Predictors of migration in an HIV hyper-endemic rural South African community: evidence from a population-based cohort (2005–2017)
Abstract Globally, South Africa hosts the highest number of people living with HIV (PLHIV) and the unique legacy of internal labour migration continues to be a major driver of the regional epidemic, interrupting treatment-as-prevention efforts. The study examined levels, trends, and predictors of mi...
Ausführliche Beschreibung
Autor*in: |
Dzomba, Armstrong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC public health - London : BioMed Central, 2001, 22(2022), 1 vom: 07. Juni |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2022 ; number:1 ; day:07 ; month:06 |
Links: |
---|
DOI / URN: |
10.1186/s12889-022-13526-w |
---|
Katalog-ID: |
SPR050767127 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR050767127 | ||
003 | DE-627 | ||
005 | 20230509102434.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12889-022-13526-w |2 doi | |
035 | |a (DE-627)SPR050767127 | ||
035 | |a (SPR)s12889-022-13526-w-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Dzomba, Armstrong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Predictors of migration in an HIV hyper-endemic rural South African community: evidence from a population-based cohort (2005–2017) |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Abstract Globally, South Africa hosts the highest number of people living with HIV (PLHIV) and the unique legacy of internal labour migration continues to be a major driver of the regional epidemic, interrupting treatment-as-prevention efforts. The study examined levels, trends, and predictors of migration in rural KwaZulu-Natal Province, South Africa, using population-based surveillance data from 2005 through 2017. We followed 69 604 adult participants aged 15–49 years and recorded their migration events (i.e., out-migration from the surveillance area) in 423 038 person-years over 525 397 observations. Multiple failure Cox-regression models were used to measure the risk of migration by socio-demographic factors: age, sex, educational status, marital status, HIV, and community antiretroviral therapy (ART) coverage. Overall, 69% of the population cohort experienced at least one migration event during the follow-up period. The average incidence rate of migration was 9.96 events and 13.23 events per 100 person-years in women and men, respectively. Migration rates declined from 2005 to 2008 then peaked in 2012 for both women and men. Adjusting for other covariates, the risk of migration was 3.4-times higher among young women aged 20–24 years compared to those aged ≥ 40 years (adjusted Hazard Ratio [aHR] = 3.37, 95% Confidence Interval [CI]: 3:19–3.57), and 2.9-times higher among young men aged 20–24 years compared to those aged ≥ 40 years (aHR = 2.86, 95% CI:2.69–3.04). There was a 9% and 27% decrease in risk of migration among both women (aHR = 0.91, 95% CI: 0.83 – 0.99) and men (aHR = 0.73, 95% CI 0.66 – 0.82) respectively per every 1% increase in community ART coverage. Young unmarried women including those living with HIV, migrated at a magnitude similar to that of their male counterparts, and lowered as ART coverage increased over time, reflecting the role of improved HIV services across space in reducing out-migration. A deeper understanding of the characteristics of a migrating population provides critical information towards identifying and addressing gaps in the HIV prevention and care continuum in an era of high mobility. | ||
650 | 4 | |a Migration |7 (dpeaa)DE-He213 | |
650 | 4 | |a Migration incidence |7 (dpeaa)DE-He213 | |
650 | 4 | |a Transients and Migrants |7 (dpeaa)DE-He213 | |
650 | 4 | |a Antiretroviral Therapy |7 (dpeaa)DE-He213 | |
650 | 4 | |a Human Immunodeficiency Virus |7 (dpeaa)DE-He213 | |
700 | 1 | |a Kim, Hae-Young |4 aut | |
700 | 1 | |a Tomita, Andrew |4 aut | |
700 | 1 | |a Vandormael, Alain |4 aut | |
700 | 1 | |a Govender, Kaymarlin |4 aut | |
700 | 1 | |a Tanser, Frank |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC public health |d London : BioMed Central, 2001 |g 22(2022), 1 vom: 07. Juni |w (DE-627)326643583 |w (DE-600)2041338-5 |x 1471-2458 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2022 |g number:1 |g day:07 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12889-022-13526-w |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 22 |j 2022 |e 1 |b 07 |c 06 |
author_variant |
a d ad h y k hyk a t at a v av k g kg f t ft |
---|---|
matchkey_str |
