The safety of a novel single-drape cover for sterile back tables in the operating room compared to the standard two-drape method: an experimental study
Background Covering the prepared sterile back tables (PSBTs) during periods of nonuse and during active surgeries may decrease contamination of sterile surgical instruments that have direct contact to surgical wound. The Association of periOperative Registered Nurses (AORN) declared that an easy met...
Ausführliche Beschreibung
Autor*in: |
Zarei, Mohammadreza [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Patient safety in surgery - London : BioMed Central, 2007, 16(2022), 1 vom: 02. Juni |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2022 ; number:1 ; day:02 ; month:06 |
Links: |
---|
DOI / URN: |
10.1186/s13037-022-00330-z |
---|
Katalog-ID: |
SPR050754165 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR050754165 | ||
003 | DE-627 | ||
005 | 20230507195306.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13037-022-00330-z |2 doi | |
035 | |a (DE-627)SPR050754165 | ||
035 | |a (SPR)s13037-022-00330-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Zarei, Mohammadreza |e verfasserin |4 aut | |
245 | 1 | 4 | |a The safety of a novel single-drape cover for sterile back tables in the operating room compared to the standard two-drape method: an experimental study |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Background Covering the prepared sterile back tables (PSBTs) during periods of nonuse and during active surgeries may decrease contamination of sterile surgical instruments that have direct contact to surgical wound. The Association of periOperative Registered Nurses (AORN) declared that an easy method for covering and removing the drape will ultimately be most effective (e.g. standard two-drape method). Hence, this study was designed to test the hypothesis that using a novel single-drape cover had more efficiency and safety in decreasing airborne bacteria-carrying particles (ABCPs) settling on the PSBTs during static and dynamic periods than the standard two-drape method. Methods This experimental study was conducted with using 918 agar plates to detect contamination of the PSBTs with ABCPs on two conditions (static and dynamic) at an academic medical center in Kashan, Iran, from September 25, 2021, to January 20, 2022. The contamination of PSBTs was evaluated by 6 agar settle plates (n = 918 in total) on each PSBT in static and dynamic operating room (OR) conditions. At each time-point, this set-up was repeated on two occasions else during data collection, establishing 81 PSBTs in total. Tested groups included the PSBTs covered with the standard two-drape method, the novel single-drape cover, or no cover. The plates were collected after 15, 30, 45, 60, 120, 180, 240 min and 24 h. The primary outcome measured was comparison of mean bioburden of ABCPs settling on covered PSBTs on two conditions by using agar settle plates. The secondary outcomes measured were to determine the role of covering in decreasing contamination of PSBTs and the estimation of time-dependent surgical instrument contamination in the uncovered PSBTs on two conditions by using agar settle plates. Results Covering the PSBTs during static and dynamic OR conditions lead to a significantly decreased bioburden of ABCPs on them (P < 0.05). No differences were seen between the standard two-drape method and the novel single-drape cover (P > 0.05). Conclusions We found that there is no preference for using the novel single-drape cover than the standard two-drape method. Our results showed a significant decrease in bioburden of ABCPs on the PSBTs when those were covered during static and dynamic OR conditions, indicating the efficiency for covering the PSBTs during periods of nonuse and during active surgery. | ||
650 | 4 | |a Operating rooms |7 (dpeaa)DE-He213 | |
650 | 4 | |a Infection control |7 (dpeaa)DE-He213 | |
650 | 4 | |a Perioperative care |7 (dpeaa)DE-He213 | |
650 | 4 | |a Surgical site infection |7 (dpeaa)DE-He213 | |
650 | 4 | |a Surgical instruments |7 (dpeaa)DE-He213 | |
700 | 1 | |a Babajani-Vafsi, Saeed |4 aut | |
700 | 1 | |a Kazemi-Galougahi, Mohammad Hassan |4 aut | |
700 | 1 | |a Bakhshi, Ashraf |4 aut | |
700 | 1 | |a Ajorpaz, Neda Mirbagher |4 aut | |
700 | 1 | |a Ghorbani, Mahdi |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Patient safety in surgery |d London : BioMed Central, 2007 |g 16(2022), 1 vom: 02. Juni |w (DE-627)558389643 |w (DE-600)2409244-7 |x 1754-9493 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2022 |g number:1 |g day:02 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13037-022-00330-z |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 2022 |e 1 |b 02 |c 06 |
author_variant |
m z mz s b v sbv m h k g mhk mhkg a b ab n m a nm nma m g mg |
---|---|
matchkey_str |
