Monoexponential, biexponential and diffusion kurtosis MR imaging models: quantitative biomarkers in the diagnosis of placenta accreta spectrum disorders
Background To investigate the diagnostic value of monoexponential, biexponential, and diffusion kurtosis MR imaging (MRI) in differentiating placenta accreta spectrum (PAS) disorders. Methods A total of 65 patients with PAS disorders and 27 patients with normal placentas undergoing conventional DWI,...
Ausführliche Beschreibung
Autor*in: |
Lu, Tao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC pregnancy and childbirth - London : BioMed Central, 2001, 22(2022), 1 vom: 22. Apr. |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2022 ; number:1 ; day:22 ; month:04 |
Links: |
---|
DOI / URN: |
10.1186/s12884-022-04644-9 |
---|
Katalog-ID: |
SPR050659715 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR050659715 | ||
003 | DE-627 | ||
005 | 20230507162645.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12884-022-04644-9 |2 doi | |
035 | |a (DE-627)SPR050659715 | ||
035 | |a (SPR)s12884-022-04644-9-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Lu, Tao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Monoexponential, biexponential and diffusion kurtosis MR imaging models: quantitative biomarkers in the diagnosis of placenta accreta spectrum disorders |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Background To investigate the diagnostic value of monoexponential, biexponential, and diffusion kurtosis MR imaging (MRI) in differentiating placenta accreta spectrum (PAS) disorders. Methods A total of 65 patients with PAS disorders and 27 patients with normal placentas undergoing conventional DWI, IVIM, and DKI were retrospectively reviewed. The mean, minimum, and maximum parameters including the apparent diffusion coefficient (ADC) and exponential ADC (eADC) from standard DWI, diffusion kurtosis (MK), and mean diffusion coefficient (MD) from DKI and pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) from IVIM were measured from the volumetric analysis and compared between patients with PAS disorders and patients with normal placentas. Univariate and multivariated logistic regression analyses were used to evaluate the value of the above parameters for differentiating PAS disorders. Receiver operating characteristics (ROC) curve analyses were used to evaluate the diagnostic efficiency of different diffusion parameters for predicting PAS disorders. Results Multivariate analysis demonstrated that only D mean and D max differed significantly among all the studied parameters for differentiating PAS disorders when comparisons between accreta lesions in patients with PAS (AP) and whole placentas in patients with normal placentas (WP-normal) were performed (all p < 0.05). For discriminating PAS disorders, a combined use of these two parameters yielded an AUC of 0.93 with sensitivity, specificity, and accuracy of 83.08, 88.89, and 83.70%, respectively. Conclusion The diagnostic performance of the parameters from accreta lesions was better than that of the whole placenta. D mean and D max were associated with PAS disorders. | ||
650 | 4 | |a PAS disorders |7 (dpeaa)DE-He213 | |
650 | 4 | |a Diffusion-weighted MRI |7 (dpeaa)DE-He213 | |
650 | 4 | |a Intravoxel incoherent motion |7 (dpeaa)DE-He213 | |
650 | 4 | |a Diffusion kurtosis imaging |7 (dpeaa)DE-He213 | |
700 | 1 | |a Wang, Yishuang |4 aut | |
700 | 1 | |a Guo, Aiwen |4 aut | |
700 | 1 | |a Cui, Wei |4 aut | |
700 | 1 | |a Chen, Yazheng |4 aut | |
700 | 1 | |a Wang, Shaoyu |4 aut | |
700 | 1 | |a Wang, Guotai |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC pregnancy and childbirth |d London : BioMed Central, 2001 |g 22(2022), 1 vom: 22. Apr. |w (DE-627)335489087 |w (DE-600)2059869-5 |x 1471-2393 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2022 |g number:1 |g day:22 |g month:04 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12884-022-04644-9 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 22 |j 2022 |e 1 |b 22 |c 04 |
author_variant |
t l tl y w yw a g ag w c wc y c yc s w sw g w gw |
---|---|
matchkey_str |
article:14712393:2022----::ooxoetabepnnilndfuinutssrmgnmdlqatttvboakriteigoi |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s12884-022-04644-9 doi (DE-627)SPR050659715 (SPR)s12884-022-04644-9-e DE-627 ger DE-627 rakwb eng Lu, Tao verfasserin aut Monoexponential, biexponential and diffusion kurtosis MR imaging models: quantitative biomarkers in the diagnosis of placenta accreta spectrum disorders 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background To investigate the diagnostic value of monoexponential, biexponential, and diffusion kurtosis MR imaging (MRI) in differentiating placenta accreta spectrum (PAS) disorders. Methods A total of 65 patients with PAS disorders and 27 patients with normal placentas