article:14712458:2022----::rdcosfirtoiahvyeedmcuasuhfiacmuiyvdnermp |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s12889-022-13526-w doi (DE-627)SPR050767127 (SPR)s12889-022-13526-w-e DE-627 ger DE-627 rakwb eng Dzomba, Armstrong verfasserin aut Predictors of migration in an HIV hyper-endemic rural South African community: evidence from a population-based cohort (2005–2017) 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Globally, South Africa hosts the highest number of people living with HIV (PLHIV) and the unique legacy of internal labour migration continues to be a major driver of the regional epidemic, interrupting treatment-as-prevention efforts. The study examined levels, trends, and predictors of migration in rural KwaZulu-Natal Province, South Africa, using population-based surveillance data from 2005 through 2017. We followed 69 604 adult participants aged 15–49 years and recorded their migration events (i.e., out-migration from the surveillance area) in 423 038 person-years over 525 397 observations. Multiple failure Cox-regression models were used to measure the risk of migration by socio-demographic factors: age, sex, educational status, marital status, HIV, and community antiretroviral therapy (ART) coverage. Overall, 69% of the population cohort experienced at least one migration event during the follow-up period. The average incidence rate of migration was 9.96 events and 13.23 events per 100 person-years in women and men, respectively. Migration rates declined from 2005 to 2008 then peaked in 2012 for both women and men. Adjusting for other covariates, the risk of migration was 3.4-times higher among young women aged 20–24 years compared to those aged ≥ 40 years (adjusted Hazard Ratio [aHR] = 3.37, 95% Confidence Interval [CI]: 3:19–3.57), and 2.9-times higher among young men aged 20–24 years compared to those aged ≥ 40 years (aHR = 2.86, 95% CI:2.69–3.04). There was a 9% and 27% decrease in risk of migration among both women (aHR = 0.91, 95% CI: 0.83 – 0.99) and men (aHR = 0.73, 95% CI 0.66 – 0.82) respectively per every 1% increase in community ART coverage. Young unmarried women including those living with HIV, migrated at a magnitude similar to that of their male counterparts, and lowered as ART coverage increased over time, reflecting the role of improved HIV services across space in reducing out-migration. A deeper understanding of the characteristics of a migrating population provides critical information towards identifying and addressing gaps in the HIV prevention and care continuum in an era of high mobility. Migration (dpeaa)DE-He213 Migration incidence (dpeaa)DE-He213 Transients and Migrants (dpeaa)DE-He213 Antiretroviral Therapy (dpeaa)DE-He213 Human Immunodeficiency Virus (dpeaa)DE-He213 Kim, Hae-Young aut Tomita, Andrew aut Vandormael, Alain aut Govender, Kaymarlin aut Tanser, Frank aut Enthalten in BMC public health London : BioMed Central, 2001 22(2022), 1 vom: 07. Juni (DE-627)326643583 (DE-600)2041338-5 1471-2458 nnns volume:22 year:2022 number:1 day:07 month:06 https://dx.doi.org/10.1186/s12889-022-13526-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 1 07 06 |
spelling |
10.1186/s12889-022-13526-w doi (DE-627)SPR050767127 (SPR)s12889-022-13526-w-e DE-627 ger DE-627 rakwb eng Dzomba, Armstrong verfasserin aut Predictors of migration in an HIV hyper-endemic rural South African community: evidence from a population-based cohort (2005–2017) 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Globally, South Africa hosts the highest number of people living with HIV (PLHIV) and the unique legacy of internal labour migration continues to be a major driver of the regional epidemic, interrupting treatment-as-prevention efforts. The study examined levels, trends, and predictors of migration in rural KwaZulu-Natal Province, South Africa, using population-based surveillance data from 2005 through 2017. We followed 69 604 adult participants aged 15–49 years and recorded their migration events (i.e., out-migration from the surveillance area) in 423 038 person-years over 525 397 observations. Multiple failure Cox-regression models were used to measure the risk of migration by socio-demographic factors: age, sex, educational status, marital status, HIV, and community antiretroviral therapy (ART) coverage. Overall, 69% of the population cohort experienced at least one migration event during the follow-up period. The average incidence rate of migration was 9.96 events and 13.23 events per 100 person-years in women and men, respectively. Migration rates declined from 2005 to 2008 then peaked in 2012 for both women and men. Adjusting for other covariates, the risk of migration was 3.4-times higher among young women aged 20–24 years compared to those aged ≥ 40 years (adjusted Hazard Ratio [aHR] = 3.37, 95% Confidence Interval [CI]: 3:19–3.57), and 2.9-times higher among young men aged 20–24 years compared to those aged ≥ 40 years (aHR = 2.86, 95% CI:2.69–3.04). There was a 9% and 27% decrease in risk of migration among both women (aHR = 0.91, 95% CI: 0.83 – 0.99) and men (aHR = 0.73, 95% CI 0.66 – 0.82) respectively per every 1% increase in community ART coverage. Young unmarried women including those living with HIV, migrated at a magnitude similar to that of their male counterparts, and lowered as ART coverage increased over time, reflecting the role of improved HIV services across space in reducing out-migration. A deeper understanding of the characteristics of a migrating population provides critical information towards identifying and addressing gaps in the HIV prevention and care continuum in an era of high mobility. Migration (dpeaa)DE-He213 Migration incidence (dpeaa)DE-He213 Transients and Migrants (dpeaa)DE-He213 Antiretroviral Therapy (dpeaa)DE-He213 Human Immunodeficiency Virus (dpeaa)DE-He213 Kim, Hae-Young aut Tomita, Andrew aut Vandormael, Alain aut Govender, Kaymarlin aut Tanser, Frank aut Enthalten in BMC public health London : BioMed Central, 2001 22(2022), 1 vom: 07. Juni (DE-627)326643583 (DE-600)2041338-5 1471-2458 nnns volume:22 year:2022 number:1 day:07 month:06 https://dx.doi.org/10.1186/s12889-022-13526-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 1 07 06 |
allfields_unstemmed |
10.1186/s12889-022-13526-w doi (DE-627)SPR050767127 (SPR)s12889-022-13526-w-e DE-627 ger DE-627 rakwb eng Dzomba, Armstrong verfasserin aut Predictors of migration in an HIV hyper-endemic rural South African community: evidence from a population-based cohort (2005–2017) 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Globally, South Africa hosts the highest number of people living with HIV (PLHIV) and the unique legacy of internal labour migration continues to be a major driver of the regional epidemic, interrupting treatment-as-prevention efforts. The study examined levels, trends, and predictors of migration in rural KwaZulu-Natal Province, South Africa, using population-based surveillance data from 2005 through 2017. We followed 69 604 adult participants aged 15–49 years and recorded their migration events (i.e., out-migration from the surveillance area) in 423 038 person-years over 525 397 observations. Multiple failure Cox-regression models were used to measure the risk of migration by socio-demographic factors: age, sex, educational status, marital status, HIV, and community antiretroviral therapy (ART) coverage. Overall, 69% of the population cohort experienced at least one migration event during the follow-up period. The average incidence rate of migration was 9.96 events and 13.23 events per 100 person-years in women and men, respectively. Migration rates declined from 2005 to 2008 then peaked in 2012 for both women and men. Adjusting for other covariates, the risk of migration was 3.4-times higher among young women aged 20–24 years compared to those aged ≥ 40 years (adjusted Hazard Ratio [aHR] = 3.37, 95% Confidence Interval [CI]: 3:19–3.57), and 2.9-times higher among young men aged 20–24 years compared to those aged ≥ 40 years (aHR = 2.86, 95% CI:2.69–3.04). There was a 9% and 27% decrease in risk of migration among both women (aHR = 0.91, 95% CI: 0.83 – 0.99) and men (aHR = 0.73, 95% CI 0.66 – 0.82) respectively per every 1% increase in community ART coverage. Young unmarried women including those living with HIV, migrated at a magnitude similar to that of their male counterparts, and lowered as ART coverage increased over time, reflecting the role of improved HIV services across space in reducing out-migration. A deeper understanding of the characteristics of a migrating population provides critical information towards identifying and addressing gaps in the HIV prevention and care continuum in an era of high mobility. Migration (dpeaa)DE-He213 Migration incidence (dpeaa)DE-He213 Transients and Migrants (dpeaa)DE-He213 Antiretroviral Therapy (dpeaa)DE-He213 Human Immunodeficiency Virus (dpeaa)DE-He213 Kim, Hae-Young aut Tomita, Andrew aut Vandormael, Alain aut Govender, Kaymarlin aut Tanser, Frank aut Enthalten in BMC public health London : BioMed Central, 2001 22(2022), 1 vom: 07. Juni (DE-627)326643583 (DE-600)2041338-5 1471-2458 nnns volume:22 year:2022 number:1 day:07 month:06 https://dx.doi.org/10.1186/s12889-022-13526-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 1 07 06 |
allfieldsGer |