article:17549493:2022----::hsftoaoesnldaeoefrtrlbctbeiteprtnrocmaettetnad |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s13037-022-00330-z doi (DE-627)SPR050754165 (SPR)s13037-022-00330-z-e DE-627 ger DE-627 rakwb eng Zarei, Mohammadreza verfasserin aut The safety of a novel single-drape cover for sterile back tables in the operating room compared to the standard two-drape method: an experimental study 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Covering the prepared sterile back tables (PSBTs) during periods of nonuse and during active surgeries may decrease contamination of sterile surgical instruments that have direct contact to surgical wound. The Association of periOperative Registered Nurses (AORN) declared that an easy method for covering and removing the drape will ultimately be most effective (e.g. standard two-drape method). Hence, this study was designed to test the hypothesis that using a novel single-drape cover had more efficiency and safety in decreasing airborne bacteria-carrying particles (ABCPs) settling on the PSBTs during static and dynamic periods than the standard two-drape method. Methods This experimental study was conducted with using 918 agar plates to detect contamination of the PSBTs with ABCPs on two conditions (static and dynamic) at an academic medical center in Kashan, Iran, from September 25, 2021, to January 20, 2022. The contamination of PSBTs was evaluated by 6 agar settle plates (n = 918 in total) on each PSBT in static and dynamic operating room (OR) conditions. At each time-point, this set-up was repeated on two occasions else during data collection, establishing 81 PSBTs in total. Tested groups included the PSBTs covered with the standard two-drape method, the novel single-drape cover, or no cover. The plates were collected after 15, 30, 45, 60, 120, 180, 240 min and 24 h. The primary outcome measured was comparison of mean bioburden of ABCPs settling on covered PSBTs on two conditions by using agar settle plates. The secondary outcomes measured were to determine the role of covering in decreasing contamination of PSBTs and the estimation of time-dependent surgical instrument contamination in the uncovered PSBTs on two conditions by using agar settle plates. Results Covering the PSBTs during static and dynamic OR conditions lead to a significantly decreased bioburden of ABCPs on them (P < 0.05). No differences were seen between the standard two-drape method and the novel single-drape cover (P > 0.05). Conclusions We found that there is no preference for using the novel single-drape cover than the standard two-drape method. Our results showed a significant decrease in bioburden of ABCPs on the PSBTs when those were covered during static and dynamic OR conditions, indicating the efficiency for covering the PSBTs during periods of nonuse and during active surgery. Operating rooms (dpeaa)DE-He213 Infection control (dpeaa)DE-He213 Perioperative care (dpeaa)DE-He213 Surgical site infection (dpeaa)DE-He213 Surgical instruments (dpeaa)DE-He213 Babajani-Vafsi, Saeed aut Kazemi-Galougahi, Mohammad Hassan aut Bakhshi, Ashraf aut Ajorpaz, Neda Mirbagher aut Ghorbani, Mahdi aut Enthalten in Patient safety in surgery London : BioMed Central, 2007 16(2022), 1 vom: 02. Juni (DE-627)558389643 (DE-600)2409244-7 1754-9493 nnns volume:16 year:2022 number:1 day:02 month:06 https://dx.doi.org/10.1186/s13037-022-00330-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2022 1 02 06 |
spelling |
10.1186/s13037-022-00330-z doi (DE-627)SPR050754165 (SPR)s13037-022-00330-z-e DE-627 ger DE-627 rakwb eng Zarei, Mohammadreza verfasserin aut The safety of a novel single-drape cover for sterile back tables in the operating room compared to the standard two-drape method: an experimental study 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Covering the prepared sterile back tables (PSBTs) during periods of nonuse and during active surgeries may decrease contamination of sterile surgical instruments that have direct contact to surgical wound. The Association of periOperative Registered Nurses (AORN) declared that an easy method for covering and removing the drape will ultimately be most effective (e.g. standard two-drape method). Hence, this study was designed to test the hypothesis that using a novel single-drape cover had more efficiency and safety in decreasing airborne bacteria-carrying particles (ABCPs) settling on the PSBTs during static and dynamic periods than the standard two-drape method. Methods This experimental study was conducted with using 918 agar plates to detect contamination of the PSBTs with ABCPs on two conditions (static and dynamic) at an academic medical center in Kashan, Iran, from September 25, 2021, to January 20, 2022. The contamination of PSBTs was evaluated by 6 agar settle plates (n = 918 in total) on each PSBT in static and dynamic operating room (OR) conditions. At each time-point, this set-up was repeated on two occasions else during data collection, establishing 81 PSBTs in total. Tested groups included the PSBTs covered with the standard two-drape method, the novel single-drape cover, or no cover. The plates were collected after 15, 30, 45, 60, 120, 180, 240 min and 24 h. The primary outcome measured was comparison of mean bioburden of ABCPs settling on covered PSBTs on two conditions by using agar settle plates. The secondary outcomes measured were to determine the role of covering in decreasing contamination of PSBTs and the estimation of time-dependent surgical instrument contamination in the uncovered PSBTs on two conditions by using agar settle plates. Results Covering the PSBTs during