Enhanced DNA and RNA pathogen detection via metagenomic sequencing in patients with pneumonia
Background Metagenomic next-generation sequencing (mNGS) is an important supplement to conventional tests for pathogen detections of pneumonia. However, mNGS pipelines were limited by irregularities, high proportion of host nucleic acids, and lack of RNA virus detection. Thus, a regulated pipeline b...
Ausführliche Beschreibung
Autor*in: |
He, Yukun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of translational medicine - London : BioMed Central, 2003, 20(2022), 1 vom: 04. Mai |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2022 ; number:1 ; day:04 ; month:05 |
Links: |
---|
DOI / URN: |
10.1186/s12967-022-03397-5 |
---|
Katalog-ID: |
SPR050686984 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR050686984 | ||
003 | DE-627 | ||
005 | 20230507172714.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12967-022-03397-5 |2 doi | |
035 | |a (DE-627)SPR050686984 | ||
035 | |a (SPR)s12967-022-03397-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a He, Yukun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Enhanced DNA and RNA pathogen detection via metagenomic sequencing in patients with pneumonia |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Background Metagenomic next-generation sequencing (mNGS) is an important supplement to conventional tests for pathogen detections of pneumonia. However, mNGS pipelines were limited by irregularities, high proportion of host nucleic acids, and lack of RNA virus detection. Thus, a regulated pipeline based on mNGS for DNA and RNA pathogen detection of pneumonia is essential. Methods We performed a retrospective study of 151 patients with pneumonia. Three conventional tests, culture, loop-mediated isothermal amplification (LAMP) and viral quantitative real-time polymerase chain reaction (qPCR) were conducted according to clinical needs, and all samples were detected using our optimized pipeline based on the mNGS (DNA and RNA) method. The performances of mNGS and three other tests were compared. Human DNA depletion was achieved respectively by MolYsis kit and pre-treatment using saponin and Turbo DNase. Three RNA library preparation methods were used to compare the detection performance of RNA viruses. Results An optimized mNGS workflow was built, which had only 1-working-day turnaround time. The proportion of host DNA in the pre-treated samples decreased from 99 to 90% and microbiome reads achieved an approximately 20-fold enrichment compared with those without host removal. Meanwhile, saponin and Turbo DNase pre-treatment exhibited an advantage for DNA virus detection compared with MolYsis. Besides, our in-house RNA library preparation procedure showed a more robust RNA virus detection ability. Combining three conventional methods, 76 (76/151, 50.3%) cases had no clear causative pathogen, but 24 probable pathogens were successfully detected in 31 (31/76 = 40.8%) unclear cases using mNGS. The agreement of the mNGS with the culture, LAMP, and viral qPCR was 60%, 82%, and 80%, respectively. Compared with all conventional tests, mNGS had a sensitivity of 70.4%, a specificity of 72.7%, and an overall agreement of 71.5%. Conclusions A complete and effective mNGS workflow was built to provide timely DNA and RNA pathogen detection for pneumonia, which could effectively remove the host sequence, had a higher microbial detection rate and a broader spectrum of pathogens (especially for viruses and some pathogens that are difficult to culture). Despite the advantages, there are many challenges in the clinical application of mNGS, and the mNGS report should be interpreted with caution. | ||
650 | 4 | |a Pneumonia |7 (dpeaa)DE-He213 | |
650 | 4 | |a Metagenomic next-generation sequencing |7 (dpeaa)DE-He213 | |
650 | 4 | |a Early pathogen detection |7 (dpeaa)DE-He213 | |
700 | 1 | |a Fang, Kechi |4 aut | |
700 | 1 | |a Shi, Xing |4 aut | |
700 | 1 | |a Yang, Donghong |4 aut | |
700 | 1 | |a Zhao, Lili |4 aut | |
700 | 1 | |a Yu, Wenyi |4 aut | |
700 | 1 | |a Zheng, Yali |4 aut | |
700 | 1 | |a Xu, Yu |4 aut | |
700 | 1 | |a Ma, Xinqian |4 aut | |
700 | 1 | |a Chen, Li |4 aut | |
700 | 1 | |a Xie, Yu |4 aut | |
700 | 1 | |a Yu, Yan |4 aut | |
700 | 1 | |a Wang, Jing |4 aut | |
700 | 1 | |a Gao, Zhancheng |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of translational medicine |d London : BioMed Central, 2003 |g 20(2022), 1 vom: 04. Mai |w (DE-627)369084136 |w (DE-600)2118570-0 |x 1479-5876 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2022 |g number:1 |g day:04 |g month:05 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12967-022-03397-5 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 20 |j 2022 |e 1 |b 04 |c 05 |
author_variant |
y h yh k f kf x s xs d y dy l z lz w y wy y z yz y x yx x m xm l c lc y x yx y y yy j w jw z g zg |
---|---|
matchkey_str |
