Analysis of mixing effect and power consumption of cone-bottom dual Rushton turbines stirred tank
Abstract At present, the research on stirred tanks in the chemical process has focused on the flat-bottom and dish-bottom stirred tanks, and there are few reports on the cone-bottom stirred tanks. Based on the flow pattern of the flow field in the tank, this paper analyzes the stirring effect and po...
Ausführliche Beschreibung
Autor*in: |
Dai, Yong-Xin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Institute of Chemistry, Slovak Academy of Sciences 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Chemical papers - Wien : Springer Vienna, 1947, 76(2022), 4 vom: 29. Jan., Seite 2177-2191 |
---|---|
Übergeordnetes Werk: |
volume:76 ; year:2022 ; number:4 ; day:29 ; month:01 ; pages:2177-2191 |
Links: |
---|
DOI / URN: |
10.1007/s11696-021-02010-1 |
---|
Katalog-ID: |
SPR050562681 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR050562681 | ||
003 | DE-627 | ||
005 | 20230507133501.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11696-021-02010-1 |2 doi | |
035 | |a (DE-627)SPR050562681 | ||
035 | |a (SPR)s11696-021-02010-1-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Dai, Yong-Xin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Analysis of mixing effect and power consumption of cone-bottom dual Rushton turbines stirred tank |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Institute of Chemistry, Slovak Academy of Sciences 2021 | ||
520 | |a Abstract At present, the research on stirred tanks in the chemical process has focused on the flat-bottom and dish-bottom stirred tanks, and there are few reports on the cone-bottom stirred tanks. Based on the flow pattern of the flow field in the tank, this paper analyzes the stirring effect and power consumption of the cone-bottom stirred tank with dual Rushton turbines. Computational fluid dynamics (CFD) software is used to simulate the flow field characteristics in the stirred tank. The effects of the cone-bottom height, the impeller spacing and the ratio of impeller diameter to tank diameter on the power consumption and the flow pattern of the flow field in the tank are analyzed. The results show that when the ratio of cone-bottom height to the inner diameter of the tank is less than 0.0147, there is dispersed flow in the stirred tank. The dispersed flow can improve the velocity distribution of the bottom fluid. Compared with parallel flow, the power consumption and effective mixing zone of dispersed flow are reduced by 1.5% and 2.6%. When the ratio of the impeller spacing to the inner diameter of the tank is less than 0.294, the mixed flow is in the stirred tank. The fluid turbulence between the connected flow blades is the strongest, and the power consumption is relatively small. The change of the ratio of impeller diameter to tank diameter has the greatest impact on the connected flow, and the parallel flow is the least. When the ratio of impeller diameter to tank diameter is 1:1.7, the power number is reduced by 22.8% and 44.6% compared to 1:2 and 1:2.3, respectively. | ||
650 | 4 | |a Stirred tank |7 (dpeaa)DE-He213 | |
650 | 4 | |a Power consumption |7 (dpeaa)DE-He213 | |
650 | 4 | |a Computational fluid dynamics (CFD) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Flow pattern |7 (dpeaa)DE-He213 | |
650 | 4 | |a Taper |7 (dpeaa)DE-He213 | |
700 | 1 | |a Wang, Zhao-Hui |0 (orcid)0000-0001-9492-3057 |4 aut | |
700 | 1 | |a Fan, Yi-Wei |4 aut | |
700 | 1 | |a Cheng, Zi-Qiang |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Chemical papers |d Wien : Springer Vienna, 1947 |g 76(2022), 4 vom: 29. Jan., Seite 2177-2191 |w (DE-627)518347737 |w (DE-600)2252770-9 |x 1336-9075 |7 nnns |
773 | 1 | 8 | |g volume:76 |g year:2022 |g number:4 |g day:29 |g month:01 |g pages:2177-2191 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11696-021-02010-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_266 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 76 |j 2022 |e 4 |b 29 |c 01 |h 2177-2191 |
author_variant |
y x d yxd z h w zhw y w f ywf z q c zqc |
---|---|
matchkey_str |