static and dynamic OR conditions lead to a significantly decreased bioburden of ABCPs on them (P < 0.05). No differences were seen between the standard two-drape method and the novel single-drape cover (P > 0.05). Conclusions We found that there is no preference for using the novel single-drape cover than the standard two-drape method. Our results showed a significant decrease in bioburden of ABCPs on the PSBTs when those were covered during static and dynamic OR conditions, indicating the efficiency for covering the PSBTs during periods of nonuse and during active surgery. Operating rooms (dpeaa)DE-He213 Infection control (dpeaa)DE-He213 Perioperative care (dpeaa)DE-He213 Surgical site infection (dpeaa)DE-He213 Surgical instruments (dpeaa)DE-He213 Babajani-Vafsi, Saeed aut Kazemi-Galougahi, Mohammad Hassan aut Bakhshi, Ashraf aut Ajorpaz, Neda Mirbagher aut Ghorbani, Mahdi aut Enthalten in Patient safety in surgery London : BioMed Central, 2007 16(2022), 1 vom: 02. Juni (DE-627)558389643 (DE-600)2409244-7 1754-9493 nnns volume:16 year:2022 number:1 day:02 month:06 https://dx.doi.org/10.1186/s13037-022-00330-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2022 1 02 06 |
allfields_unstemmed |
10.1186/s13037-022-00330-z doi (DE-627)SPR050754165 (SPR)s13037-022-00330-z-e DE-627 ger DE-627 rakwb eng Zarei, Mohammadreza verfasserin aut The safety of a novel single-drape cover for sterile back tables in the operating room compared to the standard two-drape method: an experimental study 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Covering the prepared sterile back tables (PSBTs) during periods of nonuse and during active surgeries may decrease contamination of sterile surgical instruments that have direct contact to surgical wound. The Association of periOperative Registered Nurses (AORN) declared that an easy method for covering and removing the drape will ultimately be most effective (e.g. standard two-drape method). Hence, this study was designed to test the hypothesis that using a novel single-drape cover had more efficiency and safety in decreasing airborne bacteria-carrying particles (ABCPs) settling on the PSBTs during static and dynamic periods than the standard two-drape method. Methods This experimental study was conducted with using 918 agar plates to detect contamination of the PSBTs with ABCPs on two conditions (static and dynamic) at an academic medical center in Kashan, Iran, from September 25, 2021, to January 20, 2022. The contamination of PSBTs was evaluated by 6 agar settle plates (n = 918 in total) on each PSBT in static and dynamic operating room (OR) conditions. At each time-point, this set-up was repeated on two occasions else during data collection, establishing 81 PSBTs in total. Tested groups included the PSBTs covered with the standard two-drape method, the novel single-drape cover, or no cover. The plates were collected after 15, 30, 45, 60, 120, 180, 240 min and 24 h. The primary outcome measured was comparison of mean bioburden of ABCPs settling on covered PSBTs on two conditions by using agar settle plates. The secondary outcomes measured were to determine the role of covering in decreasing contamination of PSBTs and the estimation of time-dependent surgical instrument contamination in the uncovered PSBTs on two conditions by using agar settle plates. Results Covering the PSBTs during static and dynamic OR conditions lead to a significantly decreased bioburden of ABCPs on them (P < 0.05). No differences were seen between the standard two-drape method and the novel single-drape cover (P > 0.05). Conclusions We found that there is no preference for using the novel single-drape cover than the standard two-drape method. Our results showed a significant decrease in bioburden of ABCPs on the PSBTs when those were covered during static and dynamic OR conditions, indicating the efficiency for covering the PSBTs during periods of nonuse and during active surgery. Operating rooms (dpeaa)DE-He213 Infection control (dpeaa)DE-He213 Perioperative care (dpeaa)DE-He213 Surgical site infection (dpeaa)DE-He213 Surgical instruments (dpeaa)DE-He213 Babajani-Vafsi, Saeed aut Kazemi-Galougahi, Mohammad Hassan aut Bakhshi, Ashraf aut Ajorpaz, Neda Mirbagher aut Ghorbani, Mahdi aut Enthalten in Patient safety in surgery London : BioMed Central, 2007 16(2022), 1 vom: 02. Juni (DE-627)558389643 (DE-600)2409244-7 1754-9493 nnns volume:16 year:2022 number:1 day:02 month:06 https://dx.doi.org/10.1186/s13037-022-00330-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2022 1 02 06 |
allfieldsGer |