article:14795876:2022----::nacdnadnptoedtcinimtgnmceunign |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s12967-022-03397-5 doi (DE-627)SPR050686984 (SPR)s12967-022-03397-5-e DE-627 ger DE-627 rakwb eng He, Yukun verfasserin aut Enhanced DNA and RNA pathogen detection via metagenomic sequencing in patients with pneumonia 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Metagenomic next-generation sequencing (mNGS) is an important supplement to conventional tests for pathogen detections of pneumonia. However, mNGS pipelines were limited by irregularities, high proportion of host nucleic acids, and lack of RNA virus detection. Thus, a regulated pipeline based on mNGS for DNA and RNA pathogen detection of pneumonia is essential. Methods We performed a retrospective study of 151 patients with pneumonia. Three conventional tests, culture, loop-mediated isothermal amplification (LAMP) and viral quantitative real-time polymerase chain reaction (qPCR) were conducted according to clinical needs, and all samples were detected using our optimized pipeline based on the mNGS (DNA and RNA) method. The performances of mNGS and three other tests were compared. Human DNA depletion was achieved respectively by MolYsis kit and pre-treatment using saponin and Turbo DNase. Three RNA library preparation methods were used to compare the detection performance of RNA viruses. Results An optimized mNGS workflow was built, which had only 1-working-day turnaround time. The proportion of host DNA in the pre-treated samples decreased from 99 to 90% and microbiome reads achieved an approximately 20-fold enrichment compared with those without host removal. Meanwhile, saponin and Turbo DNase pre-treatment exhibited an advantage for DNA virus detection compared with MolYsis. Besides, our in-house RNA library preparation procedure showed a more robust RNA virus detection ability. Combining three conventional methods, 76 (76/151, 50.3%) cases had no clear causative pathogen, but 24 probable pathogens were successfully detected in 31 (31/76 = 40.8%) unclear cases using mNGS. The agreement of the mNGS with the culture, LAMP, and viral qPCR was 60%, 82%, and 80%, respectively. Compared with all conventional tests, mNGS had a sensitivity of 70.4%, a specificity of 72.7%, and an overall agreement of 71.5%. Conclusions A complete and effective mNGS workflow was built to provide timely DNA and RNA pathogen detection for pneumonia, which could effectively remove the host sequence, had a higher microbial detection rate and a broader spectrum of pathogens (especially for viruses and some pathogens that are difficult to culture). Despite the advantages, there are many challenges in the clinical application of mNGS, and the mNGS report should be interpreted with caution. Pneumonia (dpeaa)DE-He213 Metagenomic next-generation sequencing (dpeaa)DE-He213 Early pathogen detection (dpeaa)DE-He213 Fang, Kechi aut Shi, Xing aut Yang, Donghong aut Zhao, Lili aut Yu, Wenyi aut Zheng, Yali aut Xu, Yu aut Ma, Xinqian aut Chen, Li aut Xie, Yu aut Yu, Yan aut Wang, Jing aut Gao, Zhancheng aut Enthalten in Journal of translational medicine London : BioMed Central, 2003 20(2022), 1 vom: 04. Mai (DE-627)369084136 (DE-600)2118570-0 1479-5876 nnns volume:20 year:2022 number:1 day:04 month:05 https://dx.doi.org/10.1186/s12967-022-03397-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2022 1 04 05 |
spelling |
10.1186/s12967-022-03397-5 doi (DE-627)SPR050686984 (SPR)s12967-022-03397-5-e DE-627 ger DE-627 rakwb eng He, Yukun verfasserin aut Enhanced DNA and RNA pathogen detection via metagenomic sequencing in patients with pneumonia 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Metagenomic next-generation sequencing (mNGS) is an important supplement to conventional tests for pathogen detections of pneumonia. However, mNGS pipelines were limited by irregularities, high proportion of host nucleic acids, and lack of RNA virus detection. Thus, a regulated pipeline based on mNGS for DNA and RNA pathogen detection of pneumonia is essential. Methods We performed a retrospective study of 151 patients with pneumonia. Three conventional tests, culture, loop-mediated isothermal amplification (LAMP) and viral quantitative real-time polymerase chain reaction (qPCR) were conducted according to clinical needs, and all samples were detected using our optimized pipeline based on the mNGS (DNA and RNA) method. The performances of mNGS and three other tests were compared. Human DNA depletion was achieved respectively by MolYsis kit and pre-treatment using saponin and Turbo DNase. Three RNA library preparation methods were used to compare the detection performance of RNA viruses. Results An optimized mNGS workflow was built, which had only 1-working-day turnaround time. The proportion of host DNA in the pre-treated samples decreased from 99 to 90% and microbiome reads achieved an approximately 20-fold enrichment compared with those without host removal. Meanwhile, saponin and Turbo DNase pre-treatment exhibited an advantage for DNA virus detection compared with MolYsis. Besides, our in-house RNA library preparation procedure showed a more robust RNA virus detection ability. Combining three conventional methods, 76 (76/151, 50.3%) cases had no clear causative pathogen, but 24 probable pathogens were successfully detected in 31 (31/76 = 40.8%) unclear cases using mNGS. The agreement of the mNGS with the culture, LAMP, and viral qPCR was 60%, 82%, and 