article:13369075:2022----::nlssfiigfetnpwrosmtoocnbtodars |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s11696-021-02010-1 doi (DE-627)SPR050562681 (SPR)s11696-021-02010-1-e DE-627 ger DE-627 rakwb eng Dai, Yong-Xin verfasserin aut Analysis of mixing effect and power consumption of cone-bottom dual Rushton turbines stirred tank 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Institute of Chemistry, Slovak Academy of Sciences 2021 Abstract At present, the research on stirred tanks in the chemical process has focused on the flat-bottom and dish-bottom stirred tanks, and there are few reports on the cone-bottom stirred tanks. Based on the flow pattern of the flow field in the tank, this paper analyzes the stirring effect and power consumption of the cone-bottom stirred tank with dual Rushton turbines. Computational fluid dynamics (CFD) software is used to simulate the flow field characteristics in the stirred tank. The effects of the cone-bottom height, the impeller spacing and the ratio of impeller diameter to tank diameter on the power consumption and the flow pattern of the flow field in the tank are analyzed. The results show that when the ratio of cone-bottom height to the inner diameter of the tank is less than 0.0147, there is dispersed flow in the stirred tank. The dispersed flow can improve the velocity distribution of the bottom fluid. Compared with parallel flow, the power consumption and effective mixing zone of dispersed flow are reduced by 1.5% and 2.6%. When the ratio of the impeller spacing to the inner diameter of the tank is less than 0.294, the mixed flow is in the stirred tank. The fluid turbulence between the connected flow blades is the strongest, and the power consumption is relatively small. The change of the ratio of impeller diameter to tank diameter has the greatest impact on the connected flow, and the parallel flow is the least. When the ratio of impeller diameter to tank diameter is 1:1.7, the power number is reduced by 22.8% and 44.6% compared to 1:2 and 1:2.3, respectively. Stirred tank (dpeaa)DE-He213 Power consumption (dpeaa)DE-He213 Computational fluid dynamics (CFD) (dpeaa)DE-He213 Flow pattern (dpeaa)DE-He213 Taper (dpeaa)DE-He213 Wang, Zhao-Hui (orcid)0000-0001-9492-3057 aut Fan, Yi-Wei aut Cheng, Zi-Qiang aut Enthalten in Chemical papers Wien : Springer Vienna, 1947 76(2022), 4 vom: 29. Jan., Seite 2177-2191 (DE-627)518347737 (DE-600)2252770-9 1336-9075 nnns volume:76 year:2022 number:4 day:29 month:01 pages:2177-2191 https://dx.doi.org/10.1007/s11696-021-02010-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 76 2022 4 29 01 2177-2191 |
spelling |
10.1007/s11696-021-02010-1 doi (DE-627)SPR050562681 (SPR)s11696-021-02010-1-e DE-627 ger DE-627 rakwb eng Dai, Yong-Xin verfasserin aut Analysis of mixing effect and power consumption of cone-bottom dual Rushton turbines stirred tank 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Institute of Chemistry, Slovak Academy of Sciences 2021 Abstract At present, the research on stirred tanks in the chemical process has focused on the flat-bottom and dish-bottom stirred tanks, and there are few reports on the cone-bottom stirred tanks. Based on the flow pattern of the flow field in the tank, this paper analyzes the stirring effect and power consumption of the cone-bottom stirred tank with dual Rushton turbines. Computational fluid dynamics (CFD) software is used to simulate the flow field characteristics in the stirred tank. The effects of the cone-bottom height, the impeller spacing and the ratio of impeller diameter to tank diameter on the power consumption and the flow pattern of the flow field in the tank are analyzed. The results show that when the ratio of cone-bottom height to the inner diameter of the tank is less than 0.0147, there is dispersed flow in the stirred tank. The dispersed flow can improve the velocity distribution of the bottom fluid. Compared with parallel flow, the power consumption and effective mixing zone of dispersed flow are reduced by 1.5% and 2.6%. When the ratio of the impeller spacing to the inner diameter of the tank is less than 0.294, the mixed flow is in the stirred tank. The fluid turbulence between the connected flow blades is the strongest, and the power consumption is relatively small. The change of the ratio of impeller diameter to tank diameter has the greatest impact on the connected flow, and the parallel flow is the least. When the ratio of impeller diameter to tank diameter is 1:1.7, the power number is reduced by 22.8% and 44.6% compared to 1:2 and 1:2.3, respectively. Stirred tank (dpeaa)DE-He213 Power consumption (dpeaa)DE-He213 Computational fluid dynamics (CFD) (dpeaa)DE-He213 Flow pattern (dpeaa)DE-He213 Taper (dpeaa)DE-He213 Wang, Zhao-Hui (orcid)0000-0001-9492-3057 aut Fan, Yi-Wei aut Cheng, Zi-Qiang aut Enthalten in Chemical papers Wien : Springer Vienna, 1947 76(2022), 4 vom: 29. Jan., Seite 2177-2191 (DE-627)518347737 (DE-600)2252770-9 1336-9075 nnns volume:76 year:2022 number:4 day:29 month:01 pages:2177-2191 https://dx.doi.org/10.1007/s11696-021-02010-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 76 2022 4 29 01 2177-2191 |
allfields_unstemmed |
