Fast Finite-time Attitude Tracking Control of Rigid Spacecraft with Quantized Input Signals
Abstract The problem of fast finite-time attitude tracking quantized control is addressed for rigid spacecraft in the paper. With the help of the backstepping technique, hysteresis quantizer and the finite-time control scheme, a novel fast finite-time attitude controller is proposed. The modified Ro...
Ausführliche Beschreibung
Autor*in: |
Yu, Man [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© ICROS, KIEE and Springer 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: International Journal of Control, Automation and Systems - Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009, 20(2022), 6 vom: 29. Apr., Seite 1926-1934 |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2022 ; number:6 ; day:29 ; month:04 ; pages:1926-1934 |
Links: |
---|
DOI / URN: |
10.1007/s12555-020-0879-6 |
---|
Katalog-ID: |
SPR050756672 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR050756672 | ||
003 | DE-627 | ||
005 | 20230507195812.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s12555-020-0879-6 |2 doi | |
035 | |a (DE-627)SPR050756672 | ||
035 | |a (SPR)s12555-020-0879-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Yu, Man |e verfasserin |4 aut | |
245 | 1 | 0 | |a Fast Finite-time Attitude Tracking Control of Rigid Spacecraft with Quantized Input Signals |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © ICROS, KIEE and Springer 2022 | ||
520 | |a Abstract The problem of fast finite-time attitude tracking quantized control is addressed for rigid spacecraft in the paper. With the help of the backstepping technique, hysteresis quantizer and the finite-time control scheme, a novel fast finite-time attitude controller is proposed. The modified Rodriguze parameters (MRPs) are used to describe the dynamic and kinematic equations of rigid spacecraft system. Then by utilizing Lagrange theorem, rigid spacecraft attitude system is transformed into a common strict feedback system. Next, a new coordinate transformation is introduced, which will be used in the presented controller. Based on the backstepping strategy, the sufficient conditions for the existence of the fast finite-time controller are presented. Theoretical analysis shows that the attitude tracking errors rapidly converge to the equilibrium point within finite time. Meanwhile, all the signals of the close-loop system are bounded. Simulation results demonstrate the effectiveness of the proposed approach. | ||
650 | 4 | |a Attitude tracking control |7 (dpeaa)DE-He213 | |
650 | 4 | |a fast finite-time control |7 (dpeaa)DE-He213 | |
650 | 4 | |a MRPs |7 (dpeaa)DE-He213 | |
650 | 4 | |a quantized input control |7 (dpeaa)DE-He213 | |
650 | 4 | |a rigid spacecraft |7 (dpeaa)DE-He213 | |
700 | 1 | |a Chen, Ming |0 (orcid)0000-0002-7310-8421 |4 aut | |
700 | 1 | |a Wu, Libing |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International Journal of Control, Automation and Systems |d Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 |g 20(2022), 6 vom: 29. Apr., Seite 1926-1934 |w (DE-627)SPR026303256 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2022 |g number:6 |g day:29 |g month:04 |g pages:1926-1934 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s12555-020-0879-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_72 | ||
912 | |a GBV_ILN_181 | ||
912 | |a GBV_ILN_496 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2060 | ||
912 | |a GBV_ILN_2470 | ||
951 | |a AR | ||
952 | |d 20 |j 2022 |e 6 |b 29 |c 04 |h 1926-1934 |
author_variant |
m y my m c mc l w lw |
---|---|
matchkey_str |
yumanchenmingwulibing:2022----:atiieietiuercigotoorgdpccati |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s12555-020-0879-6 doi (DE-627)SPR050756672 (SPR)s12555-020-0879-6-e DE-627 ger DE-627 rakwb eng Yu, Man verfasserin aut Fast Finite-time Attitude Tracking Control of Rigid Spacecraft with Quantized Input Signals 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © ICROS, KIEE and Springer 2022 Abstract The problem of fast finite-time attitude tracking quantized control is addressed for rigid spacecraft in the paper. With the help of the backstepping technique, hysteresis quantizer and the finite-time control scheme, a novel fast finite-time attitude controller is proposed. The modified Rodriguze parameters (MRPs) are used to describe the dynamic and kinematic equations of rigid spacecraft system. Then by utilizing Lagrange theorem, rigid spacecraft attitude system is transformed into a common strict feedback system. Next, a new coordinate transformation is introduced, which will be used in the presented controller. Based on the backstepping strategy, the sufficient conditions for the existence of the fast finite-time controller are presented. Theoretical analysis shows that the attitude tracking errors rapidly converge to the equilibrium point within finite time. Meanwhile, all the signals of the close-loop system are bounded. Simulation results demonstrate the effectiveness of the proposed approach. Attitude tracking control (dpeaa)DE-He213 fast finite-time control (dpeaa)DE-He213 MRPs (dpeaa)DE-He213 quantized input control (dpeaa)DE-He213 rigid spacecraft (dpeaa)DE-He213 Chen, Ming (orcid)0000-0002-7310-8421 aut Wu, Libing aut Enthalten in International Journal of Control, Automation and Systems Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 20(2022), 6 vom: 29. Apr., Seite 1926-1934 (DE-627)SPR026303256 nnns volume:20 year:2022 number:6 day:29 month:04 pages:1926-1934 https://dx.doi.org/10.1007/s12555-020-0879-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 AR 20 2022 6 29 04 1926-1934 |