undergoing conventional DWI, IVIM, and DKI were retrospectively reviewed. The mean, minimum, and maximum parameters including the apparent diffusion coefficient (ADC) and exponential ADC (eADC) from standard DWI, diffusion kurtosis (MK), and mean diffusion coefficient (MD) from DKI and pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) from IVIM were measured from the volumetric analysis and compared between patients with PAS disorders and patients with normal placentas. Univariate and multivariated logistic regression analyses were used to evaluate the value of the above parameters for differentiating PAS disorders. Receiver operating characteristics (ROC) curve analyses were used to evaluate the diagnostic efficiency of different diffusion parameters for predicting PAS disorders. Results Multivariate analysis demonstrated that only D mean and D max differed significantly among all the studied parameters for differentiating PAS disorders when comparisons between accreta lesions in patients with PAS (AP) and whole placentas in patients with normal placentas (WP-normal) were performed (all p < 0.05). For discriminating PAS disorders, a combined use of these two parameters yielded an AUC of 0.93 with sensitivity, specificity, and accuracy of 83.08, 88.89, and 83.70%, respectively. Conclusion The diagnostic performance of the parameters from accreta lesions was better than that of the whole placenta. D mean and D max were associated with PAS disorders. PAS disorders (dpeaa)DE-He213 Diffusion-weighted MRI (dpeaa)DE-He213 Intravoxel incoherent motion (dpeaa)DE-He213 Diffusion kurtosis imaging (dpeaa)DE-He213 Wang, Yishuang aut Guo, Aiwen aut Cui, Wei aut Chen, Yazheng aut Wang, Shaoyu aut Wang, Guotai aut Enthalten in BMC pregnancy and childbirth London : BioMed Central, 2001 22(2022), 1 vom: 22. Apr. (DE-627)335489087 (DE-600)2059869-5 1471-2393 nnns volume:22 year:2022 number:1 day:22 month:04 https://dx.doi.org/10.1186/s12884-022-04644-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 1 22 04 |
spelling |
10.1186/s12884-022-04644-9 doi (DE-627)SPR050659715 (SPR)s12884-022-04644-9-e DE-627 ger DE-627 rakwb eng Lu, Tao verfasserin aut Monoexponential, biexponential and diffusion kurtosis MR imaging models: quantitative biomarkers in the diagnosis of placenta accreta spectrum disorders 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background To investigate the diagnostic value of monoexponential, biexponential, and diffusion kurtosis MR imaging (MRI) in differentiating placenta accreta spectrum (PAS) disorders. Methods A total of 65 patients with PAS disorders and 27 patients with normal placentas undergoing conventional DWI, IVIM, and DKI were retrospectively reviewed. The mean, minimum, and maximum parameters including the apparent diffusion coefficient (ADC) and exponential ADC (eADC) from standard DWI, diffusion kurtosis (MK), and mean diffusion coefficient (MD) from DKI and pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) from IVIM were measured from the volumetric analysis and compared between patients with PAS disorders and patients with normal placentas. Univariate and multivariated logistic regression analyses were used to evaluate the value of the above parameters for differentiating PAS disorders. Receiver operating characteristics (ROC) curve analyses were used to evaluate the diagnostic efficiency of different diffusion parameters for predicting PAS disorders. Results Multivariate analysis demonstrated that only D mean and D max differed significantly among all the studied parameters for differentiating PAS disorders when comparisons between accreta lesions in patients with PAS (AP) and whole placentas in patients with normal placentas (WP-normal) were performed (all p < 0.05). For discriminating PAS disorders, a combined use of these two parameters yielded an AUC of 0.93 with sensitivity, specificity, and accuracy of 83.08, 88.89, and 83.70%, respectively. Conclusion The diagnostic performance of the parameters from accreta lesions was better than that of the whole placenta. D mean and D max were associated with PAS disorders. PAS disorders (dpeaa)DE-He213 Diffusion-weighted MRI (dpeaa)DE-He213 Intravoxel incoherent motion (dpeaa)DE-He213 Diffusion kurtosis imaging (dpeaa)DE-He213 Wang, Yishuang aut Guo, Aiwen aut Cui, Wei aut Chen, Yazheng aut Wang, Shaoyu aut Wang, Guotai aut Enthalten in BMC pregnancy and childbirth London : BioMed Central, 2001 22(2022), 1 vom: 22. Apr. (DE-627)335489087 (DE-600)2059869-5 1471-2393 nnns volume:22 year:2022 number:1 day:22 month:04 https://dx.doi.org/10.1186/s12884-022-04644-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 1 22 04 |
allfields_unstemmed |