10.1007/s11696-021-02010-1 doi (DE-627)SPR050562681 (SPR)s11696-021-02010-1-e DE-627 ger DE-627 rakwb eng Dai, Yong-Xin verfasserin aut Analysis of mixing effect and power consumption of cone-bottom dual Rushton turbines stirred tank 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Institute of Chemistry, Slovak Academy of Sciences 2021 Abstract At present, the research on stirred tanks in the chemical process has focused on the flat-bottom and dish-bottom stirred tanks, and there are few reports on the cone-bottom stirred tanks. Based on the flow pattern of the flow field in the tank, this paper analyzes the stirring effect and power consumption of the cone-bottom stirred tank with dual Rushton turbines. Computational fluid dynamics (CFD) software is used to simulate the flow field characteristics in the stirred tank. The effects of the cone-bottom height, the impeller spacing and the ratio of impeller diameter to tank diameter on the power consumption and the flow pattern of the flow field in the tank are analyzed. The results show that when the ratio of cone-bottom height to the inner diameter of the tank is less than 0.0147, there is dispersed flow in the stirred tank. The dispersed flow can improve the velocity distribution of the bottom fluid. Compared with parallel flow, the power consumption and effective mixing zone of dispersed flow are reduced by 1.5% and 2.6%. When the ratio of the impeller spacing to the inner diameter of the tank is less than 0.294, the mixed flow is in the stirred tank. The fluid turbulence between the connected flow blades is the strongest, and the power consumption is relatively small. The change of the ratio of impeller diameter to tank diameter has the greatest impact on the connected flow, and the parallel flow is the least. When the ratio of impeller diameter to tank diameter is 1:1.7, the power number is reduced by 22.8% and 44.6% compared to 1:2 and 1:2.3, respectively. Stirred tank (dpeaa)DE-He213 Power consumption (dpeaa)DE-He213 Computational fluid dynamics (CFD) (dpeaa)DE-He213 Flow pattern (dpeaa)DE-He213 Taper (dpeaa)DE-He213 Wang, Zhao-Hui (orcid)0000-0001-9492-3057 aut Fan, Yi-Wei aut Cheng, Zi-Qiang aut Enthalten in Chemical papers Wien : Springer Vienna, 1947 76(2022), 4 vom: 29. Jan., Seite 2177-2191 (DE-627)518347737 (DE-600)2252770-9 1336-9075 nnns volume:76 year:2022 number:4 day:29 month:01 pages:2177-2191 https://dx.doi.org/10.1007/s11696-021-02010-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 76 2022 4 29 01 2177-2191 |
allfieldsGer |
10.1007/s11696-021-02010-1 doi (DE-627)SPR050562681 (SPR)s11696-021-02010-1-e DE-627 ger DE-627 rakwb eng Dai, Yong-Xin verfasserin aut Analysis of mixing effect and power consumption of cone-bottom dual Rushton turbines stirred tank 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Institute of Chemistry, Slovak Academy of Sciences 2021 Abstract At present, the research on stirred tanks in the chemical process has focused on the flat-bottom and dish-bottom stirred tanks, and there are few reports on the cone-bottom stirred tanks. Based on the flow pattern of the flow field in the tank, this paper analyzes the stirring effect and power consumption of the cone-bottom stirred tank with dual Rushton turbines. Computational fluid dynamics (CFD) software is used to simulate the flow field characteristics in the stirred tank. The effects of the cone-bottom height, the impeller spacing and the ratio of impeller diameter to tank diameter on the power consumption and the flow pattern of the flow field in the tank are analyzed. The results show that when the ratio of cone-bottom height to the inner diameter of the tank is less than 0.0147, there is dispersed flow in the stirred tank. The dispersed flow can improve the velocity distribution of the bottom fluid. Compared with parallel flow, the power consumption and effective mixing zone of dispersed flow are reduced by 1.5% and 2.6%. When the ratio of the impeller spacing to the inner diameter of the tank is less than 0.294, the mixed flow is in the stirred tank. The fluid turbulence between the connected flow blades is the strongest, and the power consumption is relatively small. The change of the ratio of impeller diameter to tank diameter has the greatest impact on the connected flow, and the parallel flow is the least. When the ratio of impeller diameter to tank diameter is 1:1.7, the power number is reduced by 22.8% and 44.6% compared to 1:2 and 1:2.3, respectively. Stirred tank (dpeaa)DE-He213 Power consumption (dpeaa)DE-He213 Computational fluid dynamics (CFD) (dpeaa)DE-He213 Flow pattern (dpeaa)DE-He213 Taper (dpeaa)DE-He213 Wang, Zhao-Hui (orcid)0000-0001-9492-3057 aut Fan, Yi-Wei aut Cheng, Zi-Qiang aut Enthalten in Chemical papers Wien : Springer Vienna, 1947 76(2022), 4 vom: 29. Jan., Seite 2177-2191 (DE-627)518347737 (DE-600)2252770-9 1336-9075 nnns volume:76 year:2022 number:4 day:29 month:01 pages:2177-2191 https://dx.doi.org/10.1007/s11696-021-02010-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 76 2022 4 29 01 2177-2191 |
