapotranspiration (ET) is a crucial link between Earth’s water cycle and the surface energy budget. Accurate measurement and estimation remain a major challenge in geophysical, biological, and environmental studies. Pioneering work, represented by Dalton and Penman, and the development of theories and experiments on turbulent exchange in the atmospheric boundary layer (ABL), laid the foundation for mainstream methodologies in ET estimation. Since the 1990s, eddy covariance (EC) systems and satellite remote sensing have been widely applied from cold to tropical and from arid to humid regions. They cover water surfaces, wetlands, forests, croplands, grasslands, barelands, and urban areas, offering an exceptional number of reports on diverse ET processes. Surface nocturnal ET, hysteresis between ET and environmental forces, turbulence intermittency, island effects on heterogeneous surfaces, and phase transition between underlying surfaces are examples of reported new phenomena, posing theoretical and practical challenges to mainstream ET methodologies. Additionally, based on non-conventional theories, new methods have emerged, such as maximum entropy production and nonparametric approaches. Furthermore, high-frequency on-site observation and aerospace remote sensing technology in combination form multi-scale observations across plant stomata, leaves, plants, canopies, landscapes, and basins. This promotes an insightful understanding of diverse ET processes and synthesizes the common mechanisms of the processes between and across spatial and temporal scales. All the recent achievements in conception, model, and technology serve as the basis for breaking through the known difficulties in ET estimation. We expect that they will provide a rigorous, reliable scientific basis and experimental support to address theoretical arguments of global significance, such as the water-heat-carbon cycle, and solve practical needs of national importance, including agricultural irrigation and food security, precise management of water resources and eco-environmental protection, and regulation of the urban thermal environment and climate change adaptation. Evapotranspiration (dpeaa)DE-He213 Atmospheric boundary layer (dpeaa)DE-He213 Heterogeneous surface (dpeaa)DE-He213 Uncertainty (dpeaa)DE-He213 Qiu, Guoyu aut Zhang, Hongsheng aut Yang, Yonghui aut Zhang, Yinsheng aut Wang, Quan aut Zhao, Wenzhi aut Jia, Li aut Ji, Xibin aut Xiong, Yujiu aut Yan, Chunhua aut Ma, Ning aut Han, Shumin aut Cui, Yifan aut Enthalten in Science in China Heidelberg : Springer, 1997 65(2021), 2 vom: 02. Dez., Seite 197-214 (DE-627)385614748 (DE-600)2142896-7 1862-2801 nnns volume:65 year:2021 number:2 day:02 month:12 pages:197-214 https://dx.doi.org/10.1007/s11430-020-9834-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 65 2021 2 02 12 197-214 |
language |
English |
source |
Enthalten in Science in China 65(2021), 2 vom: 02. Dez., Seite 197-214 volume:65 year:2021 number:2 day:02 month:12 pages:197-214 |
sourceStr |
Enthalten in Science in China 65(2021), 2 vom: 02. Dez., Seite 197-214 volume:65 year:2021 number:2 day:02 month:12 pages:197-214 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Evapotranspiration Atmospheric boundary layer Heterogeneous surface Uncertainty |
isfreeaccess_bool |
false |
container_title |
Science in China |
authorswithroles_txt_mv |
Liu, Yuanbo @@aut@@ Qiu, Guoyu @@aut@@ Zhang, Hongsheng @@aut@@ Yang, Yonghui @@aut@@ Zhang, Yinsheng @@aut@@ Wang, Quan @@aut@@ Zhao, Wenzhi @@aut@@ Jia, Li @@aut@@ Ji, Xibin @@aut@@ Xiong, Yujiu @@aut@@ Yan, Chunhua @@aut@@ Ma, Ning @@aut@@ Han, Shumin @@aut@@ Cui, Yifan @@aut@@ |
publishDateDaySort_date |
2021-12-02T00:00:00Z |
hierarchy_top_id |
385614748 |
id |
SPR050433415 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050433415</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507090304.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11430-020-9834-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050433415</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11430-020-9834-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Yuanbo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Shifting from homogeneous to heterogeneous surfaces in estimating terrestrial evapotranspiration: Review and perspectives</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Terrestrial evapotranspiration (ET) is a crucial link between Earth’s water cycle and the surface energy budget. Accurate measurement and estimation remain a major challenge in geophysical, biological, and environmental studies. Pioneering work, represented by Dalton and Penman, and the development of theories and experiments on turbulent exchange in the atmospheric boundary layer (ABL), laid the foundation for mainstream methodologies in ET estimation. Since the 1990s, eddy covariance (EC) systems and satellite remote sensing have been widely applied from cold to tropical and from arid to humid regions. They cover water surfaces, wetlands, forests, croplands, grasslands, barelands, and urban areas, offering an exceptional number of reports on diverse ET processes. Surface nocturnal ET, hysteresis between ET and environmental forces, turbulence intermittency, island effects on heterogeneous surfaces, and phase transition between underlying surfaces are examples of reported new phenomena, posing theoretical and practical challenges to mainstream ET methodologies. Additionally, based on non-conventional theories, new methods have emerged, such as maximum entropy production and nonparametric approaches. Furthermore, high-frequency on-site observation and aerospace remote