10.1186/s13037-022-00330-z doi (DE-627)SPR050754165 (SPR)s13037-022-00330-z-e DE-627 ger DE-627 rakwb eng Zarei, Mohammadreza verfasserin aut The safety of a novel single-drape cover for sterile back tables in the operating room compared to the standard two-drape method: an experimental study 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Covering the prepared sterile back tables (PSBTs) during periods of nonuse and during active surgeries may decrease contamination of sterile surgical instruments that have direct contact to surgical wound. The Association of periOperative Registered Nurses (AORN) declared that an easy method for covering and removing the drape will ultimately be most effective (e.g. standard two-drape method). Hence, this study was designed to test the hypothesis that using a novel single-drape cover had more efficiency and safety in decreasing airborne bacteria-carrying particles (ABCPs) settling on the PSBTs during static and dynamic periods than the standard two-drape method. Methods This experimental study was conducted with using 918 agar plates to detect contamination of the PSBTs with ABCPs on two conditions (static and dynamic) at an academic medical center in Kashan, Iran, from September 25, 2021, to January 20, 2022. The contamination of PSBTs was evaluated by 6 agar settle plates (n = 918 in total) on each PSBT in static and dynamic operating room (OR) conditions. At each time-point, this set-up was repeated on two occasions else during data collection, establishing 81 PSBTs in total. Tested groups included the PSBTs covered with the standard two-drape method, the novel single-drape cover, or no cover. The plates were collected after 15, 30, 45, 60, 120, 180, 240 min and 24 h. The primary outcome measured was comparison of mean bioburden of ABCPs settling on covered PSBTs on two conditions by using agar settle plates. The secondary outcomes measured were to determine the role of covering in decreasing contamination of PSBTs and the estimation of time-dependent surgical instrument contamination in the uncovered PSBTs on two conditions by using agar settle plates. Results Covering the PSBTs during static and dynamic OR conditions lead to a significantly decreased bioburden of ABCPs on them (P < 0.05). No differences were seen between the standard two-drape method and the novel single-drape cover (P > 0.05). Conclusions We found that there is no preference for using the novel single-drape cover than the standard two-drape method. Our results showed a significant decrease in bioburden of ABCPs on the PSBTs when those were covered during static and dynamic OR conditions, indicating the efficiency for covering the PSBTs during periods of nonuse and during active surgery. Operating rooms (dpeaa)DE-He213 Infection control (dpeaa)DE-He213 Perioperative care (dpeaa)DE-He213 Surgical site infection (dpeaa)DE-He213 Surgical instruments (dpeaa)DE-He213 Babajani-Vafsi, Saeed aut Kazemi-Galougahi, Mohammad Hassan aut Bakhshi, Ashraf aut Ajorpaz, Neda Mirbagher aut Ghorbani, Mahdi aut Enthalten in Patient safety in surgery London : BioMed Central, 2007 16(2022), 1 vom: 02. Juni (DE-627)558389643 (DE-600)2409244-7 1754-9493 nnns volume:16 year:2022 number:1 day:02 month:06 https://dx.doi.org/10.1186/s13037-022-00330-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2022 1 02 06 |
allfieldsSound |
10.1186/s13037-022-00330-z doi (DE-627)SPR050754165 (SPR)s13037-022-00330-z-e DE-627 ger DE-627 rakwb eng Zarei, Mohammadreza verfasserin aut The safety of a novel single-drape cover for sterile back tables in the operating room compared to the standard two-drape method: an experimental study 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Covering the prepared sterile back tables (PSBTs) during periods of nonuse and during active surgeries may decrease contamination of sterile surgical instruments that have direct contact to surgical wound. The Association of periOperative Registered Nurses (AORN) declared that an easy method for covering and removing the drape will ultimately be most effective (e.g. standard two-drape method). Hence, this study was designed to test the hypothesis that using a novel single-drape cover had more efficiency and safety in decreasing airborne bacteria-carrying particles (ABCPs) settling on the PSBTs during static and dynamic periods than the standard two-drape method. Methods This experimental study was conducted with using 918 agar plates to detect contamination of the PSBTs with ABCPs on two conditions (static and dynamic) at an academic medical center in Kashan, Iran, from September 25, 2021, to January 20, 2022. The contamination of PSBTs was evaluated by 6 agar settle plates (n = 918 in total) on each PSBT in static and dynamic operating room (OR) conditions. At each time-point, this set-up was repeated on two occasions else during data collection, establishing 81 PSBTs in total. Tested groups included the PSBTs covered with the standard two-drape method, the novel single-drape cover, or no cover. The plates were collected after 15, 30, 45, 60, 120, 180, 240 min and 24 h. The primary outcome measured was comparison of mean bioburden of ABCPs settling on covered PSBTs on two conditions by using agar settle plates. The secondary outcomes measured were to determine the role of covering in decreasing contamination of PSBTs and the estimation of time-dependent surgical instrument contamination in the uncovered PSBTs on two conditions by using agar settle plates. Results Covering the PSBTs during static and dynamic OR conditions lead to a significantly decreased bioburden of ABCPs on them (P < 0.05). No differences were seen between the standard two-drape method and the novel single-drape cover (P > 0.05). Conclusions We found that there is no preference for using the novel single-drape cover than the standard two-drape method. Our results showed a significant decrease in