Detection range of two acoustic transmitters in four reservoir habitat types using passive receivers
Background Recently, South Dakota Department of Game, Fish, and Parks (SDGFP), has undertaken a suite of rigorous acoustic telemetry studies. The goals and scope of the individual research projects vary but all use the same receiver array throughout Lake Sharpe in central South Dakota. Prior to init...
Ausführliche Beschreibung
Autor*in: |
Fincel, Mark [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Animal Biotelemetry - London : BioMed Central, 2013, 10(2022), 1 vom: 17. Juni |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; number:1 ; day:17 ; month:06 |
Links: |
---|
DOI / URN: |
10.1186/s40317-022-00291-1 |
---|
Katalog-ID: |
SPR050793292 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR050793292 | ||
003 | DE-627 | ||
005 | 20230507210859.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40317-022-00291-1 |2 doi | |
035 | |a (DE-627)SPR050793292 | ||
035 | |a (SPR)s40317-022-00291-1-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Fincel, Mark |e verfasserin |4 aut | |
245 | 1 | 0 | |a Detection range of two acoustic transmitters in four reservoir habitat types using passive receivers |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Background Recently, South Dakota Department of Game, Fish, and Parks (SDGFP), has undertaken a suite of rigorous acoustic telemetry studies. The goals and scope of the individual research projects vary but all use the same receiver array throughout Lake Sharpe in central South Dakota. Prior to initiating the telemetry studies, we sought to describe the detection probability of receivers from a representation of habitats within Lake Sharpe, South Dakota. We used both a V9-2H transmitter and a V13-1L transmitter in combination with VR2W 69 kHz passive receivers [all from Innovasea (Vemco)] to determine detection probability in four novel habitats of Lake Sharpe. Both transmitter and receiver were moored at fixed distances (200 m 400, and 600 m) for multiple consecutive days and detection probability compared between transmitter type, distance, site, and diel period using ANOVA following arcsine square-root transformation. Results We found significant differences in detection probability between the four habitat types for both the V9 and V13 transmitters. Sites protected from wind and wave action, and with little boat traffic, had larger detection ranges compared to areas that were wind exposed and host more boat traffic. The site immediately downstream from a hydroelectric dam that is exposed to both high wind fetch and is popular for boating, exhibited the poorest detection probability at all distances for both transmitter types. V13 transmitters consistently exhibited greater detection probability relative to V9 transmitters and this difference was greater at further distances. In general, detection probability was higher at nighttime compared to daytime and these differences were significant dependent on transmitter, site, and distance. Conclusions Using the information presented, SDGFP has modified their receiver array to maximize the ability to detect acoustic transmitters in the novel habitats of Lake Sharpe. Specifically, receiver spacing was reduced and/or expanded dependent on the distance, where 50% detection probability was attained. More work is needed to identify those factors that influence detection probability of acoustic telemetry systems. | ||
650 | 4 | |a Acoustic telemetry |7 (dpeaa)DE-He213 | |
650 | 4 | |a Detection probability |7 (dpeaa)DE-He213 | |
650 | 4 | |a Freshwater fish telemetry |7 (dpeaa)DE-He213 | |
650 | 4 | |a Passive array |7 (dpeaa)DE-He213 | |
650 | 4 | |a Range testing |7 (dpeaa)DE-He213 | |
700 | 1 | |a Goble, Cameron |4 aut | |
700 | 1 | |a Gravenhof, Dylan |4 aut | |
700 | 1 | |a Morey, Hilary |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Animal Biotelemetry |d London : BioMed Central, 2013 |g 10(2022), 1 vom: 17. Juni |w (DE-627)742220176 |w (DE-600)2711027-8 |x 2050-3385 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g number:1 |g day:17 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s40317-022-00291-1 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |e 1 |b 17 |c 06 |
author_variant |
m f mf c g cg d g dg h m hm |
---|---|
matchkey_str |
article:20503385:2022----::eetornefwaositasitrifursroraiat |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s40317-022-00291-1 doi (DE-627)SPR050793292 (SPR)s40317-022-00291-1-e DE-627 ger DE-627 rakwb eng Fincel, Mark verfasserin aut Detection range of two acoustic transmitters in four reservoir habitat types using passive receivers 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Recently, South Dakota Department of Game, Fish, and Parks (SDGFP), has undertaken a suite of rigorous acoustic telemetry studies. The goals and scope of the individual research projects vary but all use the same receiver array throughout Lake Sharpe in central South Dakota. Prior to initiating the telemetry studies, we sought to describe the detection probability of receivers from a representation of habitats within Lake Sharpe, South Dakota. We used both a V9-2H transmitter and a V13-1L transmitter in combination with VR2W 69 kHz passive receivers [all from Innovasea (Vemco)] to determine detection probability in four novel habitats of Lake Sharpe. Both transmitter and receiver were moored at fixed distances (200 m 400, and 600 m) for multiple consecutive days and detection probability compared