80%, respectively. Compared with all conventional tests, mNGS had a sensitivity of 70.4%, a specificity of 72.7%, and an overall agreement of 71.5%. Conclusions A complete and effective mNGS workflow was built to provide timely DNA and RNA pathogen detection for pneumonia, which could effectively remove the host sequence, had a higher microbial detection rate and a broader spectrum of pathogens (especially for viruses and some pathogens that are difficult to culture). Despite the advantages, there are many challenges in the clinical application of mNGS, and the mNGS report should be interpreted with caution. Pneumonia (dpeaa)DE-He213 Metagenomic next-generation sequencing (dpeaa)DE-He213 Early pathogen detection (dpeaa)DE-He213 Fang, Kechi aut Shi, Xing aut Yang, Donghong aut Zhao, Lili aut Yu, Wenyi aut Zheng, Yali aut Xu, Yu aut Ma, Xinqian aut Chen, Li aut Xie, Yu aut Yu, Yan aut Wang, Jing aut Gao, Zhancheng aut Enthalten in Journal of translational medicine London : BioMed Central, 2003 20(2022), 1 vom: 04. Mai (DE-627)369084136 (DE-600)2118570-0 1479-5876 nnns volume:20 year:2022 number:1 day:04 month:05 https://dx.doi.org/10.1186/s12967-022-03397-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2022 1 04 05 |
allfields_unstemmed |
10.1186/s12967-022-03397-5 doi (DE-627)SPR050686984 (SPR)s12967-022-03397-5-e DE-627 ger DE-627 rakwb eng He, Yukun verfasserin aut Enhanced DNA and RNA pathogen detection via metagenomic sequencing in patients with pneumonia 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Metagenomic next-generation sequencing (mNGS) is an important supplement to conventional tests for pathogen detections of pneumonia. However, mNGS pipelines were limited by irregularities, high proportion of host nucleic acids, and lack of RNA virus detection. Thus, a regulated pipeline based on mNGS for DNA and RNA pathogen detection of pneumonia is essential. Methods We performed a retrospective study of 151 patients with pneumonia. Three conventional tests, culture, loop-mediated isothermal amplification (LAMP) and viral quantitative real-time polymerase chain reaction (qPCR) were conducted according to clinical needs, and all samples were detected using our optimized pipeline based on the mNGS (DNA and RNA) method. The performances of mNGS and three other tests were compared. Human DNA depletion was achieved respectively by MolYsis kit and pre-treatment using saponin and Turbo DNase. Three RNA library preparation methods were used to compare the detection performance of RNA viruses. Results An optimized mNGS workflow was built, which had only 1-working-day turnaround time. The proportion of host DNA in the pre-treated samples decreased from 99 to 90% and microbiome reads achieved an approximately 20-fold enrichment compared with those without host removal. Meanwhile, saponin and Turbo DNase pre-treatment exhibited an advantage for DNA virus detection compared with MolYsis. Besides, our in-house RNA library preparation procedure showed a more robust RNA virus detection ability. Combining three conventional methods, 76 (76/151, 50.3%) cases had no clear causative pathogen, but 24 probable pathogens were successfully detected in 31 (31/76 = 40.8%) unclear cases using mNGS. The agreement of the mNGS with the culture, LAMP, and viral qPCR was 60%, 82%, and 80%, respectively. Compared with all conventional tests, mNGS had a sensitivity of 70.4%, a specificity of 72.7%, and an overall agreement of 71.5%. Conclusions A complete and effective mNGS workflow was built to provide timely DNA and RNA pathogen detection for pneumonia, which could effectively remove the host sequence, had a higher microbial detection rate and a broader spectrum of pathogens (especially for viruses and some pathogens that are difficult to culture). Despite the advantages, there are many challenges in the clinical application of mNGS, and the mNGS report should be interpreted with caution. Pneumonia (dpeaa)DE-He213 Metagenomic next-generation sequencing (dpeaa)DE-He213 Early pathogen detection (dpeaa)DE-He213 Fang, Kechi aut Shi, Xing aut Yang, Donghong aut Zhao, Lili aut Yu, Wenyi aut Zheng, Yali aut Xu, Yu aut Ma, Xinqian aut Chen, Li aut Xie, Yu aut Yu, Yan aut Wang, Jing aut Gao, Zhancheng aut Enthalten in Journal of translational medicine London : BioMed Central, 2003 20(2022), 1 vom: 04. Mai (DE-627)369084136 (DE-600)2118570-0 1479-5876 nnns volume:20 year:2022 number:1 day:04 month:05 https://dx.doi.org/10.1186/s12967-022-03397-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2022 1 04 05 |
allfieldsGer |