spelling |
10.1007/s12555-020-0879-6 doi (DE-627)SPR050756672 (SPR)s12555-020-0879-6-e DE-627 ger DE-627 rakwb eng Yu, Man verfasserin aut Fast Finite-time Attitude Tracking Control of Rigid Spacecraft with Quantized Input Signals 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © ICROS, KIEE and Springer 2022 Abstract The problem of fast finite-time attitude tracking quantized control is addressed for rigid spacecraft in the paper. With the help of the backstepping technique, hysteresis quantizer and the finite-time control scheme, a novel fast finite-time attitude controller is proposed. The modified Rodriguze parameters (MRPs) are used to describe the dynamic and kinematic equations of rigid spacecraft system. Then by utilizing Lagrange theorem, rigid spacecraft attitude system is transformed into a common strict feedback system. Next, a new coordinate transformation is introduced, which will be used in the presented controller. Based on the backstepping strategy, the sufficient conditions for the existence of the fast finite-time controller are presented. Theoretical analysis shows that the attitude tracking errors rapidly converge to the equilibrium point within finite time. Meanwhile, all the signals of the close-loop system are bounded. Simulation results demonstrate the effectiveness of the proposed approach. Attitude tracking control (dpeaa)DE-He213 fast finite-time control (dpeaa)DE-He213 MRPs (dpeaa)DE-He213 quantized input control (dpeaa)DE-He213 rigid spacecraft (dpeaa)DE-He213 Chen, Ming (orcid)0000-0002-7310-8421 aut Wu, Libing aut Enthalten in International Journal of Control, Automation and Systems Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 20(2022), 6 vom: 29. Apr., Seite 1926-1934 (DE-627)SPR026303256 nnns volume:20 year:2022 number:6 day:29 month:04 pages:1926-1934 https://dx.doi.org/10.1007/s12555-020-0879-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 AR 20 2022 6 29 04 1926-1934 |
allfields_unstemmed |
10.1007/s12555-020-0879-6 doi (DE-627)SPR050756672 (SPR)s12555-020-0879-6-e DE-627 ger DE-627 rakwb eng Yu, Man verfasserin aut Fast Finite-time Attitude Tracking Control of Rigid Spacecraft with Quantized Input Signals 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © ICROS, KIEE and Springer 2022 Abstract The problem of fast finite-time attitude tracking quantized control is addressed for rigid spacecraft in the paper. With the help of the backstepping technique, hysteresis quantizer and the finite-time control scheme, a novel fast finite-time attitude controller is proposed. The modified Rodriguze parameters (MRPs) are used to describe the dynamic and kinematic equations of rigid spacecraft system. Then by utilizing Lagrange theorem, rigid spacecraft attitude system is transformed into a common strict feedback system. Next, a new coordinate transformation is introduced, which will be used in the presented controller. Based on the backstepping strategy, the sufficient conditions for the existence of the fast finite-time controller are presented. Theoretical analysis shows that the attitude tracking errors rapidly converge to the equilibrium point within finite time. Meanwhile, all the signals of the close-loop system are bounded. Simulation results demonstrate the effectiveness of the proposed approach. Attitude tracking control (dpeaa)DE-He213 fast finite-time control (dpeaa)DE-He213 MRPs (dpeaa)DE-He213 quantized input control (dpeaa)DE-He213 rigid spacecraft (dpeaa)DE-He213 Chen, Ming (orcid)0000-0002-7310-8421 aut Wu, Libing aut Enthalten in International Journal of Control, Automation and Systems Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 20(2022), 6 vom: 29. Apr., Seite 1926-1934 (DE-627)SPR026303256 nnns volume:20 year:2022 number:6 day:29 month:04 pages:1926-1934 https://dx.doi.org/10.1007/s12555-020-0879-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 AR 20 2022 6 29 04 1926-1934 |
allfieldsGer |
10.1007/s12555-020-0879-6 doi (DE-627)SPR050756672 (SPR)s12555-020-0879-6-e DE-627 ger DE-627 rakwb eng Yu, Man verfasserin aut Fast Finite-time Attitude Tracking Control of Rigid Spacecraft with Quantized Input Signals 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © ICROS, KIEE and Springer 2022 Abstract The problem of fast finite-time attitude tracking quantized control is addressed for rigid spacecraft in the paper. With the help of the backstepping technique, hysteresis quantizer and the finite-time control scheme, a novel fast finite-time attitude controller is proposed. The modified Rodriguze parameters (MRPs) are used to describe the dynamic and kinematic equations of rigid spacecraft system. Then by utilizing Lagrange theorem, rigid spacecraft attitude system is transformed into a common strict feedback system. Next, a new coordinate transformation is introduced, which will be used in the presented controller. Based on the backstepping strategy, the sufficient conditions for the existence of the fast finite-time controller are presented. Theoretical analysis