10.1186/s12889-022-13526-w doi (DE-627)SPR050767127 (SPR)s12889-022-13526-w-e DE-627 ger DE-627 rakwb eng Dzomba, Armstrong verfasserin aut Predictors of migration in an HIV hyper-endemic rural South African community: evidence from a population-based cohort (2005–2017) 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Globally, South Africa hosts the highest number of people living with HIV (PLHIV) and the unique legacy of internal labour migration continues to be a major driver of the regional epidemic, interrupting treatment-as-prevention efforts. The study examined levels, trends, and predictors of migration in rural KwaZulu-Natal Province, South Africa, using population-based surveillance data from 2005 through 2017. We followed 69 604 adult participants aged 15–49 years and recorded their migration events (i.e., out-migration from the surveillance area) in 423 038 person-years over 525 397 observations. Multiple failure Cox-regression models were used to measure the risk of migration by socio-demographic factors: age, sex, educational status, marital status, HIV, and community antiretroviral therapy (ART) coverage. Overall, 69% of the population cohort experienced at least one migration event during the follow-up period. The average incidence rate of migration was 9.96 events and 13.23 events per 100 person-years in women and men, respectively. Migration rates declined from 2005 to 2008 then peaked in 2012 for both women and men. Adjusting for other covariates, the risk of migration was 3.4-times higher among young women aged 20–24 years compared to those aged ≥ 40 years (adjusted Hazard Ratio [aHR] = 3.37, 95% Confidence Interval [CI]: 3:19–3.57), and 2.9-times higher among young men aged 20–24 years compared to those aged ≥ 40 years (aHR = 2.86, 95% CI:2.69–3.04). There was a 9% and 27% decrease in risk of migration among both women (aHR = 0.91, 95% CI: 0.83 – 0.99) and men (aHR = 0.73, 95% CI 0.66 – 0.82) respectively per every 1% increase in community ART coverage. Young unmarried women including those living with HIV, migrated at a magnitude similar to that of their male counterparts, and lowered as ART coverage increased over time, reflecting the role of improved HIV services across space in reducing out-migration. A deeper understanding of the characteristics of a migrating population provides critical information towards identifying and addressing gaps in the HIV prevention and care continuum in an era of high mobility. Migration (dpeaa)DE-He213 Migration incidence (dpeaa)DE-He213 Transients and Migrants (dpeaa)DE-He213 Antiretroviral Therapy (dpeaa)DE-He213 Human Immunodeficiency Virus (dpeaa)DE-He213 Kim, Hae-Young aut Tomita, Andrew aut Vandormael, Alain aut Govender, Kaymarlin aut Tanser, Frank aut Enthalten in BMC public health London : BioMed Central, 2001 22(2022), 1 vom: 07. Juni (DE-627)326643583 (DE-600)2041338-5 1471-2458 nnns volume:22 year:2022 number:1 day:07 month:06 https://dx.doi.org/10.1186/s12889-022-13526-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 1 07 06 |
allfieldsSound |
10.1186/s12889-022-13526-w doi (DE-627)SPR050767127 (SPR)s12889-022-13526-w-e DE-627 ger DE-627 rakwb eng Dzomba, Armstrong verfasserin aut Predictors of migration in an HIV hyper-endemic rural South African community: evidence from a population-based cohort (2005–2017) 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Globally, South Africa hosts the highest number of people living with HIV (PLHIV) and the unique legacy of internal labour migration continues to be a major driver of the regional epidemic, interrupting treatment-as-prevention efforts. The study examined levels, trends, and predictors of migration in rural KwaZulu-Natal Province, South Africa, using population-based surveillance data from 2005 through 2017. We followed 69 604 adult participants aged 15–49 years and recorded their migration events (i.e., out-migration from the surveillance area) in 423 038 person-years over 525 397 observations. Multiple failure Cox-regression models were used to measure the risk of migration by socio-demographic factors: age, sex, educational status, marital status, HIV, and community antiretroviral therapy (ART) coverage. Overall, 69% of the population cohort experienced at least one migration event during the follow-up period. The average incidence rate of migration was 9.96 events and 13.23 events per 100 person-years in women and men, respectively. Migration rates declined from 2005 to 2008 then peaked in 2012 for both women and men. Adjusting for other covariates, the risk of migration was 3.4-times higher among young women aged 20–24 years compared to those aged ≥ 40 years (adjusted Hazard Ratio [aHR] = 3.37, 95% Confidence Interval [CI]: 3:19–3.57), and 2.9-times higher among young men aged 20–24 years compared to those aged ≥ 40 years (aHR = 2.86, 95% CI:2.69–3.04). There was a 9% and 27% decrease in risk of migration among both women (aHR = 0.91, 95% CI: 0.83 – 0.99) and men (aHR = 0.73, 95% CI 0.66 – 0.82) respectively per every 1% increase in community ART coverage. Young unmarried women including those living with HIV, migrated at a magnitude similar to that of their male counterparts, and lowered as ART coverage increased over time, reflecting the role of improved HIV services across space in reducing out-migration. A deeper understanding of the characteristics of a