10.1186/s12884-022-04644-9 doi (DE-627)SPR050659715 (SPR)s12884-022-04644-9-e DE-627 ger DE-627 rakwb eng Lu, Tao verfasserin aut Monoexponential, biexponential and diffusion kurtosis MR imaging models: quantitative biomarkers in the diagnosis of placenta accreta spectrum disorders 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background To investigate the diagnostic value of monoexponential, biexponential, and diffusion kurtosis MR imaging (MRI) in differentiating placenta accreta spectrum (PAS) disorders. Methods A total of 65 patients with PAS disorders and 27 patients with normal placentas undergoing conventional DWI, IVIM, and DKI were retrospectively reviewed. The mean, minimum, and maximum parameters including the apparent diffusion coefficient (ADC) and exponential ADC (eADC) from standard DWI, diffusion kurtosis (MK), and mean diffusion coefficient (MD) from DKI and pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) from IVIM were measured from the volumetric analysis and compared between patients with PAS disorders and patients with normal placentas. Univariate and multivariated logistic regression analyses were used to evaluate the value of the above parameters for differentiating PAS disorders. Receiver operating characteristics (ROC) curve analyses were used to evaluate the diagnostic efficiency of different diffusion parameters for predicting PAS disorders. Results Multivariate analysis demonstrated that only D mean and D max differed significantly among all the studied parameters for differentiating PAS disorders when comparisons between accreta lesions in patients with PAS (AP) and whole placentas in patients with normal placentas (WP-normal) were performed (all p < 0.05). For discriminating PAS disorders, a combined use of these two parameters yielded an AUC of 0.93 with sensitivity, specificity, and accuracy of 83.08, 88.89, and 83.70%, respectively. Conclusion The diagnostic performance of the parameters from accreta lesions was better than that of the whole placenta. D mean and D max were associated with PAS disorders. PAS disorders (dpeaa)DE-He213 Diffusion-weighted MRI (dpeaa)DE-He213 Intravoxel incoherent motion (dpeaa)DE-He213 Diffusion kurtosis imaging (dpeaa)DE-He213 Wang, Yishuang aut Guo, Aiwen aut Cui, Wei aut Chen, Yazheng aut Wang, Shaoyu aut Wang, Guotai aut Enthalten in BMC pregnancy and childbirth London : BioMed Central, 2001 22(2022), 1 vom: 22. Apr. (DE-627)335489087 (DE-600)2059869-5 1471-2393 nnns volume:22 year:2022 number:1 day:22 month:04 https://dx.doi.org/10.1186/s12884-022-04644-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 1 22 04 |
allfieldsGer |
10.1186/s12884-022-04644-9 doi (DE-627)SPR050659715 (SPR)s12884-022-04644-9-e DE-627 ger DE-627 rakwb eng Lu, Tao verfasserin aut Monoexponential, biexponential and diffusion kurtosis MR imaging models: quantitative biomarkers in the diagnosis of placenta accreta spectrum disorders 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background To investigate the diagnostic value of monoexponential, biexponential, and diffusion kurtosis MR imaging (MRI) in differentiating placenta accreta spectrum (PAS) disorders. Methods A total of 65 patients with PAS disorders and 27 patients with normal placentas undergoing conventional DWI, IVIM, and DKI were retrospectively reviewed. The mean, minimum, and maximum parameters including the apparent diffusion coefficient (ADC) and exponential ADC (eADC) from standard DWI, diffusion kurtosis (MK), and mean diffusion coefficient (MD) from DKI and pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) from IVIM were measured from the volumetric analysis and compared between patients with PAS disorders and patients with normal placentas. Univariate and multivariated logistic regression analyses were used to evaluate the value of the above parameters for differentiating PAS disorders. Receiver operating characteristics (ROC) curve analyses were used to evaluate the diagnostic efficiency of different diffusion parameters for predicting PAS disorders. Results Multivariate analysis demonstrated that only D mean and D max differed significantly among all the studied parameters for differentiating PAS disorders when comparisons between accreta lesions in patients with PAS (AP) and whole placentas in patients with normal placentas (WP-normal) were performed (all p < 0.05). For discriminating PAS disorders, a combined use of these two parameters yielded an AUC of 0.93 with sensitivity, specificity, and accuracy of 83.08, 88.89, and 83.70%, respectively. Conclusion The diagnostic performance of the parameters from accreta lesions was better than that of the whole placenta. D mean and D max were associated with PAS disorders. PAS disorders (dpeaa)DE-He213 Diffusion-weighted MRI (dpeaa)DE-He213 Intravoxel incoherent motion (dpeaa)DE-He213 Diffusion kurtosis imaging (dpeaa)DE-He213 Wang, Yishuang aut Guo, Aiwen aut Cui, Wei aut Chen, Yazheng aut Wang, Shaoyu aut Wang, Guotai aut Enthalten in BMC pregnancy and childbirth London : BioMed Central, 2001 22(2022), 1 vom: 22. Apr. (DE-627)335489087 (DE-600)2059869-5 1471-2393 nnns volume:22 year:2022 number:1 day:22 month:04 https://dx.doi.org/10.1186/s12884-022-04644-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 1 22 04 |