between transmitter type, distance, site, and diel period using ANOVA following arcsine square-root transformation. Results We found significant differences in detection probability between the four habitat types for both the V9 and V13 transmitters. Sites protected from wind and wave action, and with little boat traffic, had larger detection ranges compared to areas that were wind exposed and host more boat traffic. The site immediately downstream from a hydroelectric dam that is exposed to both high wind fetch and is popular for boating, exhibited the poorest detection probability at all distances for both transmitter types. V13 transmitters consistently exhibited greater detection probability relative to V9 transmitters and this difference was greater at further distances. In general, detection probability was higher at nighttime compared to daytime and these differences were significant dependent on transmitter, site, and distance. Conclusions Using the information presented, SDGFP has modified their receiver array to maximize the ability to detect acoustic transmitters in the novel habitats of Lake Sharpe. Specifically, receiver spacing was reduced and/or expanded dependent on the distance, where 50% detection probability was attained. More work is needed to identify those factors that influence detection probability of acoustic telemetry systems. Acoustic telemetry (dpeaa)DE-He213 Detection probability (dpeaa)DE-He213 Freshwater fish telemetry (dpeaa)DE-He213 Passive array (dpeaa)DE-He213 Range testing (dpeaa)DE-He213 Goble, Cameron aut Gravenhof, Dylan aut Morey, Hilary aut Enthalten in Animal Biotelemetry London : BioMed Central, 2013 10(2022), 1 vom: 17. Juni (DE-627)742220176 (DE-600)2711027-8 2050-3385 nnns volume:10 year:2022 number:1 day:17 month:06 https://dx.doi.org/10.1186/s40317-022-00291-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 1 17 06 |
spelling |
10.1186/s40317-022-00291-1 doi (DE-627)SPR050793292 (SPR)s40317-022-00291-1-e DE-627 ger DE-627 rakwb eng Fincel, Mark verfasserin aut Detection range of two acoustic transmitters in four reservoir habitat types using passive receivers 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Recently, South Dakota Department of Game, Fish, and Parks (SDGFP), has undertaken a suite of rigorous acoustic telemetry studies. The goals and scope of the individual research projects vary but all use the same receiver array throughout Lake Sharpe in central South Dakota. Prior to initiating the telemetry studies, we sought to describe the detection probability of receivers from a representation of habitats within Lake Sharpe, South Dakota. We used both a V9-2H transmitter and a V13-1L transmitter in combination with VR2W 69 kHz passive receivers [all from Innovasea (Vemco)] to determine detection probability in four novel habitats of Lake Sharpe. Both transmitter and receiver were moored at fixed distances (200 m 400, and 600 m) for multiple consecutive days and detection probability compared between transmitter type, distance, site, and diel period using ANOVA following arcsine square-root transformation. Results We found significant differences in detection probability between the four habitat types for both the V9 and V13 transmitters. Sites protected from wind and wave action, and with little boat traffic, had larger detection ranges compared to areas that were wind exposed and host more boat traffic. The site immediately downstream from a hydroelectric dam that is exposed to both high wind fetch and is popular for boating, exhibited the poorest detection probability at all distances for both transmitter types. V13 transmitters consistently exhibited greater detection probability relative to V9 transmitters and this difference was greater at further distances. In general, detection probability was higher at nighttime compared to daytime and these differences were significant dependent on transmitter, site, and distance. Conclusions Using the information presented, SDGFP has modified their receiver array to maximize the ability to detect acoustic transmitters in the novel habitats of Lake Sharpe. Specifically, receiver spacing was reduced and/or expanded dependent on the distance, where 50% detection probability was attained. More work is needed to identify those factors that influence detection probability of acoustic telemetry systems. Acoustic telemetry (dpeaa)DE-He213 Detection probability (dpeaa)DE-He213 Freshwater fish telemetry (dpeaa)DE-He213 Passive array (dpeaa)DE-He213 Range testing (dpeaa)DE-He213 Goble, Cameron aut Gravenhof, Dylan aut Morey, Hilary aut Enthalten in Animal Biotelemetry London : BioMed Central, 2013 10(2022), 1 vom: 17. Juni (DE-627)742220176 (DE-600)2711027-8 2050-3385 nnns volume:10 year:2022 number:1 day:17 month:06 https://dx.doi.org/10.1186/s40317-022-00291-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 1 17 06 |
allfields_unstemmed |