shows that the attitude tracking errors rapidly converge to the equilibrium point within finite time. Meanwhile, all the signals of the close-loop system are bounded. Simulation results demonstrate the effectiveness of the proposed approach. Attitude tracking control (dpeaa)DE-He213 fast finite-time control (dpeaa)DE-He213 MRPs (dpeaa)DE-He213 quantized input control (dpeaa)DE-He213 rigid spacecraft (dpeaa)DE-He213 Chen, Ming (orcid)0000-0002-7310-8421 aut Wu, Libing aut Enthalten in International Journal of Control, Automation and Systems Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 20(2022), 6 vom: 29. Apr., Seite 1926-1934 (DE-627)SPR026303256 nnns volume:20 year:2022 number:6 day:29 month:04 pages:1926-1934 https://dx.doi.org/10.1007/s12555-020-0879-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 AR 20 2022 6 29 04 1926-1934 |
allfieldsSound |
10.1007/s12555-020-0879-6 doi (DE-627)SPR050756672 (SPR)s12555-020-0879-6-e DE-627 ger DE-627 rakwb eng Yu, Man verfasserin aut Fast Finite-time Attitude Tracking Control of Rigid Spacecraft with Quantized Input Signals 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © ICROS, KIEE and Springer 2022 Abstract The problem of fast finite-time attitude tracking quantized control is addressed for rigid spacecraft in the paper. With the help of the backstepping technique, hysteresis quantizer and the finite-time control scheme, a novel fast finite-time attitude controller is proposed. The modified Rodriguze parameters (MRPs) are used to describe the dynamic and kinematic equations of rigid spacecraft system. Then by utilizing Lagrange theorem, rigid spacecraft attitude system is transformed into a common strict feedback system. Next, a new coordinate transformation is introduced, which will be used in the presented controller. Based on the backstepping strategy, the sufficient conditions for the existence of the fast finite-time controller are presented. Theoretical analysis shows that the attitude tracking errors rapidly converge to the equilibrium point within finite time. Meanwhile, all the signals of the close-loop system are bounded. Simulation results demonstrate the effectiveness of the proposed approach. Attitude tracking control (dpeaa)DE-He213 fast finite-time control (dpeaa)DE-He213 MRPs (dpeaa)DE-He213 quantized input control (dpeaa)DE-He213 rigid spacecraft (dpeaa)DE-He213 Chen, Ming (orcid)0000-0002-7310-8421 aut Wu, Libing aut Enthalten in International Journal of Control, Automation and Systems Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 20(2022), 6 vom: 29. Apr., Seite 1926-1934 (DE-627)SPR026303256 nnns volume:20 year:2022 number:6 day:29 month:04 pages:1926-1934 https://dx.doi.org/10.1007/s12555-020-0879-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 AR 20 2022 6 29 04 1926-1934 |
language |
English |
source |
Enthalten in International Journal of Control, Automation and Systems 20(2022), 6 vom: 29. Apr., Seite 1926-1934 volume:20 year:2022 number:6 day:29 month:04 pages:1926-1934 |
sourceStr |
Enthalten in International Journal of Control, Automation and Systems 20(2022), 6 vom: 29. Apr., Seite 1926-1934 volume:20 year:2022 number:6 day:29 month:04 pages:1926-1934 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Attitude tracking control fast finite-time control MRPs quantized input control rigid spacecraft |
isfreeaccess_bool |
false |
container_title |
International Journal of Control, Automation and Systems |
authorswithroles_txt_mv |
Yu, Man @@aut@@ Chen, Ming @@aut@@ Wu, Libing @@aut@@ |
publishDateDaySort_date |
2022-04-29T00:00:00Z |
hierarchy_top_id |
SPR026303256 |
id |
SPR050756672 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050756672</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507195812.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12555-020-0879-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050756672</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12555-020-0879-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yu, Man</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fast Finite-time Attitude Tracking Control of Rigid Spacecraft with Quantized Input Signals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© ICROS, KIEE and Springer 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The problem of fast finite-time attitude tracking quantized control is addressed for rigid spacecraft in the paper. With the help of the backstepping technique, hysteresis quantizer and the finite-time control scheme, a novel fast finite-time attitude controller is proposed. The modified Rodriguze parameters (MRPs) are used to describe the dynamic and kinematic equations of rigid spacecraft system. Then by utilizing Lagrange theorem, rigid spacecraft attitude system is transformed into a common strict feedback system. Next, a new coordinate transformation is introduced, which will be used in the presented controller. Based on the backstepping strategy, the sufficient conditions for the existence of the fast finite-time controller are presented. Theoretical analysis shows that the attitude tracking errors rapidly converge to the equilibrium point within finite time. Meanwhile, all the signals of the close-loop system are bounded. Simulation results demonstrate the effectiveness of the proposed approach.