allfieldsSound |
10.1186/s12884-022-04644-9 doi (DE-627)SPR050659715 (SPR)s12884-022-04644-9-e DE-627 ger DE-627 rakwb eng Lu, Tao verfasserin aut Monoexponential, biexponential and diffusion kurtosis MR imaging models: quantitative biomarkers in the diagnosis of placenta accreta spectrum disorders 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background To investigate the diagnostic value of monoexponential, biexponential, and diffusion kurtosis MR imaging (MRI) in differentiating placenta accreta spectrum (PAS) disorders. Methods A total of 65 patients with PAS disorders and 27 patients with normal placentas undergoing conventional DWI, IVIM, and DKI were retrospectively reviewed. The mean, minimum, and maximum parameters including the apparent diffusion coefficient (ADC) and exponential ADC (eADC) from standard DWI, diffusion kurtosis (MK), and mean diffusion coefficient (MD) from DKI and pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) from IVIM were measured from the volumetric analysis and compared between patients with PAS disorders and patients with normal placentas. Univariate and multivariated logistic regression analyses were used to evaluate the value of the above parameters for differentiating PAS disorders. Receiver operating characteristics (ROC) curve analyses were used to evaluate the diagnostic efficiency of different diffusion parameters for predicting PAS disorders. Results Multivariate analysis demonstrated that only D mean and D max differed significantly among all the studied parameters for differentiating PAS disorders when comparisons between accreta lesions in patients with PAS (AP) and whole placentas in patients with normal placentas (WP-normal) were performed (all p < 0.05). For discriminating PAS disorders, a combined use of these two parameters yielded an AUC of 0.93 with sensitivity, specificity, and accuracy of 83.08, 88.89, and 83.70%, respectively. Conclusion The diagnostic performance of the parameters from accreta lesions was better than that of the whole placenta. D mean and D max were associated with PAS disorders. PAS disorders (dpeaa)DE-He213 Diffusion-weighted MRI (dpeaa)DE-He213 Intravoxel incoherent motion (dpeaa)DE-He213 Diffusion kurtosis imaging (dpeaa)DE-He213 Wang, Yishuang aut Guo, Aiwen aut Cui, Wei aut Chen, Yazheng aut Wang, Shaoyu aut Wang, Guotai aut Enthalten in BMC pregnancy and childbirth London : BioMed Central, 2001 22(2022), 1 vom: 22. Apr. (DE-627)335489087 (DE-600)2059869-5 1471-2393 nnns volume:22 year:2022 number:1 day:22 month:04 https://dx.doi.org/10.1186/s12884-022-04644-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 1 22 04 |
language |
English |
source |
Enthalten in BMC pregnancy and childbirth 22(2022), 1 vom: 22. Apr. volume:22 year:2022 number:1 day:22 month:04 |
sourceStr |
Enthalten in BMC pregnancy and childbirth 22(2022), 1 vom: 22. Apr. volume:22 year:2022 number:1 day:22 month:04 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
PAS disorders Diffusion-weighted MRI Intravoxel incoherent motion Diffusion kurtosis imaging |
isfreeaccess_bool |
true |
container_title |
BMC pregnancy and childbirth |
authorswithroles_txt_mv |
Lu, Tao @@aut@@ Wang, Yishuang @@aut@@ Guo, Aiwen @@aut@@ Cui, Wei @@aut@@ Chen, Yazheng @@aut@@ Wang, Shaoyu @@aut@@ Wang, Guotai @@aut@@ |
publishDateDaySort_date |
2022-04-22T00:00:00Z |
hierarchy_top_id |
335489087 |
id |
SPR050659715 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050659715</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507162645.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12884-022-04644-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050659715</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12884-022-04644-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lu, Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Monoexponential, biexponential and diffusion kurtosis MR imaging models: quantitative biomarkers in the diagnosis of placenta accreta spectrum disorders</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background To investigate the diagnostic value of monoexponential, biexponential, and diffusion kurtosis MR imaging (MRI) in differentiating placenta accreta spectrum (PAS) disorders. Methods A total of 65 patients with PAS disorders and 27 patients with normal placentas undergoing conventional DWI, IVIM, and DKI were retrospectively reviewed. The mean, minimum, and maximum parameters including the apparent diffusion coefficient (ADC) and exponential ADC (eADC) from standard DWI, diffusion kurtosis (MK), and mean diffusion coefficient (MD) from DKI and pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) from IVIM were measured from the volumetric analysis and compared between patients with PAS disorders and patients with normal placentas. Univariate and multivariated logistic regression analyses were used to evaluate the value of the above parameters for differentiating PAS disorders. Receiver operating characteristics (ROC) curve analyses were used to evaluate the diagnostic efficiency of different diffusion parameters for predicting PAS disorders. Results Multivariate analysis demonstrated that only D mean and D max differed significantly among all the studied parameters for differentiating PAS disorders when comparisons between accreta lesions in patients with PAS (AP) and whole placentas in patients with normal placentas (WP-normal) were performed (all p < 0.05). For discriminating PAS disorders, a combined use of these two parameters yielded an AUC of 0.93 with sensitivity, specificity, and accuracy of 83.08, 88.89, and 83.70%, respectively. Conclusion The diagnostic performance of the parameters from accreta lesions was better than that of the whole placenta. D mean and D max were associated with PAS disorders.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PAS disorders</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffusion-weighted MRI</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intravoxel incoherent motion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffusion kurtosis imaging</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yishuang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Aiwen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cui, Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Yazheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Shaoyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Guotai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC pregnancy and childbirth</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">22(2022), 1 vom: 22. Apr.</subfield><subfield code="w">(DE-627)335489087</subfield><subfield code="w">(DE-600)2059869-5</subfield><subfield code="x">1471-2393</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:22</subfield><subfield code="g">month:04</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12884-022-04644-9</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">22</subfield><subfield code="c">04</subfield></datafield></record></collection>
|
author |
Lu, Tao |
spellingShingle |
Lu, Tao misc PAS disorders misc Diffusion-weighted MRI misc Intravoxel incoherent motion misc Diffusion kurtosis imaging Monoexponential, biexponential and diffusion kurtosis MR imaging models: quantitative biomarkers in the diagnosis of placenta accreta spectrum disorders |
authorStr |
Lu, Tao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)335489087 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2393 |
topic_title |
Monoexponential, biexponential and diffusion kurtosis MR imaging models: quantitative biomarkers in the diagnosis of placenta accreta spectrum disorders PAS disorders (dpeaa)DE-He213 Diffusion-weighted MRI (dpeaa)DE-He213 Intravoxel incoherent motion (dpeaa)DE-He213 Diffusion kurtosis imaging (dpeaa)DE-He213 |
topic |
misc PAS disorders misc Diffusion-weighted MRI misc Intravoxel incoherent motion misc Diffusion kurtosis imaging |
topic_unstemmed |
misc PAS disorders misc Diffusion-weighted MRI misc Intravoxel incoherent motion misc Diffusion kurtosis imaging |
topic_browse |
misc PAS disorders misc Diffusion-weighted MRI misc Intravoxel incoherent motion misc Diffusion kurtosis imaging |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC pregnancy and childbirth |
hierarchy_parent_id |
335489087 |
hierarchy_top_title |
BMC pregnancy and childbirth |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)335489087 (DE-600)2059869-5 |
title |
Monoexponential, biexponential and diffusion kurtosis MR imaging models: quantitative biomarkers in the diagnosis of placenta accreta spectrum disorders |
ctrlnum |
(DE-627)SPR050659715 (SPR)s12884-022-04644-9-e |
title_full |
Monoexponential, biexponential and diffusion kurtosis MR imaging models: quantitative biomarkers in the diagnosis of placenta accreta spectrum disorders |
author_sort |
Lu, Tao |
journal |
BMC pregnancy and childbirth |
journalStr |
BMC pregnancy and childbirth |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Lu, Tao Wang, Yishuang Guo, Aiwen Cui, Wei Chen, Yazheng Wang, Shaoyu Wang, Guotai |
container_volume |
22 |
format_se |
Elektronische Aufsätze |
author-letter |
Lu, Tao |
doi_str_mv |
10.1186/s12884-022-04644-9 |
title_sort |
monoexponential, biexponential and diffusion kurtosis mr imaging models: quantitative biomarkers in the diagnosis of placenta accreta spectrum disorders |
title_auth |