migrating population provides critical information towards identifying and addressing gaps in the HIV prevention and care continuum in an era of high mobility. Migration (dpeaa)DE-He213 Migration incidence (dpeaa)DE-He213 Transients and Migrants (dpeaa)DE-He213 Antiretroviral Therapy (dpeaa)DE-He213 Human Immunodeficiency Virus (dpeaa)DE-He213 Kim, Hae-Young aut Tomita, Andrew aut Vandormael, Alain aut Govender, Kaymarlin aut Tanser, Frank aut Enthalten in BMC public health London : BioMed Central, 2001 22(2022), 1 vom: 07. Juni (DE-627)326643583 (DE-600)2041338-5 1471-2458 nnns volume:22 year:2022 number:1 day:07 month:06 https://dx.doi.org/10.1186/s12889-022-13526-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 1 07 06 |
language |
English |
source |
Enthalten in BMC public health 22(2022), 1 vom: 07. Juni volume:22 year:2022 number:1 day:07 month:06 |
sourceStr |
Enthalten in BMC public health 22(2022), 1 vom: 07. Juni volume:22 year:2022 number:1 day:07 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Migration Migration incidence Transients and Migrants Antiretroviral Therapy Human Immunodeficiency Virus |
isfreeaccess_bool |
true |
container_title |
BMC public health |
authorswithroles_txt_mv |
Dzomba, Armstrong @@aut@@ Kim, Hae-Young @@aut@@ Tomita, Andrew @@aut@@ Vandormael, Alain @@aut@@ Govender, Kaymarlin @@aut@@ Tanser, Frank @@aut@@ |
publishDateDaySort_date |
2022-06-07T00:00:00Z |
hierarchy_top_id |
326643583 |
id |
SPR050767127 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR050767127</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509102434.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12889-022-13526-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050767127</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12889-022-13526-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dzomba, Armstrong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predictors of migration in an HIV hyper-endemic rural South African community: evidence from a population-based cohort (2005–2017)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Globally, South Africa hosts the highest number of people living with HIV (PLHIV) and the unique legacy of internal labour migration continues to be a major driver of the regional epidemic, interrupting treatment-as-prevention efforts. The study examined levels, trends, and predictors of migration in rural KwaZulu-Natal Province, South Africa, using population-based surveillance data from 2005 through 2017. We followed 69 604 adult participants aged 15–49 years and recorded their migration events (i.e., out-migration from the surveillance area) in 423 038 person-years over 525 397 observations. Multiple failure Cox-regression models were used to measure the risk of migration by socio-demographic factors: age, sex, educational status, marital status, HIV, and community antiretroviral therapy (ART) coverage. Overall, 69% of the population cohort experienced at least one migration event during the follow-up period. The average incidence rate of migration was 9.96 events and 13.23 events per 100 person-years in women and men, respectively. Migration rates declined from 2005 to 2008 then peaked in 2012 for both women and men. Adjusting for other covariates, the risk of migration was 3.4-times higher among young women aged 20–24 years compared to those aged ≥ 40 years (adjusted Hazard Ratio [aHR] = 3.37, 95% Confidence Interval [CI]: 3:19–3.57), and 2.9-times higher among young men aged 20–24 years compared to those aged ≥ 40 years (aHR = 2.86, 95% CI:2.69–3.04). There was a 9% and 27% decrease in risk of migration among both women (aHR = 0.91, 95% CI: 0.83 – 0.99) and men (aHR = 0.73, 95% CI 0.66 – 0.82) respectively per every 1% increase in community ART coverage. Young unmarried women including those living with HIV, migrated at a magnitude similar to that of their male counterparts, and lowered as ART coverage increased over time, reflecting the role of improved HIV services across space in reducing out-migration. A deeper understanding of the characteristics of a migrating population provides critical information towards identifying and addressing gaps in the HIV prevention and care continuum in an era of high mobility.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Migration</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Migration incidence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transients and Migrants</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Antiretroviral Therapy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Human Immunodeficiency Virus</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Hae-Young</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tomita, Andrew</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vandormael, Alain</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Govender, Kaymarlin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tanser, Frank</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC public health</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">22(2022), 1 vom: 07. Juni</subfield><subfield code="w">(DE-627)326643583</subfield><subfield code="w">(DE-600)2041338-5</subfield><subfield code="x">1471-2458</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:07</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12889-022-13526-w</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">07</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Dzomba, Armstrong |