sensing technology in combination form multi-scale observations across plant stomata, leaves, plants, canopies, landscapes, and basins. This promotes an insightful understanding of diverse ET processes and synthesizes the common mechanisms of the processes between and across spatial and temporal scales. All the recent achievements in conception, model, and technology serve as the basis for breaking through the known difficulties in ET estimation. We expect that they will provide a rigorous, reliable scientific basis and experimental support to address theoretical arguments of global significance, such as the water-heat-carbon cycle, and solve practical needs of national importance, including agricultural irrigation and food security, precise management of water resources and eco-environmental protection, and regulation of the urban thermal environment and climate change adaptation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evapotranspiration</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atmospheric boundary layer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterogeneous surface</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiu, Guoyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Hongsheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Yonghui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yinsheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Quan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Wenzhi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jia, Li</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ji, Xibin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiong, Yujiu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Chunhua</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Ning</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Shumin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cui, Yifan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 1997</subfield><subfield code="g">65(2021), 2 vom: 02. Dez., Seite 197-214</subfield><subfield code="w">(DE-627)385614748</subfield><subfield code="w">(DE-600)2142896-7</subfield><subfield code="x">1862-2801</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2</subfield><subfield code="g">day:02</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:197-214</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11430-020-9834-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2021</subfield><subfield code="e">2</subfield><subfield code="b">02</subfield><subfield code="c">12</subfield><subfield code="h">197-214</subfield></datafield></record></collection>
|
author |
Liu, Yuanbo |
spellingShingle |
Liu, Yuanbo misc Evapotranspiration misc Atmospheric boundary layer misc Heterogeneous surface misc Uncertainty Shifting from homogeneous to heterogeneous surfaces in estimating terrestrial evapotranspiration: Review and perspectives |
authorStr |
Liu, Yuanbo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)385614748 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1862-2801 |
topic_title |
Shifting from homogeneous to heterogeneous surfaces in estimating terrestrial evapotranspiration: Review and perspectives Evapotranspiration (dpeaa)DE-He213 Atmospheric boundary layer (dpeaa)DE-He213 Heterogeneous surface (dpeaa)DE-He213 Uncertainty (dpeaa)DE-He213 |
topic |
misc Evapotranspiration misc Atmospheric boundary layer misc Heterogeneous surface misc Uncertainty |
topic_unstemmed |
misc Evapotranspiration misc Atmospheric boundary layer misc Heterogeneous surface misc Uncertainty |
topic_browse |
misc Evapotranspiration misc Atmospheric boundary layer misc Heterogeneous surface misc Uncertainty |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Science in China |
hierarchy_parent_id |
385614748 |
hierarchy_top_title |
Science in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)385614748 (DE-600)2142896-7 |
title |
Shifting from homogeneous to heterogeneous surfaces in estimating terrestrial evapotranspiration: Review and perspectives |
ctrlnum |
(DE-627)SPR050433415 (SPR)s11430-020-9834-y-e |
title_full |
Shifting from homogeneous to heterogeneous surfaces in estimating terrestrial evapotranspiration: Review and perspectives |
author_sort |
Liu, Yuanbo |
journal |
Science in China |
journalStr |
Science in China |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
197 |
author_browse |
Liu, Yuanbo Qiu, Guoyu Zhang, Hongsheng Yang, Yonghui Zhang, Yinsheng Wang, Quan Zhao, Wenzhi Jia, Li Ji, Xibin Xiong, Yujiu Yan, Chunhua Ma, Ning Han, Shumin Cui, Yifan |
container_volume |
65 |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Yuanbo |
doi_str_mv |
10.1007/s11430-020-9834-y |
title_sort |
shifting from homogeneous to heterogeneous surfaces in estimating terrestrial evapotranspiration: review and perspectives |
title_auth |
Shifting from homogeneous to heterogeneous surfaces in estimating terrestrial evapotranspiration: Review and perspectives |
abstract |