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Attitude tracking control</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fast finite-time control</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MRPs</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantized input control</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rigid spacecraft</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Ming</subfield><subfield code="0">(orcid)0000-0002-7310-8421</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Libing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International Journal of Control, Automation and Systems</subfield><subfield code="d">Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009</subfield><subfield code="g">20(2022), 6 vom: 29. Apr., Seite 1926-1934</subfield><subfield code="w">(DE-627)SPR026303256</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:6</subfield><subfield code="g">day:29</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:1926-1934</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12555-020-0879-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_181</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_496</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2060</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2022</subfield><subfield code="e">6</subfield><subfield code="b">29</subfield><subfield code="c">04</subfield><subfield code="h">1926-1934</subfield></datafield></record></collection>
|
author |
Yu, Man |
spellingShingle |
Yu, Man misc Attitude tracking control misc fast finite-time control misc MRPs misc quantized input control misc rigid spacecraft Fast Finite-time Attitude Tracking Control of Rigid Spacecraft with Quantized Input Signals |
authorStr |
Yu, Man |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR026303256 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
Fast Finite-time Attitude Tracking Control of Rigid Spacecraft with Quantized Input Signals Attitude tracking control (dpeaa)DE-He213 fast finite-time control (dpeaa)DE-He213 MRPs (dpeaa)DE-He213 quantized input control (dpeaa)DE-He213 rigid spacecraft (dpeaa)DE-He213 |
topic |
misc Attitude tracking control misc fast finite-time control misc MRPs misc quantized input control misc rigid spacecraft |
topic_unstemmed |
misc Attitude tracking control misc fast finite-time control misc MRPs misc quantized input control misc rigid spacecraft |
topic_browse |
misc Attitude tracking control misc fast finite-time control misc MRPs misc quantized input control misc rigid spacecraft |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Control, Automation and Systems |
hierarchy_parent_id |
SPR026303256 |
hierarchy_top_title |
International Journal of Control, Automation and Systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR026303256 |
title |
Fast Finite-time Attitude Tracking Control of Rigid Spacecraft with Quantized Input Signals |
ctrlnum |
(DE-627)SPR050756672 (SPR)s12555-020-0879-6-e |
title_full |
Fast Finite-time Attitude Tracking Control of Rigid Spacecraft with Quantized Input Signals |
author_sort |
Yu, Man |
journal |
International Journal of Control, Automation and Systems |
journalStr |
International Journal of Control, Automation and Systems |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
1926 |
author_browse |
Yu, Man Chen, Ming Wu, Libing |
container_volume |
20 |
format_se |
Elektronische Aufsätze |
author-letter |
Yu, Man |
doi_str_mv |
10.1007/s12555-020-0879-6 |
normlink |
(ORCID)0000-0002-7310-8421 |
normlink_prefix_str_mv |
(orcid)0000-0002-7310-8421 |
title_sort |
fast finite-time attitude tracking control of rigid spacecraft with quantized input signals |
title_auth |
Fast Finite-time Attitude Tracking Control of Rigid Spacecraft with Quantized Input Signals |
abstract |
Abstract The problem of fast finite-time attitude tracking quantized control is addressed for rigid spacecraft in the paper. With the help of the backstepping technique, hysteresis quantizer and the finite-time control scheme, a novel fast finite-time attitude controller is proposed. The modified Rodriguze parameters (MRPs) are used to describe the dynamic and kinematic equations of rigid spacecraft system. Then by utilizing Lagrange theorem, rigid spacecraft attitude system is transformed into a common strict feedback system. Next, a new coordinate transformation is introduced, which will be used in the presented controller. Based on the backstepping strategy, the sufficient conditions for the existence of the fast finite-time controller are presented. Theoretical analysis shows that the attitude tracking errors rapidly converge to the equilibrium point within finite time. Meanwhile, all the signals of the close-loop system are bounded. Simulation results demonstrate the effectiveness of the proposed approach. © ICROS, KIEE and Springer 2022 |
abstractGer |