10.1186/s12967-022-03397-5 doi (DE-627)SPR050686984 (SPR)s12967-022-03397-5-e DE-627 ger DE-627 rakwb eng He, Yukun verfasserin aut Enhanced DNA and RNA pathogen detection via metagenomic sequencing in patients with pneumonia 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Metagenomic next-generation sequencing (mNGS) is an important supplement to conventional tests for pathogen detections of pneumonia. However, mNGS pipelines were limited by irregularities, high proportion of host nucleic acids, and lack of RNA virus detection. Thus, a regulated pipeline based on mNGS for DNA and RNA pathogen detection of pneumonia is essential. Methods We performed a retrospective study of 151 patients with pneumonia. Three conventional tests, culture, loop-mediated isothermal amplification (LAMP) and viral quantitative real-time polymerase chain reaction (qPCR) were conducted according to clinical needs, and all samples were detected using our optimized pipeline based on the mNGS (DNA and RNA) method. The performances of mNGS and three other tests were compared. Human DNA depletion was achieved respectively by MolYsis kit and pre-treatment using saponin and Turbo DNase. Three RNA library preparation methods were used to compare the detection performance of RNA viruses. Results An optimized mNGS workflow was built, which had only 1-working-day turnaround time. The proportion of host DNA in the pre-treated samples decreased from 99 to 90% and microbiome reads achieved an approximately 20-fold enrichment compared with those without host removal. Meanwhile, saponin and Turbo DNase pre-treatment exhibited an advantage for DNA virus detection compared with MolYsis. Besides, our in-house RNA library preparation procedure showed a more robust RNA virus detection ability. Combining three conventional methods, 76 (76/151, 50.3%) cases had no clear causative pathogen, but 24 probable pathogens were successfully detected in 31 (31/76 = 40.8%) unclear cases using mNGS. The agreement of the mNGS with the culture, LAMP, and viral qPCR was 60%, 82%, and 80%, respectively. Compared with all conventional tests, mNGS had a sensitivity of 70.4%, a specificity of 72.7%, and an overall agreement of 71.5%. Conclusions A complete and effective mNGS workflow was built to provide timely DNA and RNA pathogen detection for pneumonia, which could effectively remove the host sequence, had a higher microbial detection rate and a broader spectrum of pathogens (especially for viruses and some pathogens that are difficult to culture). Despite the advantages, there are many challenges in the clinical application of mNGS, and the mNGS report should be interpreted with caution. Pneumonia (dpeaa)DE-He213 Metagenomic next-generation sequencing (dpeaa)DE-He213 Early pathogen detection (dpeaa)DE-He213 Fang, Kechi aut Shi, Xing aut Yang, Donghong aut Zhao, Lili aut Yu, Wenyi aut Zheng, Yali aut Xu, Yu aut Ma, Xinqian aut Chen, Li aut Xie, Yu aut Yu, Yan aut Wang, Jing aut Gao, Zhancheng aut Enthalten in Journal of translational medicine London : BioMed Central, 2003 20(2022), 1 vom: 04. Mai (DE-627)369084136 (DE-600)2118570-0 1479-5876 nnns volume:20 year:2022 number:1 day:04 month:05 https://dx.doi.org/10.1186/s12967-022-03397-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2022 1 04 05 |
allfieldsSound |
10.1186/s12967-022-03397-5 doi (DE-627)SPR050686984 (SPR)s12967-022-03397-5-e DE-627 ger DE-627 rakwb eng He, Yukun verfasserin aut Enhanced DNA and RNA pathogen detection via metagenomic sequencing in patients with pneumonia 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Metagenomic next-generation sequencing (mNGS) is an important supplement to conventional tests for pathogen detections of pneumonia. However, mNGS pipelines were limited by irregularities, high proportion of host nucleic acids, and lack of RNA virus detection. Thus, a regulated pipeline based on mNGS for DNA and RNA pathogen detection of pneumonia is essential. Methods We performed a retrospective study of 151 patients with pneumonia. Three conventional tests, culture, loop-mediated isothermal amplification (LAMP) and viral quantitative real-time polymerase chain reaction (qPCR) were conducted according to clinical needs, and all samples were detected using our optimized pipeline based on the mNGS (DNA and RNA) method. The performances of mNGS and three other tests were compared. Human DNA depletion was achieved respectively by MolYsis kit and pre-treatment using saponin and Turbo DNase. Three RNA library preparation methods were used to compare the detection performance of RNA viruses. Results An optimized mNGS workflow was built, which had only 1-working-day turnaround time. The proportion of host DNA in the pre-treated samples decreased from 99 to 90% and microbiome reads achieved an approximately 20-fold enrichment compared with those without host removal. Meanwhile, saponin and Turbo DNase pre-treatment exhibited an advantage for DNA virus detection compared with MolYsis. Besides, our in-house RNA library preparation procedure showed a more robust RNA virus detection ability. Combining three conventional methods, 76 (76/151, 50.3%) cases had no clear causative pathogen, but 24 probable pathogens were successfully detected in 31 (31/76 = 40.8%) unclear cases using mNGS. The agreement of the mNGS with the culture, LAMP, and viral qPCR was 60%, 82%, and 80%, respectively. Compared with all conventional tests, mNGS had a sensitivity of 70.4%, a specificity of 72.7%, and an overall agreement of 71.5%. Conclusions A complete and effective mNGS workflow was built to provide timely DNA and RNA pathogen detection for pneumonia, which could effectively remove the host sequence, had a higher microbial detection rate and a broader spectrum of pathogens (especially for viruses and some pathogens that