allfieldsSound |
10.1007/s11696-021-02010-1 doi (DE-627)SPR050562681 (SPR)s11696-021-02010-1-e DE-627 ger DE-627 rakwb eng Dai, Yong-Xin verfasserin aut Analysis of mixing effect and power consumption of cone-bottom dual Rushton turbines stirred tank 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Institute of Chemistry, Slovak Academy of Sciences 2021 Abstract At present, the research on stirred tanks in the chemical process has focused on the flat-bottom and dish-bottom stirred tanks, and there are few reports on the cone-bottom stirred tanks. Based on the flow pattern of the flow field in the tank, this paper analyzes the stirring effect and power consumption of the cone-bottom stirred tank with dual Rushton turbines. Computational fluid dynamics (CFD) software is used to simulate the flow field characteristics in the stirred tank. The effects of the cone-bottom height, the impeller spacing and the ratio of impeller diameter to tank diameter on the power consumption and the flow pattern of the flow field in the tank are analyzed. The results show that when the ratio of cone-bottom height to the inner diameter of the tank is less than 0.0147, there is dispersed flow in the stirred tank. The dispersed flow can improve the velocity distribution of the bottom fluid. Compared with parallel flow, the power consumption and effective mixing zone of dispersed flow are reduced by 1.5% and 2.6%. When the ratio of the impeller spacing to the inner diameter of the tank is less than 0.294, the mixed flow is in the stirred tank. The fluid turbulence between the connected flow blades is the strongest, and the power consumption is relatively small. The change of the ratio of impeller diameter to tank diameter has the greatest impact on the connected flow, and the parallel flow is the least. When the ratio of impeller diameter to tank diameter is 1:1.7, the power number is reduced by 22.8% and 44.6% compared to 1:2 and 1:2.3, respectively. Stirred tank (dpeaa)DE-He213 Power consumption (dpeaa)DE-He213 Computational fluid dynamics (CFD) (dpeaa)DE-He213 Flow pattern (dpeaa)DE-He213 Taper (dpeaa)DE-He213 Wang, Zhao-Hui (orcid)0000-0001-9492-3057 aut Fan, Yi-Wei aut Cheng, Zi-Qiang aut Enthalten in Chemical papers Wien : Springer Vienna, 1947 76(2022), 4 vom: 29. Jan., Seite 2177-2191 (DE-627)518347737 (DE-600)2252770-9 1336-9075 nnns volume:76 year:2022 number:4 day:29 month:01 pages:2177-2191 https://dx.doi.org/10.1007/s11696-021-02010-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 76 2022 4 29 01 2177-2191 |
language |
English |
source |
Enthalten in Chemical papers 76(2022), 4 vom: 29. Jan., Seite 2177-2191 volume:76 year:2022 number:4 day:29 month:01 pages:2177-2191 |
sourceStr |
Enthalten in Chemical papers 76(2022), 4 vom: 29. Jan., Seite 2177-2191 volume:76 year:2022 number:4 day:29 month:01 pages:2177-2191 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Stirred tank Power consumption Computational fluid dynamics (CFD) Flow pattern Taper |
isfreeaccess_bool |
false |
container_title |
Chemical papers |
authorswithroles_txt_mv |
Dai, Yong-Xin @@aut@@ Wang, Zhao-Hui @@aut@@ Fan, Yi-Wei @@aut@@ Cheng, Zi-Qiang @@aut@@ |
publishDateDaySort_date |
2022-01-29T00:00:00Z |
hierarchy_top_id |
518347737 |
id |
SPR050562681 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050562681</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507133501.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11696-021-02010-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050562681</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11696-021-02010-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dai, Yong-Xin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of mixing effect and power consumption of cone-bottom dual Rushton turbines stirred tank</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Institute of Chemistry, Slovak Academy of Sciences 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract At present, the research on stirred tanks in the chemical process has focused on the flat-bottom and dish-bottom stirred tanks, and there are few reports on the cone-bottom stirred tanks. Based on the flow pattern of the flow field in the tank, this paper analyzes the stirring effect and power consumption of the cone-bottom stirred tank with dual Rushton turbines. Computational fluid