bioburden of ABCPs on the PSBTs when those were covered during static and dynamic OR conditions, indicating the efficiency for covering the PSBTs during periods of nonuse and during active surgery. Operating rooms (dpeaa)DE-He213 Infection control (dpeaa)DE-He213 Perioperative care (dpeaa)DE-He213 Surgical site infection (dpeaa)DE-He213 Surgical instruments (dpeaa)DE-He213 Babajani-Vafsi, Saeed aut Kazemi-Galougahi, Mohammad Hassan aut Bakhshi, Ashraf aut Ajorpaz, Neda Mirbagher aut Ghorbani, Mahdi aut Enthalten in Patient safety in surgery London : BioMed Central, 2007 16(2022), 1 vom: 02. Juni (DE-627)558389643 (DE-600)2409244-7 1754-9493 nnns volume:16 year:2022 number:1 day:02 month:06 https://dx.doi.org/10.1186/s13037-022-00330-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2022 1 02 06 |
language |
English |
source |
Enthalten in Patient safety in surgery 16(2022), 1 vom: 02. Juni volume:16 year:2022 number:1 day:02 month:06 |
sourceStr |
Enthalten in Patient safety in surgery 16(2022), 1 vom: 02. Juni volume:16 year:2022 number:1 day:02 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Operating rooms Infection control Perioperative care Surgical site infection Surgical instruments |
isfreeaccess_bool |
true |
container_title |
Patient safety in surgery |
authorswithroles_txt_mv |
Zarei, Mohammadreza @@aut@@ Babajani-Vafsi, Saeed @@aut@@ Kazemi-Galougahi, Mohammad Hassan @@aut@@ Bakhshi, Ashraf @@aut@@ Ajorpaz, Neda Mirbagher @@aut@@ Ghorbani, Mahdi @@aut@@ |
publishDateDaySort_date |
2022-06-02T00:00:00Z |
hierarchy_top_id |
558389643 |
id |
SPR050754165 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050754165</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507195306.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13037-022-00330-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050754165</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13037-022-00330-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zarei, Mohammadreza</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The safety of a novel single-drape cover for sterile back tables in the operating room compared to the standard two-drape method: an experimental study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Covering the prepared sterile back tables (PSBTs) during periods of nonuse and during active surgeries may decrease contamination of sterile surgical instruments that have direct contact to surgical wound. The Association of periOperative Registered Nurses (AORN) declared that an easy method for covering and removing the drape will ultimately be most effective (e.g. standard two-drape method). Hence, this study was designed to test the hypothesis that using a novel single-drape cover had more efficiency and safety in decreasing airborne bacteria-carrying particles (ABCPs) settling on the PSBTs during static and dynamic periods than the standard two-drape method. Methods This experimental study was conducted with using 918 agar plates to detect contamination of the PSBTs with ABCPs on two conditions (static and dynamic) at an academic medical center in Kashan, Iran, from September 25, 2021, to January 20, 2022. The contamination of PSBTs was evaluated by 6 agar settle plates (n = 918 in total) on each PSBT in static and dynamic operating room (OR) conditions. At each time-point, this set-up was repeated on two occasions else during data collection, establishing 81 PSBTs in total. Tested groups included the PSBTs covered with the standard two-drape method, the novel single-drape cover, or no cover. The plates were collected after 15, 30, 45, 60, 120, 180, 240 min and 24 h. The primary outcome measured was comparison of mean bioburden of ABCPs settling on covered PSBTs on two conditions by using agar settle plates. The secondary outcomes measured were to determine the role of covering in decreasing contamination of PSBTs and the estimation of time-dependent surgical instrument contamination in the uncovered PSBTs on two conditions by using agar settle plates. Results Covering the PSBTs during static and dynamic OR conditions lead to a significantly decreased bioburden of ABCPs on them (P < 0.05). No differences were seen between the standard two-drape method and the novel single-drape cover (P > 0.05). Conclusions We found that there is no preference for using the novel single-drape cover than the standard two-drape method. Our results showed a significant decrease in bioburden of ABCPs on the PSBTs when those were covered during static and dynamic OR conditions, indicating the efficiency for covering the PSBTs during periods of nonuse and during active surgery.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operating rooms</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infection control</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perioperative care</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surgical site infection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surgical instruments</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Babajani-Vafsi, Saeed</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kazemi-Galougahi, Mohammad Hassan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bakhshi, Ashraf</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ajorpaz, Neda Mirbagher</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ghorbani, Mahdi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Patient safety in surgery</subfield><subfield code="d">London : BioMed Central, 2007</subfield><subfield code="g">16(2022), 1 vom: 02. Juni</subfield><subfield code="w">(DE-627)558389643</subfield><subfield code="w">(DE-600)2409244-7</subfield><subfield code="x">1754-9493</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:02</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13037-022-00330-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">02</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Zarei, Mohammadreza |