are difficult to culture). Despite the advantages, there are many challenges in the clinical application of mNGS, and the mNGS report should be interpreted with caution. Pneumonia (dpeaa)DE-He213 Metagenomic next-generation sequencing (dpeaa)DE-He213 Early pathogen detection (dpeaa)DE-He213 Fang, Kechi aut Shi, Xing aut Yang, Donghong aut Zhao, Lili aut Yu, Wenyi aut Zheng, Yali aut Xu, Yu aut Ma, Xinqian aut Chen, Li aut Xie, Yu aut Yu, Yan aut Wang, Jing aut Gao, Zhancheng aut Enthalten in Journal of translational medicine London : BioMed Central, 2003 20(2022), 1 vom: 04. Mai (DE-627)369084136 (DE-600)2118570-0 1479-5876 nnns volume:20 year:2022 number:1 day:04 month:05 https://dx.doi.org/10.1186/s12967-022-03397-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2022 1 04 05 |
language |
English |
source |
Enthalten in Journal of translational medicine 20(2022), 1 vom: 04. Mai volume:20 year:2022 number:1 day:04 month:05 |
sourceStr |
Enthalten in Journal of translational medicine 20(2022), 1 vom: 04. Mai volume:20 year:2022 number:1 day:04 month:05 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Pneumonia Metagenomic next-generation sequencing Early pathogen detection |
isfreeaccess_bool |
true |
container_title |
Journal of translational medicine |
authorswithroles_txt_mv |
He, Yukun @@aut@@ Fang, Kechi @@aut@@ Shi, Xing @@aut@@ Yang, Donghong @@aut@@ Zhao, Lili @@aut@@ Yu, Wenyi @@aut@@ Zheng, Yali @@aut@@ Xu, Yu @@aut@@ Ma, Xinqian @@aut@@ Chen, Li @@aut@@ Xie, Yu @@aut@@ Yu, Yan @@aut@@ Wang, Jing @@aut@@ Gao, Zhancheng @@aut@@ |
publishDateDaySort_date |
2022-05-04T00:00:00Z |
hierarchy_top_id |
369084136 |
id |
SPR050686984 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050686984</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507172714.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12967-022-03397-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050686984</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12967-022-03397-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">He, Yukun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhanced DNA and RNA pathogen detection via metagenomic sequencing in patients with pneumonia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Metagenomic next-generation sequencing (mNGS) is an important supplement to conventional tests for pathogen detections of pneumonia. However, mNGS pipelines were limited by irregularities, high proportion of host nucleic acids, and lack of RNA virus detection. Thus, a regulated pipeline based on mNGS for DNA and RNA pathogen detection of pneumonia is essential. Methods We performed a retrospective study of 151 patients with pneumonia. Three conventional tests, culture, loop-mediated isothermal amplification (LAMP) and viral quantitative real-time polymerase chain reaction (qPCR) were conducted according to clinical needs, and all samples were detected using our optimized pipeline based on the mNGS (DNA and RNA) method. The performances of mNGS and three other tests were compared. Human DNA depletion was achieved respectively by MolYsis kit and pre-treatment using saponin and Turbo DNase. Three RNA library preparation methods were used to compare the detection performance of RNA viruses. Results An optimized mNGS workflow was built, which had only 1-working-day turnaround time. The proportion of host DNA in the pre-treated samples decreased from 99 to 90% and microbiome reads achieved an approximately 20-fold enrichment compared with those without host removal. Meanwhile, saponin and Turbo DNase pre-treatment exhibited an advantage for DNA virus detection compared with MolYsis. Besides, our in-house RNA library preparation procedure showed a more robust RNA virus detection ability. Combining three conventional methods, 76 (76/151, 50.3%) cases had no clear causative pathogen, but 24 probable pathogens were successfully detected in 31 (31/76 = 40.8%) unclear cases using mNGS. The agreement of the mNGS with the culture, LAMP, and viral qPCR was 60%, 82%, and 80%, respectively. Compared with all conventional tests, mNGS had a sensitivity of 70.4%, a specificity of 72.7%, and an overall agreement of 71.5%. Conclusions A complete and effective mNGS workflow was built to provide timely DNA and RNA pathogen detection for pneumonia, which could effectively remove the host sequence, had a higher microbial detection rate and a broader spectrum of pathogens (especially for viruses and some pathogens that are difficult to culture). Despite the advantages, there are many challenges in the clinical application of mNGS, and the mNGS report should be interpreted with caution.