Abstract Terrestrial evapotranspiration (ET) is a crucial link between Earth’s water cycle and the surface energy budget. Accurate measurement and estimation remain a major challenge in geophysical, biological, and environmental studies. Pioneering work, represented by Dalton and Penman, and the development of theories and experiments on turbulent exchange in the atmospheric boundary layer (ABL), laid the foundation for mainstream methodologies in ET estimation. Since the 1990s, eddy covariance (EC) systems and satellite remote sensing have been widely applied from cold to tropical and from arid to humid regions. They cover water surfaces, wetlands, forests, croplands, grasslands, barelands, and urban areas, offering an exceptional number of reports on diverse ET processes. Surface nocturnal ET, hysteresis between ET and environmental forces, turbulence intermittency, island effects on heterogeneous surfaces, and phase transition between underlying surfaces are examples of reported new phenomena, posing theoretical and practical challenges to mainstream ET methodologies. Additionally, based on non-conventional theories, new methods have emerged, such as maximum entropy production and nonparametric approaches. Furthermore, high-frequency on-site observation and aerospace remote sensing technology in combination form multi-scale observations across plant stomata, leaves, plants, canopies, landscapes, and basins. This promotes an insightful understanding of diverse ET processes and synthesizes the common mechanisms of the processes between and across spatial and temporal scales. All the recent achievements in conception, model, and technology serve as the basis for breaking through the known difficulties in ET estimation. We expect that they will provide a rigorous, reliable scientific basis and experimental support to address theoretical arguments of global significance, such as the water-heat-carbon cycle, and solve practical needs of national importance, including agricultural irrigation and food security, precise management of water resources and eco-environmental protection, and regulation of the urban thermal environment and climate change adaptation. © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
abstractGer |
Abstract Terrestrial evapotranspiration (ET) is a crucial link between Earth’s water cycle and the surface energy budget. Accurate measurement and estimation remain a major challenge in geophysical, biological, and environmental studies. Pioneering work, represented by Dalton and Penman, and the development of theories and experiments on turbulent exchange in the atmospheric boundary layer (ABL), laid the foundation for mainstream methodologies in ET estimation. Since the 1990s, eddy covariance (EC) systems and satellite remote sensing have been widely applied from cold to tropical and from arid to humid regions. They cover water surfaces, wetlands, forests, croplands, grasslands, barelands, and urban areas, offering an exceptional number of reports on diverse ET processes. Surface nocturnal ET, hysteresis between ET and environmental forces, turbulence intermittency, island effects on heterogeneous surfaces, and phase transition between underlying surfaces are examples of reported new phenomena, posing theoretical and practical challenges to mainstream ET methodologies. Additionally, based on non-conventional theories, new methods have emerged, such as maximum entropy production and nonparametric approaches. Furthermore, high-frequency on-site observation and aerospace remote sensing technology in combination form multi-scale observations across plant stomata, leaves, plants, canopies, landscapes, and basins. This promotes an insightful understanding of diverse ET processes and synthesizes the common mechanisms of the processes between and across spatial and temporal scales. All the recent achievements in conception, model, and technology serve as the basis for breaking through the known difficulties in ET estimation. We expect that they will provide a rigorous, reliable scientific basis and experimental support to address theoretical arguments of global significance, such as the water-heat-carbon cycle, and solve practical needs of national importance, including agricultural irrigation and food security, precise management of water resources and eco-environmental protection, and regulation of the urban thermal environment and climate change adaptation. © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
abstract_unstemmed |
Abstract Terrestrial evapotranspiration (ET) is a crucial link between Earth’s water cycle and the surface energy budget. Accurate measurement and estimation remain a major challenge in geophysical, biological, and environmental studies. Pioneering work, represented by Dalton and Penman, and the development of theories and experiments on turbulent exchange in the atmospheric boundary layer (ABL), laid the foundation for mainstream methodologies in ET estimation. Since the 1990s, eddy covariance (EC) systems and satellite remote sensing have been widely applied from cold to tropical and from arid to humid regions. They cover water surfaces, wetlands, forests, croplands, grasslands, barelands, and urban areas, offering an exceptional number of reports on diverse ET processes. Surface nocturnal ET, hysteresis between ET and environmental forces, turbulence intermittency, island effects on heterogeneous surfaces, and phase transition between underlying surfaces are examples of reported new phenomena, posing theoretical and practical challenges to mainstream ET methodologies. Additionally, based on non-conventional theories, new methods have emerged, such as maximum entropy production and nonparametric approaches. Furthermore, high-frequency on-site observation and aerospace remote sensing technology in combination form multi-scale observations across plant stomata, leaves, plants, canopies, landscapes, and basins. This promotes an insightful understanding of diverse ET processes and synthesizes the common mechanisms of the processes between and across spatial and temporal scales. All the recent achievements in conception, model, and technology serve as the basis for breaking through the known difficulties in ET estimation. We expect that they will provide a rigorous, reliable scientific basis and experimental support to address theoretical arguments of global significance, such as the water-heat-carbon cycle, and solve practical needs of national importance, including agricultural irrigation and food security, precise management of water resources and eco-environmental protection, and regulation of the urban thermal environment and climate change adaptation. © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