spellingShingle |
Zarei, Mohammadreza misc Operating rooms misc Infection control misc Perioperative care misc Surgical site infection misc Surgical instruments The safety of a novel single-drape cover for sterile back tables in the operating room compared to the standard two-drape method: an experimental study |
authorStr |
Zarei, Mohammadreza |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)558389643 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1754-9493 |
topic_title |
The safety of a novel single-drape cover for sterile back tables in the operating room compared to the standard two-drape method: an experimental study Operating rooms (dpeaa)DE-He213 Infection control (dpeaa)DE-He213 Perioperative care (dpeaa)DE-He213 Surgical site infection (dpeaa)DE-He213 Surgical instruments (dpeaa)DE-He213 |
topic |
misc Operating rooms misc Infection control misc Perioperative care misc Surgical site infection misc Surgical instruments |
topic_unstemmed |
misc Operating rooms misc Infection control misc Perioperative care misc Surgical site infection misc Surgical instruments |
topic_browse |
misc Operating rooms misc Infection control misc Perioperative care misc Surgical site infection misc Surgical instruments |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Patient safety in surgery |
hierarchy_parent_id |
558389643 |
hierarchy_top_title |
Patient safety in surgery |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)558389643 (DE-600)2409244-7 |
title |
The safety of a novel single-drape cover for sterile back tables in the operating room compared to the standard two-drape method: an experimental study |
ctrlnum |
(DE-627)SPR050754165 (SPR)s13037-022-00330-z-e |
title_full |
The safety of a novel single-drape cover for sterile back tables in the operating room compared to the standard two-drape method: an experimental study |
author_sort |
Zarei, Mohammadreza |
journal |
Patient safety in surgery |
journalStr |
Patient safety in surgery |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Zarei, Mohammadreza Babajani-Vafsi, Saeed Kazemi-Galougahi, Mohammad Hassan Bakhshi, Ashraf Ajorpaz, Neda Mirbagher Ghorbani, Mahdi |
container_volume |
16 |
format_se |
Elektronische Aufsätze |
author-letter |
Zarei, Mohammadreza |
doi_str_mv |
10.1186/s13037-022-00330-z |
title_sort |
safety of a novel single-drape cover for sterile back tables in the operating room compared to the standard two-drape method: an experimental study |
title_auth |
The safety of a novel single-drape cover for sterile back tables in the operating room compared to the standard two-drape method: an experimental study |
abstract |
Background Covering the prepared sterile back tables (PSBTs) during periods of nonuse and during active surgeries may decrease contamination of sterile surgical instruments that have direct contact to surgical wound. The Association of periOperative Registered Nurses (AORN) declared that an easy method for covering and removing the drape will ultimately be most effective (e.g. standard two-drape method). Hence, this study was designed to test the hypothesis that using a novel single-drape cover had more efficiency and safety in decreasing airborne bacteria-carrying particles (ABCPs) settling on the PSBTs during static and dynamic periods than the standard two-drape method. Methods This experimental study was conducted with using 918 agar plates to detect contamination of the PSBTs with ABCPs on two conditions (static and dynamic) at an academic medical center in Kashan, Iran, from September 25, 2021, to January 20, 2022. The contamination of PSBTs was evaluated by 6 agar settle plates (n = 918 in total) on each PSBT in static and dynamic operating room (OR) conditions. At each time-point, this set-up was repeated on two occasions else during data collection, establishing 81 PSBTs in total. Tested groups included the PSBTs covered with the standard two-drape method, the novel single-drape cover, or no cover. The plates were collected after 15, 30, 45, 60, 120, 180, 240 min and 24 h. The primary outcome measured was comparison of mean bioburden of ABCPs settling on covered PSBTs on two conditions by using agar settle plates. The secondary outcomes measured were to determine the role of covering in decreasing contamination of PSBTs and the estimation of time-dependent surgical instrument contamination in the uncovered PSBTs on two conditions by using agar settle plates. Results Covering the PSBTs during static and dynamic OR conditions lead to a significantly decreased bioburden of ABCPs on them (P < 0.05). No differences were seen between the standard two-drape method and the novel single-drape cover (P > 0.05). Conclusions We found that there is no preference for using the novel single-drape cover than the standard two-drape method. Our results showed a significant decrease in bioburden of ABCPs on the PSBTs when those were covered during static and dynamic OR conditions, indicating the efficiency for covering the PSBTs during periods of nonuse and during active surgery. © The Author(s) 2022 |