dynamics (CFD) software is used to simulate the flow field characteristics in the stirred tank. The effects of the cone-bottom height, the impeller spacing and the ratio of impeller diameter to tank diameter on the power consumption and the flow pattern of the flow field in the tank are analyzed. The results show that when the ratio of cone-bottom height to the inner diameter of the tank is less than 0.0147, there is dispersed flow in the stirred tank. The dispersed flow can improve the velocity distribution of the bottom fluid. Compared with parallel flow, the power consumption and effective mixing zone of dispersed flow are reduced by 1.5% and 2.6%. When the ratio of the impeller spacing to the inner diameter of the tank is less than 0.294, the mixed flow is in the stirred tank. The fluid turbulence between the connected flow blades is the strongest, and the power consumption is relatively small. The change of the ratio of impeller diameter to tank diameter has the greatest impact on the connected flow, and the parallel flow is the least. When the ratio of impeller diameter to tank diameter is 1:1.7, the power number is reduced by 22.8% and 44.6% compared to 1:2 and 1:2.3, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stirred tank</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power consumption</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational fluid dynamics (CFD)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow pattern</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taper</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zhao-Hui</subfield><subfield code="0">(orcid)0000-0001-9492-3057</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Yi-Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Zi-Qiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemical papers</subfield><subfield code="d">Wien : Springer Vienna, 1947</subfield><subfield code="g">76(2022), 4 vom: 29. Jan., Seite 2177-2191</subfield><subfield code="w">(DE-627)518347737</subfield><subfield code="w">(DE-600)2252770-9</subfield><subfield code="x">1336-9075</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:76</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">day:29</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:2177-2191</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11696-021-02010-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">76</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="b">29</subfield><subfield code="c">01</subfield><subfield code="h">2177-2191</subfield></datafield></record></collection>
|
author |
Dai, Yong-Xin |
spellingShingle |
Dai, Yong-Xin misc Stirred tank misc Power consumption misc Computational fluid dynamics (CFD) misc Flow pattern misc Taper Analysis of mixing effect and power consumption of cone-bottom dual Rushton turbines stirred tank |
authorStr |
Dai, Yong-Xin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)518347737 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1336-9075 |
topic_title |
Analysis of mixing effect and power consumption of cone-bottom dual Rushton turbines stirred tank Stirred tank (dpeaa)DE-He213 Power consumption (dpeaa)DE-He213 Computational fluid dynamics (CFD) (dpeaa)DE-He213 Flow pattern (dpeaa)DE-He213 Taper (dpeaa)DE-He213 |
topic |
misc Stirred tank misc Power consumption misc Computational fluid dynamics (CFD) misc Flow pattern misc Taper |
topic_unstemmed |
misc Stirred tank misc Power consumption misc Computational fluid dynamics (CFD) misc Flow pattern misc Taper |
topic_browse |
misc Stirred tank misc Power consumption misc Computational fluid dynamics (CFD) misc Flow pattern misc Taper |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Chemical papers |
hierarchy_parent_id |
518347737 |
hierarchy_top_title |
Chemical papers |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)518347737 (DE-600)2252770-9 |
title |
Analysis of mixing effect and power consumption of cone-bottom dual Rushton turbines stirred tank |
ctrlnum |
(DE-627)SPR050562681 (SPR)s11696-021-02010-1-e |
title_full |
Analysis of mixing effect and power consumption of cone-bottom dual Rushton turbines stirred tank |
author_sort |
Dai, Yong-Xin |
journal |
Chemical papers |
journalStr |
Chemical papers |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
2177 |
author_browse |
Dai, Yong-Xin Wang, Zhao-Hui Fan, Yi-Wei Cheng, Zi-Qiang |
container_volume |
76 |
format_se |
Elektronische Aufsätze |
author-letter |
Dai, Yong-Xin |
doi_str_mv |
10.1007/s11696-021-02010-1 |
normlink |
(ORCID)0000-0001-9492-3057 |
normlink_prefix_str_mv |
(orcid)0000-0001-9492-3057 |
title_sort |
analysis of mixing effect and power consumption of cone-bottom dual rushton turbines stirred tank |