2 |
title_short |
Shifting from homogeneous to heterogeneous surfaces in estimating terrestrial evapotranspiration: Review and perspectives |
url |
https://dx.doi.org/10.1007/s11430-020-9834-y |
remote_bool |
true |
author2 |
Qiu, Guoyu Zhang, Hongsheng Yang, Yonghui Zhang, Yinsheng Wang, Quan Zhao, Wenzhi Jia, Li Ji, Xibin Xiong, Yujiu Yan, Chunhua Ma, Ning Han, Shumin Cui, Yifan |
author2Str |
Qiu, Guoyu Zhang, Hongsheng Yang, Yonghui Zhang, Yinsheng Wang, Quan Zhao, Wenzhi Jia, Li Ji, Xibin Xiong, Yujiu Yan, Chunhua Ma, Ning Han, Shumin Cui, Yifan |
ppnlink |
385614748 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11430-020-9834-y |
up_date |
2024-07-03T15:30:46.622Z |
_version_ |
1803572369553358848 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050433415</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507090304.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11430-020-9834-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050433415</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11430-020-9834-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Yuanbo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Shifting from homogeneous to heterogeneous surfaces in estimating terrestrial evapotranspiration: Review and perspectives</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Terrestrial evapotranspiration (ET) is a crucial link between Earth’s water cycle and the surface energy budget. Accurate measurement and estimation remain a major challenge in geophysical, biological, and environmental studies. Pioneering work, represented by Dalton and Penman, and the development of theories and experiments on turbulent exchange in the atmospheric boundary layer (ABL), laid the foundation for mainstream methodologies in ET estimation. Since the 1990s, eddy covariance (EC) systems and satellite remote sensing have been widely applied from cold to tropical and from arid to humid regions. They cover water surfaces, wetlands, forests, croplands, grasslands, barelands, and urban areas, offering an exceptional number of reports on diverse ET processes. Surface nocturnal ET, hysteresis between ET and environmental forces, turbulence intermittency, island effects on heterogeneous surfaces, and phase transition between underlying surfaces are examples of reported new phenomena, posing theoretical and practical challenges to mainstream ET methodologies. Additionally, based on non-conventional theories, new methods have emerged, such as maximum entropy production and nonparametric approaches. Furthermore, high-frequency on-site observation and aerospace remote sensing technology in combination form multi-scale observations across plant stomata, leaves, plants, canopies, landscapes, and basins. This promotes an insightful understanding of diverse ET processes and synthesizes the common mechanisms of the processes between and across spatial and temporal scales. All the recent achievements in conception, model, and technology serve as the basis for breaking through the known difficulties in ET estimation. We expect that they will provide a rigorous, reliable scientific basis and experimental support to address theoretical arguments of global significance, such as the water-heat-carbon cycle, and solve practical needs of national importance, including agricultural irrigation and food security, precise management of water resources and eco-environmental protection, and regulation of the urban thermal environment and climate change adaptation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evapotranspiration</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atmospheric boundary layer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterogeneous surface</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiu, Guoyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Hongsheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Yonghui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yinsheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Quan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Wenzhi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jia, Li</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ji, Xibin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiong, Yujiu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Chunhua</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Ning</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Shumin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cui, Yifan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 1997</subfield><subfield code="g">65(2021), 2 vom: 02. Dez., Seite 197-214</subfield><subfield code="w">(DE-627)385614748</subfield><subfield code="w">(DE-600)2142896-7</subfield><subfield code="x">1862-2801</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2</subfield><subfield code="g">day:02</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:197-214</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11430-020-9834-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2021</subfield><subfield code="e">2</subfield><subfield code="b">02</subfield><subfield code="c">12</subfield><subfield code="h">197-214</subfield></datafield></record></collection>
|
score |
7.40158 |