spellingShingle |
Dzomba, Armstrong misc Migration misc Migration incidence misc Transients and Migrants misc Antiretroviral Therapy misc Human Immunodeficiency Virus Predictors of migration in an HIV hyper-endemic rural South African community: evidence from a population-based cohort (2005–2017) |
authorStr |
Dzomba, Armstrong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326643583 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2458 |
topic_title |
Predictors of migration in an HIV hyper-endemic rural South African community: evidence from a population-based cohort (2005–2017) Migration (dpeaa)DE-He213 Migration incidence (dpeaa)DE-He213 Transients and Migrants (dpeaa)DE-He213 Antiretroviral Therapy (dpeaa)DE-He213 Human Immunodeficiency Virus (dpeaa)DE-He213 |
topic |
misc Migration misc Migration incidence misc Transients and Migrants misc Antiretroviral Therapy misc Human Immunodeficiency Virus |
topic_unstemmed |
misc Migration misc Migration incidence misc Transients and Migrants misc Antiretroviral Therapy misc Human Immunodeficiency Virus |
topic_browse |
misc Migration misc Migration incidence misc Transients and Migrants misc Antiretroviral Therapy misc Human Immunodeficiency Virus |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC public health |
hierarchy_parent_id |
326643583 |
hierarchy_top_title |
BMC public health |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326643583 (DE-600)2041338-5 |
title |
Predictors of migration in an HIV hyper-endemic rural South African community: evidence from a population-based cohort (2005–2017) |
ctrlnum |
(DE-627)SPR050767127 (SPR)s12889-022-13526-w-e |
title_full |
Predictors of migration in an HIV hyper-endemic rural South African community: evidence from a population-based cohort (2005–2017) |
author_sort |
Dzomba, Armstrong |
journal |
BMC public health |
journalStr |
BMC public health |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Dzomba, Armstrong Kim, Hae-Young Tomita, Andrew Vandormael, Alain Govender, Kaymarlin Tanser, Frank |
container_volume |
22 |
format_se |
Elektronische Aufsätze |
author-letter |
Dzomba, Armstrong |
doi_str_mv |
10.1186/s12889-022-13526-w |
title_sort |
predictors of migration in an hiv hyper-endemic rural south african community: evidence from a population-based cohort (2005–2017) |
title_auth |
Predictors of migration in an HIV hyper-endemic rural South African community: evidence from a population-based cohort (2005–2017) |
abstract |
Abstract Globally, South Africa hosts the highest number of people living with HIV (PLHIV) and the unique legacy of internal labour migration continues to be a major driver of the regional epidemic, interrupting treatment-as-prevention efforts. The study examined levels, trends, and predictors of migration in rural KwaZulu-Natal Province, South Africa, using population-based surveillance data from 2005 through 2017. We followed 69 604 adult participants aged 15–49 years and recorded their migration events (i.e., out-migration from the surveillance area) in 423 038 person-years over 525 397 observations. Multiple failure Cox-regression models were used to measure the risk of migration by socio-demographic factors: age, sex, educational status, marital status, HIV, and community antiretroviral therapy (ART) coverage. Overall, 69% of the population cohort experienced at least one migration event during the follow-up period. The average incidence rate of migration was 9.96 events and 13.23 events per 100 person-years in women and men, respectively. Migration rates declined from 2005 to 2008 then peaked in 2012 for both women and men. Adjusting for other covariates, the risk of migration was 3.4-times higher among young women aged 20–24 years compared to those aged ≥ 40 years (adjusted Hazard Ratio [aHR] = 3.37, 95% Confidence Interval [CI]: 3:19–3.57), and 2.9-times higher among young men aged 20–24 years compared to those aged ≥ 40 years (aHR = 2.86, 95% CI:2.69–3.04). There was a 9% and 27% decrease in risk of migration among both women (aHR = 0.91, 95% CI: 0.83 – 0.99) and men (aHR = 0.73, 95% CI 0.66 – 0.82) respectively per every 1% increase in community ART coverage. Young unmarried women including those living with HIV, migrated at a magnitude similar to that of their male counterparts, and lowered as ART coverage increased over time, reflecting the role of improved HIV services across space in reducing out-migration. A deeper understanding of the characteristics of a migrating population provides critical information towards identifying and addressing gaps in the HIV prevention and care continuum in an era of high mobility. © The Author(s) 2022 |