title_auth |
Analysis of mixing effect and power consumption of cone-bottom dual Rushton turbines stirred tank |
abstract |
Abstract At present, the research on stirred tanks in the chemical process has focused on the flat-bottom and dish-bottom stirred tanks, and there are few reports on the cone-bottom stirred tanks. Based on the flow pattern of the flow field in the tank, this paper analyzes the stirring effect and power consumption of the cone-bottom stirred tank with dual Rushton turbines. Computational fluid dynamics (CFD) software is used to simulate the flow field characteristics in the stirred tank. The effects of the cone-bottom height, the impeller spacing and the ratio of impeller diameter to tank diameter on the power consumption and the flow pattern of the flow field in the tank are analyzed. The results show that when the ratio of cone-bottom height to the inner diameter of the tank is less than 0.0147, there is dispersed flow in the stirred tank. The dispersed flow can improve the velocity distribution of the bottom fluid. Compared with parallel flow, the power consumption and effective mixing zone of dispersed flow are reduced by 1.5% and 2.6%. When the ratio of the impeller spacing to the inner diameter of the tank is less than 0.294, the mixed flow is in the stirred tank. The fluid turbulence between the connected flow blades is the strongest, and the power consumption is relatively small. The change of the ratio of impeller diameter to tank diameter has the greatest impact on the connected flow, and the parallel flow is the least. When the ratio of impeller diameter to tank diameter is 1:1.7, the power number is reduced by 22.8% and 44.6% compared to 1:2 and 1:2.3, respectively. © Institute of Chemistry, Slovak Academy of Sciences 2021 |
abstractGer |
Abstract At present, the research on stirred tanks in the chemical process has focused on the flat-bottom and dish-bottom stirred tanks, and there are few reports on the cone-bottom stirred tanks. Based on the flow pattern of the flow field in the tank, this paper analyzes the stirring effect and power consumption of the cone-bottom stirred tank with dual Rushton turbines. Computational fluid dynamics (CFD) software is used to simulate the flow field characteristics in the stirred tank. The effects of the cone-bottom height, the impeller spacing and the ratio of impeller diameter to tank diameter on the power consumption and the flow pattern of the flow field in the tank are analyzed. The results show that when the ratio of cone-bottom height to the inner diameter of the tank is less than 0.0147, there is dispersed flow in the stirred tank. The dispersed flow can improve the velocity distribution of the bottom fluid. Compared with parallel flow, the power consumption and effective mixing zone of dispersed flow are reduced by 1.5% and 2.6%. When the ratio of the impeller spacing to the inner diameter of the tank is less than 0.294, the mixed flow is in the stirred tank. The fluid turbulence between the connected flow blades is the strongest, and the power consumption is relatively small. The change of the ratio of impeller diameter to tank diameter has the greatest impact on the connected flow, and the parallel flow is the least. When the ratio of impeller diameter to tank diameter is 1:1.7, the power number is reduced by 22.8% and 44.6% compared to 1:2 and 1:2.3, respectively. © Institute of Chemistry, Slovak Academy of Sciences 2021 |
abstract_unstemmed |
Abstract At present, the research on stirred tanks in the chemical process has focused on the flat-bottom and dish-bottom stirred tanks, and there are few reports on the cone-bottom stirred tanks. Based on the flow pattern of the flow field in the tank, this paper analyzes the stirring effect and power consumption of the cone-bottom stirred tank with dual Rushton turbines. Computational fluid dynamics (CFD) software is used to simulate the flow field characteristics in the stirred tank. The effects of the cone-bottom height, the impeller spacing and the ratio of impeller diameter to tank diameter on the power consumption and the flow pattern of the flow field in the tank are analyzed. The results show that when the ratio of cone-bottom height to the inner diameter of the tank is less than 0.0147, there is dispersed flow in the stirred tank. The dispersed flow can improve the velocity distribution of the bottom fluid. Compared with parallel flow, the power consumption and effective mixing zone of dispersed flow are reduced by 1.5% and 2.6%. When the ratio of the impeller spacing to the inner diameter of the tank is less than 0.294, the mixed flow is in the stirred tank. The fluid turbulence between the connected flow blades is the strongest, and the power consumption is relatively small. The change of the ratio of impeller diameter to tank diameter has the greatest impact on the connected flow, and the parallel flow is the least. When the ratio of impeller diameter to tank diameter is 1:1.7, the power number is reduced by 22.8% and 44.6% compared to 1:2 and 1:2.3, respectively. © Institute of Chemistry, Slovak Academy of Sciences 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Analysis of mixing effect and power consumption of cone-bottom dual Rushton turbines stirred tank |