abstractGer |
Background Covering the prepared sterile back tables (PSBTs) during periods of nonuse and during active surgeries may decrease contamination of sterile surgical instruments that have direct contact to surgical wound. The Association of periOperative Registered Nurses (AORN) declared that an easy method for covering and removing the drape will ultimately be most effective (e.g. standard two-drape method). Hence, this study was designed to test the hypothesis that using a novel single-drape cover had more efficiency and safety in decreasing airborne bacteria-carrying particles (ABCPs) settling on the PSBTs during static and dynamic periods than the standard two-drape method. Methods This experimental study was conducted with using 918 agar plates to detect contamination of the PSBTs with ABCPs on two conditions (static and dynamic) at an academic medical center in Kashan, Iran, from September 25, 2021, to January 20, 2022. The contamination of PSBTs was evaluated by 6 agar settle plates (n = 918 in total) on each PSBT in static and dynamic operating room (OR) conditions. At each time-point, this set-up was repeated on two occasions else during data collection, establishing 81 PSBTs in total. Tested groups included the PSBTs covered with the standard two-drape method, the novel single-drape cover, or no cover. The plates were collected after 15, 30, 45, 60, 120, 180, 240 min and 24 h. The primary outcome measured was comparison of mean bioburden of ABCPs settling on covered PSBTs on two conditions by using agar settle plates. The secondary outcomes measured were to determine the role of covering in decreasing contamination of PSBTs and the estimation of time-dependent surgical instrument contamination in the uncovered PSBTs on two conditions by using agar settle plates. Results Covering the PSBTs during static and dynamic OR conditions lead to a significantly decreased bioburden of ABCPs on them (P < 0.05). No differences were seen between the standard two-drape method and the novel single-drape cover (P > 0.05). Conclusions We found that there is no preference for using the novel single-drape cover than the standard two-drape method. Our results showed a significant decrease in bioburden of ABCPs on the PSBTs when those were covered during static and dynamic OR conditions, indicating the efficiency for covering the PSBTs during periods of nonuse and during active surgery. © The Author(s) 2022 |
abstract_unstemmed |
Background Covering the prepared sterile back tables (PSBTs) during periods of nonuse and during active surgeries may decrease contamination of sterile surgical instruments that have direct contact to surgical wound. The Association of periOperative Registered Nurses (AORN) declared that an easy method for covering and removing the drape will ultimately be most effective (e.g. standard two-drape method). Hence, this study was designed to test the hypothesis that using a novel single-drape cover had more efficiency and safety in decreasing airborne bacteria-carrying particles (ABCPs) settling on the PSBTs during static and dynamic periods than the standard two-drape method. Methods This experimental study was conducted with using 918 agar plates to detect contamination of the PSBTs with ABCPs on two conditions (static and dynamic) at an academic medical center in Kashan, Iran, from September 25, 2021, to January 20, 2022. The contamination of PSBTs was evaluated by 6 agar settle plates (n = 918 in total) on each PSBT in static and dynamic operating room (OR) conditions. At each time-point, this set-up was repeated on two occasions else during data collection, establishing 81 PSBTs in total. Tested groups included the PSBTs covered with the standard two-drape method, the novel single-drape cover, or no cover. The plates were collected after 15, 30, 45, 60, 120, 180, 240 min and 24 h. The primary outcome measured was comparison of mean bioburden of ABCPs settling on covered PSBTs on two conditions by using agar settle plates. The secondary outcomes measured were to determine the role of covering in decreasing contamination of PSBTs and the estimation of time-dependent surgical instrument contamination in the uncovered PSBTs on two conditions by using agar settle plates. Results Covering the PSBTs during static and dynamic OR conditions lead to a significantly decreased bioburden of ABCPs on them (P < 0.05). No differences were seen between the standard two-drape method and the novel single-drape cover (P > 0.05). Conclusions We found that there is no preference for using the novel single-drape cover than the standard two-drape method. Our results showed a significant decrease in bioburden of ABCPs on the PSBTs when those were covered during static and dynamic OR conditions, indicating the efficiency for covering the PSBTs during periods of nonuse and during active surgery. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