abstractGer |
Abstract Globally, South Africa hosts the highest number of people living with HIV (PLHIV) and the unique legacy of internal labour migration continues to be a major driver of the regional epidemic, interrupting treatment-as-prevention efforts. The study examined levels, trends, and predictors of migration in rural KwaZulu-Natal Province, South Africa, using population-based surveillance data from 2005 through 2017. We followed 69 604 adult participants aged 15–49 years and recorded their migration events (i.e., out-migration from the surveillance area) in 423 038 person-years over 525 397 observations. Multiple failure Cox-regression models were used to measure the risk of migration by socio-demographic factors: age, sex, educational status, marital status, HIV, and community antiretroviral therapy (ART) coverage. Overall, 69% of the population cohort experienced at least one migration event during the follow-up period. The average incidence rate of migration was 9.96 events and 13.23 events per 100 person-years in women and men, respectively. Migration rates declined from 2005 to 2008 then peaked in 2012 for both women and men. Adjusting for other covariates, the risk of migration was 3.4-times higher among young women aged 20–24 years compared to those aged ≥ 40 years (adjusted Hazard Ratio [aHR] = 3.37, 95% Confidence Interval [CI]: 3:19–3.57), and 2.9-times higher among young men aged 20–24 years compared to those aged ≥ 40 years (aHR = 2.86, 95% CI:2.69–3.04). There was a 9% and 27% decrease in risk of migration among both women (aHR = 0.91, 95% CI: 0.83 – 0.99) and men (aHR = 0.73, 95% CI 0.66 – 0.82) respectively per every 1% increase in community ART coverage. Young unmarried women including those living with HIV, migrated at a magnitude similar to that of their male counterparts, and lowered as ART coverage increased over time, reflecting the role of improved HIV services across space in reducing out-migration. A deeper understanding of the characteristics of a migrating population provides critical information towards identifying and addressing gaps in the HIV prevention and care continuum in an era of high mobility. © The Author(s) 2022 |
abstract_unstemmed |
Abstract Globally, South Africa hosts the highest number of people living with HIV (PLHIV) and the unique legacy of internal labour migration continues to be a major driver of the regional epidemic, interrupting treatment-as-prevention efforts. The study examined levels, trends, and predictors of migration in rural KwaZulu-Natal Province, South Africa, using population-based surveillance data from 2005 through 2017. We followed 69 604 adult participants aged 15–49 years and recorded their migration events (i.e., out-migration from the surveillance area) in 423 038 person-years over 525 397 observations. Multiple failure Cox-regression models were used to measure the risk of migration by socio-demographic factors: age, sex, educational status, marital status, HIV, and community antiretroviral therapy (ART) coverage. Overall, 69% of the population cohort experienced at least one migration event during the follow-up period. The average incidence rate of migration was 9.96 events and 13.23 events per 100 person-years in women and men, respectively. Migration rates declined from 2005 to 2008 then peaked in 2012 for both women and men. Adjusting for other covariates, the risk of migration was 3.4-times higher among young women aged 20–24 years compared to those aged ≥ 40 years (adjusted Hazard Ratio [aHR] = 3.37, 95% Confidence Interval [CI]: 3:19–3.57), and 2.9-times higher among young men aged 20–24 years compared to those aged ≥ 40 years (aHR = 2.86, 95% CI:2.69–3.04). There was a 9% and 27% decrease in risk of migration among both women (aHR = 0.91, 95% CI: 0.83 – 0.99) and men (aHR = 0.73, 95% CI 0.66 – 0.82) respectively per every 1% increase in community ART coverage. Young unmarried women including those living with HIV, migrated at a magnitude similar to that of their male counterparts, and lowered as ART coverage increased over time, reflecting the role of improved HIV services across space in reducing out-migration. A deeper understanding of the characteristics of a migrating population provides critical information towards identifying and addressing gaps in the HIV prevention and care continuum in an era of high mobility. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Predictors of migration in an HIV hyper-endemic rural South African community: evidence from a population-based cohort (2005–2017) |