url |
https://dx.doi.org/10.1007/s11696-021-02010-1 |
remote_bool |
true |
author2 |
Wang, Zhao-Hui Fan, Yi-Wei Cheng, Zi-Qiang |
author2Str |
Wang, Zhao-Hui Fan, Yi-Wei Cheng, Zi-Qiang |
ppnlink |
518347737 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11696-021-02010-1 |
up_date |
2024-07-03T16:20:16.703Z |
_version_ |
1803575483910062080 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050562681</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507133501.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11696-021-02010-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050562681</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11696-021-02010-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dai, Yong-Xin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of mixing effect and power consumption of cone-bottom dual Rushton turbines stirred tank</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Institute of Chemistry, Slovak Academy of Sciences 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract At present, the research on stirred tanks in the chemical process has focused on the flat-bottom and dish-bottom stirred tanks, and there are few reports on the cone-bottom stirred tanks. Based on the flow pattern of the flow field in the tank, this paper analyzes the stirring effect and power consumption of the cone-bottom stirred tank with dual Rushton turbines. Computational fluid dynamics (CFD) software is used to simulate the flow field characteristics in the stirred tank. The effects of the cone-bottom height, the impeller spacing and the ratio of impeller diameter to tank diameter on the power consumption and the flow pattern of the flow field in the tank are analyzed. The results show that when the ratio of cone-bottom height to the inner diameter of the tank is less than 0.0147, there is dispersed flow in the stirred tank. The dispersed flow can improve the velocity distribution of the bottom fluid. Compared with parallel flow, the power consumption and effective mixing zone of dispersed flow are reduced by 1.5% and 2.6%. When the ratio of the impeller spacing to the inner diameter of the tank is less than 0.294, the mixed flow is in the stirred tank. The fluid turbulence between the connected flow blades is the strongest, and the power consumption is relatively small. The change of the ratio of impeller diameter to tank diameter has the greatest impact on the connected flow, and the parallel flow is the least. When the ratio of impeller diameter to tank diameter is 1:1.7, the power number is reduced by 22.8% and 44.6% compared to 1:2 and 1:2.3, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stirred tank</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power consumption</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational fluid dynamics (CFD)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow pattern</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taper</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zhao-Hui</subfield><subfield code="0">(orcid)0000-0001-9492-3057</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Yi-Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Zi-Qiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemical papers</subfield><subfield code="d">Wien : Springer Vienna, 1947</subfield><subfield code="g">76(2022), 4 vom: 29. Jan., Seite 2177-2191</subfield><subfield code="w">(DE-627)518347737</subfield><subfield code="w">(DE-600)2252770-9</subfield><subfield code="x">1336-9075</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:76</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">day:29</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:2177-2191</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11696-021-02010-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">76</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="b">29</subfield><subfield code="c">01</subfield><subfield code="h">2177-2191</subfield></datafield></record></collection>
|
score |
7.399148 |