Monoexponential, biexponential and diffusion kurtosis MR imaging models: quantitative biomarkers in the diagnosis of placenta accreta spectrum disorders |
abstract |
Background To investigate the diagnostic value of monoexponential, biexponential, and diffusion kurtosis MR imaging (MRI) in differentiating placenta accreta spectrum (PAS) disorders. Methods A total of 65 patients with PAS disorders and 27 patients with normal placentas undergoing conventional DWI, IVIM, and DKI were retrospectively reviewed. The mean, minimum, and maximum parameters including the apparent diffusion coefficient (ADC) and exponential ADC (eADC) from standard DWI, diffusion kurtosis (MK), and mean diffusion coefficient (MD) from DKI and pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) from IVIM were measured from the volumetric analysis and compared between patients with PAS disorders and patients with normal placentas. Univariate and multivariated logistic regression analyses were used to evaluate the value of the above parameters for differentiating PAS disorders. Receiver operating characteristics (ROC) curve analyses were used to evaluate the diagnostic efficiency of different diffusion parameters for predicting PAS disorders. Results Multivariate analysis demonstrated that only D mean and D max differed significantly among all the studied parameters for differentiating PAS disorders when comparisons between accreta lesions in patients with PAS (AP) and whole placentas in patients with normal placentas (WP-normal) were performed (all p < 0.05). For discriminating PAS disorders, a combined use of these two parameters yielded an AUC of 0.93 with sensitivity, specificity, and accuracy of 83.08, 88.89, and 83.70%, respectively. Conclusion The diagnostic performance of the parameters from accreta lesions was better than that of the whole placenta. D mean and D max were associated with PAS disorders. © The Author(s) 2022 |
abstractGer |
Background To investigate the diagnostic value of monoexponential, biexponential, and diffusion kurtosis MR imaging (MRI) in differentiating placenta accreta spectrum (PAS) disorders. Methods A total of 65 patients with PAS disorders and 27 patients with normal placentas undergoing conventional DWI, IVIM, and DKI were retrospectively reviewed. The mean, minimum, and maximum parameters including the apparent diffusion coefficient (ADC) and exponential ADC (eADC) from standard DWI, diffusion kurtosis (MK), and mean diffusion coefficient (MD) from DKI and pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) from IVIM were measured from the volumetric analysis and compared between patients with PAS disorders and patients with normal placentas. Univariate and multivariated logistic regression analyses were used to evaluate the value of the above parameters for differentiating PAS disorders. Receiver operating characteristics (ROC) curve analyses were used to evaluate the diagnostic efficiency of different diffusion parameters for predicting PAS disorders. Results Multivariate analysis demonstrated that only D mean and D max differed significantly among all the studied parameters for differentiating PAS disorders when comparisons between accreta lesions in patients with PAS (AP) and whole placentas in patients with normal placentas (WP-normal) were performed (all p < 0.05). For discriminating PAS disorders, a combined use of these two parameters yielded an AUC of 0.93 with sensitivity, specificity, and accuracy of 83.08, 88.89, and 83.70%, respectively. Conclusion The diagnostic performance of the parameters from accreta lesions was better than that of the whole placenta. D mean and D max were associated with PAS disorders. © The Author(s) 2022 |
abstract_unstemmed |
Background To investigate the diagnostic value of monoexponential, biexponential, and diffusion kurtosis MR imaging (MRI) in differentiating placenta accreta spectrum (PAS) disorders. Methods A total of 65 patients with PAS disorders and 27 patients with normal placentas undergoing conventional DWI, IVIM, and DKI were retrospectively reviewed. The mean, minimum, and maximum parameters including the apparent diffusion coefficient (ADC) and exponential ADC (eADC) from standard DWI, diffusion kurtosis (MK), and mean diffusion coefficient (MD) from DKI and pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) from IVIM were measured from the volumetric analysis and compared between patients with PAS disorders and patients with normal placentas. Univariate and multivariated logistic regression analyses were used to evaluate the value of the above parameters for differentiating PAS disorders. Receiver operating characteristics (ROC) curve analyses were used to evaluate the diagnostic efficiency of different diffusion parameters for predicting PAS disorders. Results Multivariate analysis demonstrated that only D mean and D max differed significantly among all the studied parameters for differentiating PAS disorders when comparisons between accreta lesions in patients with PAS (AP) and whole placentas in patients with normal placentas (WP-normal) were performed (all p < 0.05). For discriminating PAS disorders, a combined use of these two parameters yielded an AUC of 0.93 with sensitivity, specificity, and accuracy of 83.08, 88.89, and 83.70%, respectively. Conclusion The diagnostic performance of the parameters from accreta lesions was better than that of the whole placenta. D mean and D max were associated with PAS disorders. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Monoexponential, biexponential and diffusion kurtosis MR imaging models: quantitative biomarkers in the diagnosis of placenta accreta spectrum disorders |
url |
https://dx.doi.org/10.1186/s12884-022-04644-9 |
remote_bool |
true |
author2 |
Wang, Yishuang Guo, Aiwen Cui, Wei Chen, Yazheng Wang, Shaoyu Wang, Guotai |
author2Str |
Wang, Yishuang Guo, Aiwen Cui, Wei Chen, Yazheng Wang, Shaoyu Wang, Guotai |
ppnlink |
335489087 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12884-022-04644-9 |
up_date |
2024-07-03T16:57:31.113Z |
_version_ |
1803577826862956544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050659715</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507162645.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12884-022-04644-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050659715</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12884-022-04644-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lu, Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Monoexponential, biexponential and diffusion kurtosis MR imaging models: quantitative biomarkers in the diagnosis of placenta accreta spectrum disorders</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background To investigate the diagnostic value of monoexponential, biexponential, and diffusion kurtosis MR imaging (MRI) in differentiating placenta accreta spectrum (PAS) disorders. Methods A total of 65 patients with PAS disorders and 27 patients with normal placentas undergoing conventional DWI, IVIM, and DKI were retrospectively reviewed. The mean, minimum, and maximum parameters including the apparent diffusion coefficient (ADC) and exponential ADC (eADC) from standard DWI, diffusion kurtosis (MK), and mean diffusion coefficient (MD) from DKI and pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) from IVIM were measured from the volumetric analysis and compared between patients with PAS disorders and patients with normal placentas. Univariate and multivariated logistic regression analyses were used to evaluate the value of the above parameters for differentiating PAS disorders. Receiver operating characteristics (ROC) curve analyses were used to evaluate the diagnostic efficiency of different diffusion parameters for predicting PAS disorders. Results Multivariate analysis demonstrated that only D mean and D max differed significantly among all the studied parameters for differentiating PAS disorders when comparisons between accreta lesions in patients with PAS (AP) and whole placentas in patients with normal placentas (WP-normal) were performed (all p < 0.05). For discriminating PAS disorders, a combined use of these two parameters yielded an AUC of 0.93 with sensitivity, specificity, and accuracy of 83.08, 88.89, and 83.70%, respectively. Conclusion The diagnostic performance of the parameters from accreta lesions was better than that of the whole placenta. D mean and D max were associated with PAS disorders.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PAS disorders</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffusion-weighted MRI</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intravoxel incoherent motion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffusion kurtosis imaging</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yishuang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Aiwen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cui, Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Yazheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Shaoyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Guotai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC pregnancy and childbirth</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">22(2022), 1 vom: 22. Apr.</subfield><subfield code="w">(DE-627)335489087</subfield><subfield code="w">(DE-600)2059869-5</subfield><subfield code="x">1471-2393</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:22</subfield><subfield code="g">month:04</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12884-022-04644-9</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">22</subfield><subfield code="c">04</subfield></datafield></record></collection>
|
score |
7.4018106 |