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pneumonia</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metagenomic next-generation sequencing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Early pathogen detection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Kechi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Xing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Donghong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Lili</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Wenyi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Yali</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Yu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Xinqian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Li</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Yu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Yan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Zhancheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of translational medicine</subfield><subfield code="d">London : BioMed Central, 2003</subfield><subfield code="g">20(2022), 1 vom: 04. Mai</subfield><subfield code="w">(DE-627)369084136</subfield><subfield code="w">(DE-600)2118570-0</subfield><subfield code="x">1479-5876</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:04</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12967-022-03397-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">04</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
author |
He, Yukun |
spellingShingle |
He, Yukun misc Pneumonia misc Metagenomic next-generation sequencing misc Early pathogen detection Enhanced DNA and RNA pathogen detection via metagenomic sequencing in patients with pneumonia |
authorStr |
He, Yukun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)369084136 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1479-5876 |
topic_title |
Enhanced DNA and RNA pathogen detection via metagenomic sequencing in patients with pneumonia Pneumonia (dpeaa)DE-He213 Metagenomic next-generation sequencing (dpeaa)DE-He213 Early pathogen detection (dpeaa)DE-He213 |
topic |
misc Pneumonia misc Metagenomic next-generation sequencing misc Early pathogen detection |
topic_unstemmed |
misc Pneumonia misc Metagenomic next-generation sequencing misc Early pathogen detection |
topic_browse |
misc Pneumonia misc Metagenomic next-generation sequencing misc Early pathogen detection |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of translational medicine |
hierarchy_parent_id |
369084136 |
hierarchy_top_title |
Journal of translational medicine |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)369084136 (DE-600)2118570-0 |
title |
Enhanced DNA and RNA pathogen detection via metagenomic sequencing in patients with pneumonia |
ctrlnum |
(DE-627)SPR050686984 (SPR)s12967-022-03397-5-e |
title_full |
Enhanced DNA and RNA pathogen detection via metagenomic sequencing in patients with pneumonia |
author_sort |
He, Yukun |
journal |
Journal of translational medicine |
journalStr |
Journal of translational medicine |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
He, Yukun Fang, Kechi Shi, Xing Yang, Donghong Zhao, Lili Yu, Wenyi Zheng, Yali Xu, Yu Ma, Xinqian Chen, Li Xie, Yu Yu, Yan Wang, Jing Gao, Zhancheng |
container_volume |
20 |
format_se |
Elektronische Aufsätze |
author-letter |
He, Yukun |
doi_str_mv |
10.1186/s12967-022-03397-5 |
title_sort |
enhanced dna and rna pathogen detection via metagenomic sequencing in patients with pneumonia |
title_auth |
Enhanced DNA and RNA pathogen detection via metagenomic sequencing in patients with pneumonia |
abstract |
Background Metagenomic next-generation sequencing (mNGS) is an important supplement to conventional tests for pathogen detections of pneumonia. However, mNGS pipelines were limited by irregularities, high proportion of host nucleic acids, and lack of RNA virus detection. Thus, a regulated pipeline based on mNGS for DNA and RNA pathogen detection of pneumonia is essential. Methods We performed a retrospective study of 151 patients with pneumonia. Three conventional tests, culture, loop-mediated isothermal amplification (LAMP) and viral quantitative real-time polymerase chain reaction (qPCR) were conducted according to clinical needs, and all samples were detected using our optimized pipeline based on the mNGS (DNA and RNA) method. The performances of mNGS and three other tests were compared. Human DNA depletion was achieved respectively by MolYsis kit and pre-treatment using saponin and Turbo DNase. Three RNA library preparation methods were used to compare the detection performance of RNA viruses. Results An optimized mNGS workflow was built, which had only 1-working-day turnaround time. The proportion of host DNA in the pre-treated samples decreased from 99 to 90% and microbiome reads achieved an approximately 20-fold enrichment compared with those without host removal. Meanwhile, saponin and Turbo DNase pre-treatment exhibited an advantage for DNA virus detection compared with MolYsis. Besides, our in-house RNA library preparation procedure showed a more robust RNA virus detection ability. Combining three conventional methods, 76 (76/151, 50.3%) cases had no clear causative pathogen, but 24 probable pathogens were successfully detected in 31 (31/76 = 40.8%) unclear cases using mNGS. The agreement of the mNGS with the culture, LAMP, and viral qPCR was 60%, 82%, and 80%, respectively. Compared with all conventional tests, mNGS had a sensitivity of 70.4%, a specificity of 72.7%, and an overall agreement of 71.5%. Conclusions A complete and effective mNGS workflow was built to provide timely DNA and RNA pathogen detection for pneumonia, which could effectively remove the host sequence, had a higher microbial detection rate and a broader spectrum of pathogens (especially for viruses and some pathogens that are difficult to culture). Despite the advantages, there are many challenges in the clinical application of mNGS, and the mNGS report should be interpreted with caution. © The Author(s) 2022 |