The safety of a novel single-drape cover for sterile back tables in the operating room compared to the standard two-drape method: an experimental study |
url |
https://dx.doi.org/10.1186/s13037-022-00330-z |
remote_bool |
true |
author2 |
Babajani-Vafsi, Saeed Kazemi-Galougahi, Mohammad Hassan Bakhshi, Ashraf Ajorpaz, Neda Mirbagher Ghorbani, Mahdi |
author2Str |
Babajani-Vafsi, Saeed Kazemi-Galougahi, Mohammad Hassan Bakhshi, Ashraf Ajorpaz, Neda Mirbagher Ghorbani, Mahdi |
ppnlink |
558389643 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13037-022-00330-z |
up_date |
2024-07-03T17:34:04.205Z |
_version_ |
1803580126486593536 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050754165</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507195306.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13037-022-00330-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050754165</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13037-022-00330-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zarei, Mohammadreza</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The safety of a novel single-drape cover for sterile back tables in the operating room compared to the standard two-drape method: an experimental study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Covering the prepared sterile back tables (PSBTs) during periods of nonuse and during active surgeries may decrease contamination of sterile surgical instruments that have direct contact to surgical wound. The Association of periOperative Registered Nurses (AORN) declared that an easy method for covering and removing the drape will ultimately be most effective (e.g. standard two-drape method). Hence, this study was designed to test the hypothesis that using a novel single-drape cover had more efficiency and safety in decreasing airborne bacteria-carrying particles (ABCPs) settling on the PSBTs during static and dynamic periods than the standard two-drape method. Methods This experimental study was conducted with using 918 agar plates to detect contamination of the PSBTs with ABCPs on two conditions (static and dynamic) at an academic medical center in Kashan, Iran, from September 25, 2021, to January 20, 2022. The contamination of PSBTs was evaluated by 6 agar settle plates (n = 918 in total) on each PSBT in static and dynamic operating room (OR) conditions. At each time-point, this set-up was repeated on two occasions else during data collection, establishing 81 PSBTs in total. Tested groups included the PSBTs covered with the standard two-drape method, the novel single-drape cover, or no cover. The plates were collected after 15, 30, 45, 60, 120, 180, 240 min and 24 h. The primary outcome measured was comparison of mean bioburden of ABCPs settling on covered PSBTs on two conditions by using agar settle plates. The secondary outcomes measured were to determine the role of covering in decreasing contamination of PSBTs and the estimation of time-dependent surgical instrument contamination in the uncovered PSBTs on two conditions by using agar settle plates. Results Covering the PSBTs during static and dynamic OR conditions lead to a significantly decreased bioburden of ABCPs on them (P < 0.05). No differences were seen between the standard two-drape method and the novel single-drape cover (P > 0.05). Conclusions We found that there is no preference for using the novel single-drape cover than the standard two-drape method. Our results showed a significant decrease in bioburden of ABCPs on the PSBTs when those were covered during static and dynamic OR conditions, indicating the efficiency for covering the PSBTs during periods of nonuse and during active surgery.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operating rooms</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infection control</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perioperative care</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surgical site infection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surgical instruments</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Babajani-Vafsi, Saeed</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kazemi-Galougahi, Mohammad Hassan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bakhshi, Ashraf</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ajorpaz, Neda Mirbagher</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ghorbani, Mahdi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Patient safety in surgery</subfield><subfield code="d">London : BioMed Central, 2007</subfield><subfield code="g">16(2022), 1 vom: 02. Juni</subfield><subfield code="w">(DE-627)558389643</subfield><subfield code="w">(DE-600)2409244-7</subfield><subfield code="x">1754-9493</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:02</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13037-022-00330-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">02</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.401531 |