Abstract The problem of fast finite-time attitude tracking quantized control is addressed for rigid spacecraft in the paper. With the help of the backstepping technique, hysteresis quantizer and the finite-time control scheme, a novel fast finite-time attitude controller is proposed. The modified Rodriguze parameters (MRPs) are used to describe the dynamic and kinematic equations of rigid spacecraft system. Then by utilizing Lagrange theorem, rigid spacecraft attitude system is transformed into a common strict feedback system. Next, a new coordinate transformation is introduced, which will be used in the presented controller. Based on the backstepping strategy, the sufficient conditions for the existence of the fast finite-time controller are presented. Theoretical analysis shows that the attitude tracking errors rapidly converge to the equilibrium point within finite time. Meanwhile, all the signals of the close-loop system are bounded. Simulation results demonstrate the effectiveness of the proposed approach. © ICROS, KIEE and Springer 2022 |
abstract_unstemmed |
Abstract The problem of fast finite-time attitude tracking quantized control is addressed for rigid spacecraft in the paper. With the help of the backstepping technique, hysteresis quantizer and the finite-time control scheme, a novel fast finite-time attitude controller is proposed. The modified Rodriguze parameters (MRPs) are used to describe the dynamic and kinematic equations of rigid spacecraft system. Then by utilizing Lagrange theorem, rigid spacecraft attitude system is transformed into a common strict feedback system. Next, a new coordinate transformation is introduced, which will be used in the presented controller. Based on the backstepping strategy, the sufficient conditions for the existence of the fast finite-time controller are presented. Theoretical analysis shows that the attitude tracking errors rapidly converge to the equilibrium point within finite time. Meanwhile, all the signals of the close-loop system are bounded. Simulation results demonstrate the effectiveness of the proposed approach. © ICROS, KIEE and Springer 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 |
container_issue |
6 |
title_short |
Fast Finite-time Attitude Tracking Control of Rigid Spacecraft with Quantized Input Signals |
url |
https://dx.doi.org/10.1007/s12555-020-0879-6 |
remote_bool |
true |
author2 |
Chen, Ming Wu, Libing |
author2Str |
Chen, Ming Wu, Libing |
ppnlink |
SPR026303256 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s12555-020-0879-6 |
up_date |
2024-07-03T17:34:59.898Z |
_version_ |
1803580184887033856 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050756672</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507195812.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12555-020-0879-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050756672</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12555-020-0879-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yu, Man</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fast Finite-time Attitude Tracking Control of Rigid Spacecraft with Quantized Input Signals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© ICROS, KIEE and Springer 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The problem of fast finite-time attitude tracking quantized control is addressed for rigid spacecraft in the paper. With the help of the backstepping technique, hysteresis quantizer and the finite-time control scheme, a novel fast finite-time attitude controller is proposed. The modified Rodriguze parameters (MRPs) are used to describe the dynamic and kinematic equations of rigid spacecraft system. Then by utilizing Lagrange theorem, rigid spacecraft attitude system is transformed into a common strict feedback system. Next, a new coordinate transformation is introduced, which will be used in the presented controller. Based on the backstepping strategy, the sufficient conditions for the existence of the fast finite-time controller are presented. Theoretical analysis shows that the attitude tracking errors rapidly converge to the equilibrium point within finite time. Meanwhile, all the signals of the close-loop system are bounded. Simulation results demonstrate the effectiveness of the proposed approach.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Attitude tracking control</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fast finite-time control</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MRPs</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantized input control</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rigid spacecraft</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Ming</subfield><subfield code="0">(orcid)0000-0002-7310-8421</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Libing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International Journal of Control, Automation and Systems</subfield><subfield code="d">Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009</subfield><subfield code="g">20(2022), 6 vom: 29. Apr., Seite 1926-1934</subfield><subfield code="w">(DE-627)SPR026303256</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:6</subfield><subfield code="g">day:29</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:1926-1934</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12555-020-0879-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_181</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_496</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2060</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2022</subfield><subfield code="e">6</subfield><subfield code="b">29</subfield><subfield code="c">04</subfield><subfield code="h">1926-1934</subfield></datafield></record></collection>
|
score |
7.4015055 |