abstractGer |
Background Metagenomic next-generation sequencing (mNGS) is an important supplement to conventional tests for pathogen detections of pneumonia. However, mNGS pipelines were limited by irregularities, high proportion of host nucleic acids, and lack of RNA virus detection. Thus, a regulated pipeline based on mNGS for DNA and RNA pathogen detection of pneumonia is essential. Methods We performed a retrospective study of 151 patients with pneumonia. Three conventional tests, culture, loop-mediated isothermal amplification (LAMP) and viral quantitative real-time polymerase chain reaction (qPCR) were conducted according to clinical needs, and all samples were detected using our optimized pipeline based on the mNGS (DNA and RNA) method. The performances of mNGS and three other tests were compared. Human DNA depletion was achieved respectively by MolYsis kit and pre-treatment using saponin and Turbo DNase. Three RNA library preparation methods were used to compare the detection performance of RNA viruses. Results An optimized mNGS workflow was built, which had only 1-working-day turnaround time. The proportion of host DNA in the pre-treated samples decreased from 99 to 90% and microbiome reads achieved an approximately 20-fold enrichment compared with those without host removal. Meanwhile, saponin and Turbo DNase pre-treatment exhibited an advantage for DNA virus detection compared with MolYsis. Besides, our in-house RNA library preparation procedure showed a more robust RNA virus detection ability. Combining three conventional methods, 76 (76/151, 50.3%) cases had no clear causative pathogen, but 24 probable pathogens were successfully detected in 31 (31/76 = 40.8%) unclear cases using mNGS. The agreement of the mNGS with the culture, LAMP, and viral qPCR was 60%, 82%, and 80%, respectively. Compared with all conventional tests, mNGS had a sensitivity of 70.4%, a specificity of 72.7%, and an overall agreement of 71.5%. Conclusions A complete and effective mNGS workflow was built to provide timely DNA and RNA pathogen detection for pneumonia, which could effectively remove the host sequence, had a higher microbial detection rate and a broader spectrum of pathogens (especially for viruses and some pathogens that are difficult to culture). Despite the advantages, there are many challenges in the clinical application of mNGS, and the mNGS report should be interpreted with caution. © The Author(s) 2022 |
abstract_unstemmed |
Background Metagenomic next-generation sequencing (mNGS) is an important supplement to conventional tests for pathogen detections of pneumonia. However, mNGS pipelines were limited by irregularities, high proportion of host nucleic acids, and lack of RNA virus detection. Thus, a regulated pipeline based on mNGS for DNA and RNA pathogen detection of pneumonia is essential. Methods We performed a retrospective study of 151 patients with pneumonia. Three conventional tests, culture, loop-mediated isothermal amplification (LAMP) and viral quantitative real-time polymerase chain reaction (qPCR) were conducted according to clinical needs, and all samples were detected using our optimized pipeline based on the mNGS (DNA and RNA) method. The performances of mNGS and three other tests were compared. Human DNA depletion was achieved respectively by MolYsis kit and pre-treatment using saponin and Turbo DNase. Three RNA library preparation methods were used to compare the detection performance of RNA viruses. Results An optimized mNGS workflow was built, which had only 1-working-day turnaround time. The proportion of host DNA in the pre-treated samples decreased from 99 to 90% and microbiome reads achieved an approximately 20-fold enrichment compared with those without host removal. Meanwhile, saponin and Turbo DNase pre-treatment exhibited an advantage for DNA virus detection compared with MolYsis. Besides, our in-house RNA library preparation procedure showed a more robust RNA virus detection ability. Combining three conventional methods, 76 (76/151, 50.3%) cases had no clear causative pathogen, but 24 probable pathogens were successfully detected in 31 (31/76 = 40.8%) unclear cases using mNGS. The agreement of the mNGS with the culture, LAMP, and viral qPCR was 60%, 82%, and 80%, respectively. Compared with all conventional tests, mNGS had a sensitivity of 70.4%, a specificity of 72.7%, and an overall agreement of 71.5%. Conclusions A complete and effective mNGS workflow was built to provide timely DNA and RNA pathogen detection for pneumonia, which could effectively remove the host sequence, had a higher microbial detection rate and a broader spectrum of pathogens (especially for viruses and some pathogens that are difficult to culture). Despite the advantages, there are many challenges in the clinical application of mNGS, and the mNGS report should be interpreted with caution. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Enhanced DNA and RNA pathogen detection via metagenomic sequencing in patients with pneumonia |