url |
https://dx.doi.org/10.1186/s12889-022-13526-w |
remote_bool |
true |
author2 |
Kim, Hae-Young Tomita, Andrew Vandormael, Alain Govender, Kaymarlin Tanser, Frank |
author2Str |
Kim, Hae-Young Tomita, Andrew Vandormael, Alain Govender, Kaymarlin Tanser, Frank |
ppnlink |
326643583 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12889-022-13526-w |
up_date |
2024-07-03T17:39:00.587Z |
_version_ |
1803580437258305536 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR050767127</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509102434.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12889-022-13526-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050767127</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12889-022-13526-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dzomba, Armstrong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predictors of migration in an HIV hyper-endemic rural South African community: evidence from a population-based cohort (2005–2017)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Globally, South Africa hosts the highest number of people living with HIV (PLHIV) and the unique legacy of internal labour migration continues to be a major driver of the regional epidemic, interrupting treatment-as-prevention efforts. The study examined levels, trends, and predictors of migration in rural KwaZulu-Natal Province, South Africa, using population-based surveillance data from 2005 through 2017. We followed 69 604 adult participants aged 15–49 years and recorded their migration events (i.e., out-migration from the surveillance area) in 423 038 person-years over 525 397 observations. Multiple failure Cox-regression models were used to measure the risk of migration by socio-demographic factors: age, sex, educational status, marital status, HIV, and community antiretroviral therapy (ART) coverage. Overall, 69% of the population cohort experienced at least one migration event during the follow-up period. The average incidence rate of migration was 9.96 events and 13.23 events per 100 person-years in women and men, respectively. Migration rates declined from 2005 to 2008 then peaked in 2012 for both women and men. Adjusting for other covariates, the risk of migration was 3.4-times higher among young women aged 20–24 years compared to those aged ≥ 40 years (adjusted Hazard Ratio [aHR] = 3.37, 95% Confidence Interval [CI]: 3:19–3.57), and 2.9-times higher among young men aged 20–24 years compared to those aged ≥ 40 years (aHR = 2.86, 95% CI:2.69–3.04). There was a 9% and 27% decrease in risk of migration among both women (aHR = 0.91, 95% CI: 0.83 – 0.99) and men (aHR = 0.73, 95% CI 0.66 – 0.82) respectively per every 1% increase in community ART coverage. Young unmarried women including those living with HIV, migrated at a magnitude similar to that of their male counterparts, and lowered as ART coverage increased over time, reflecting the role of improved HIV services across space in reducing out-migration. A deeper understanding of the characteristics of a migrating population provides critical information towards identifying and addressing gaps in the HIV prevention and care continuum in an era of high mobility.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Migration</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Migration incidence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transients and Migrants</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Antiretroviral Therapy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Human Immunodeficiency Virus</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Hae-Young</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tomita, Andrew</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vandormael, Alain</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Govender, Kaymarlin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tanser, Frank</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC public health</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">22(2022), 1 vom: 07. Juni</subfield><subfield code="w">(DE-627)326643583</subfield><subfield code="w">(DE-600)2041338-5</subfield><subfield code="x">1471-2458</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:07</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12889-022-13526-w</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">07</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.399749 |