url |
https://dx.doi.org/10.1186/s12967-022-03397-5 |
remote_bool |
true |
author2 |
Fang, Kechi Shi, Xing Yang, Donghong Zhao, Lili Yu, Wenyi Zheng, Yali Xu, Yu Ma, Xinqian Chen, Li Xie, Yu Yu, Yan Wang, Jing Gao, Zhancheng |
author2Str |
Fang, Kechi Shi, Xing Yang, Donghong Zhao, Lili Yu, Wenyi Zheng, Yali Xu, Yu Ma, Xinqian Chen, Li Xie, Yu Yu, Yan Wang, Jing Gao, Zhancheng |
ppnlink |
369084136 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12967-022-03397-5 |
up_date |
2024-07-03T17:07:54.070Z |
_version_ |
1803578480079667200 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050686984</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507172714.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12967-022-03397-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050686984</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12967-022-03397-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">He, Yukun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhanced DNA and RNA pathogen detection via metagenomic sequencing in patients with pneumonia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Metagenomic next-generation sequencing (mNGS) is an important supplement to conventional tests for pathogen detections of pneumonia. However, mNGS pipelines were limited by irregularities, high proportion of host nucleic acids, and lack of RNA virus detection. Thus, a regulated pipeline based on mNGS for DNA and RNA pathogen detection of pneumonia is essential. Methods We performed a retrospective study of 151 patients with pneumonia. Three conventional tests, culture, loop-mediated isothermal amplification (LAMP) and viral quantitative real-time polymerase chain reaction (qPCR) were conducted according to clinical needs, and all samples were detected using our optimized pipeline based on the mNGS (DNA and RNA) method. The performances of mNGS and three other tests were compared. Human DNA depletion was achieved respectively by MolYsis kit and pre-treatment using saponin and Turbo DNase. Three RNA library preparation methods were used to compare the detection performance of RNA viruses. Results An optimized mNGS workflow was built, which had only 1-working-day turnaround time. The proportion of host DNA in the pre-treated samples decreased from 99 to 90% and microbiome reads achieved an approximately 20-fold enrichment compared with those without host removal. Meanwhile, saponin and Turbo DNase pre-treatment exhibited an advantage for DNA virus detection compared with MolYsis. Besides, our in-house RNA library preparation procedure showed a more robust RNA virus detection ability. Combining three conventional methods, 76 (76/151, 50.3%) cases had no clear causative pathogen, but 24 probable pathogens were successfully detected in 31 (31/76 = 40.8%) unclear cases using mNGS. The agreement of the mNGS with the culture, LAMP, and viral qPCR was 60%, 82%, and 80%, respectively. Compared with all conventional tests, mNGS had a sensitivity of 70.4%, a specificity of 72.7%, and an overall agreement of 71.5%. Conclusions A complete and effective mNGS workflow was built to provide timely DNA and RNA pathogen detection for pneumonia, which could effectively remove the host sequence, had a higher microbial detection rate and a broader spectrum of pathogens (especially for viruses and some pathogens that are difficult to culture). Despite the advantages, there are many challenges in the clinical application of mNGS, and the mNGS report should be interpreted with caution.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pneumonia</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metagenomic next-generation sequencing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Early pathogen detection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Kechi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Xing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Donghong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Lili</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Wenyi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Yali</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Yu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Xinqian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Li</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Yu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Yan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Zhancheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of translational medicine</subfield><subfield code="d">London : BioMed Central, 2003</subfield><subfield code="g">20(2022), 1 vom: 04. Mai</subfield><subfield code="w">(DE-627)369084136</subfield><subfield code="w">(DE-600)2118570-0</subfield><subfield code="x">1479-5876</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:04</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12967-022-03397-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">04</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
score |
7.4016085 |