10.1186/s40317-022-00291-1 doi (DE-627)SPR050793292 (SPR)s40317-022-00291-1-e DE-627 ger DE-627 rakwb eng Fincel, Mark verfasserin aut Detection range of two acoustic transmitters in four reservoir habitat types using passive receivers 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Recently, South Dakota Department of Game, Fish, and Parks (SDGFP), has undertaken a suite of rigorous acoustic telemetry studies. The goals and scope of the individual research projects vary but all use the same receiver array throughout Lake Sharpe in central South Dakota. Prior to initiating the telemetry studies, we sought to describe the detection probability of receivers from a representation of habitats within Lake Sharpe, South Dakota. We used both a V9-2H transmitter and a V13-1L transmitter in combination with VR2W 69 kHz passive receivers [all from Innovasea (Vemco)] to determine detection probability in four novel habitats of Lake Sharpe. Both transmitter and receiver were moored at fixed distances (200 m 400, and 600 m) for multiple consecutive days and detection probability compared between transmitter type, distance, site, and diel period using ANOVA following arcsine square-root transformation. Results We found significant differences in detection probability between the four habitat types for both the V9 and V13 transmitters. Sites protected from wind and wave action, and with little boat traffic, had larger detection ranges compared to areas that were wind exposed and host more boat traffic. The site immediately downstream from a hydroelectric dam that is exposed to both high wind fetch and is popular for boating, exhibited the poorest detection probability at all distances for both transmitter types. V13 transmitters consistently exhibited greater detection probability relative to V9 transmitters and this difference was greater at further distances. In general, detection probability was higher at nighttime compared to daytime and these differences were significant dependent on transmitter, site, and distance. Conclusions Using the information presented, SDGFP has modified their receiver array to maximize the ability to detect acoustic transmitters in the novel habitats of Lake Sharpe. Specifically, receiver spacing was reduced and/or expanded dependent on the distance, where 50% detection probability was attained. More work is needed to identify those factors that influence detection probability of acoustic telemetry systems. Acoustic telemetry (dpeaa)DE-He213 Detection probability (dpeaa)DE-He213 Freshwater fish telemetry (dpeaa)DE-He213 Passive array (dpeaa)DE-He213 Range testing (dpeaa)DE-He213 Goble, Cameron aut Gravenhof, Dylan aut Morey, Hilary aut Enthalten in Animal Biotelemetry London : BioMed Central, 2013 10(2022), 1 vom: 17. Juni (DE-627)742220176 (DE-600)2711027-8 2050-3385 nnns volume:10 year:2022 number:1 day:17 month:06 https://dx.doi.org/10.1186/s40317-022-00291-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 1 17 06 |
allfieldsGer |
10.1186/s40317-022-00291-1 doi (DE-627)SPR050793292 (SPR)s40317-022-00291-1-e DE-627 ger DE-627 rakwb eng Fincel, Mark verfasserin aut Detection range of two acoustic transmitters in four reservoir habitat types using passive receivers 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Recently, South Dakota Department of Game, Fish, and Parks (SDGFP), has undertaken a suite of rigorous acoustic telemetry studies. The goals and scope of the individual research projects vary but all use the same receiver array throughout Lake Sharpe in central South Dakota. Prior to initiating the telemetry studies, we sought to describe the detection probability of receivers from a representation of habitats within Lake Sharpe, South Dakota. We used both a V9-2H transmitter and a V13-1L transmitter in combination with VR2W 69 kHz passive receivers [all from Innovasea (Vemco)] to determine detection probability in four novel habitats of Lake Sharpe. Both transmitter and receiver were moored at fixed distances (200 m 400, and 600 m) for multiple consecutive days and detection probability compared between transmitter type, distance, site, and diel period using ANOVA following arcsine square-root transformation. Results We found significant differences in detection probability between the four habitat types for both the V9 and V13 transmitters. Sites protected from wind and wave action, and with little boat traffic, had larger detection ranges compared to areas that were wind exposed and host more boat traffic. The site immediately downstream from a hydroelectric dam that is exposed to both high wind fetch and is popular for boating, exhibited the poorest detection probability at all distances for both transmitter types. V13 transmitters consistently exhibited greater detection probability relative to V9 transmitters and this difference was greater at further distances. In general, detection probability was higher at nighttime compared to daytime and these differences were significant dependent on transmitter, site, and distance. Conclusions Using the information presented, SDGFP has modified their receiver array to maximize the ability to detect acoustic transmitters in the novel habitats of Lake Sharpe. Specifically, receiver spacing was reduced and/or expanded dependent on the distance, where 50% detection probability was attained. More work is needed to identify those factors that influence detection probability of acoustic telemetry systems. Acoustic telemetry (dpeaa)DE-He213 Detection probability (dpeaa)DE-He213 Freshwater fish telemetry (dpeaa)DE-He213 Passive array (dpeaa)DE-He213 Range testing (dpeaa)DE-He213 Goble, Cameron aut Gravenhof, Dylan aut Morey, Hilary aut Enthalten in Animal Biotelemetry London : BioMed Central, 2013 10(2022), 1 vom: 17. Juni (DE-627)742220176 (DE-600)2711027-8 2050-3385 nnns volume:10 year:2022 number:1 day:17 month:06 https://dx.doi.org/10.1186/s40317-022-00291-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 1 17 06 |
allfieldsSound |
10.1186/s40317-022-00291-1 doi (DE-627)SPR050793292 (SPR)s40317-022-00291-1-e DE-627 ger DE-627 rakwb eng Fincel, Mark verfasserin aut Detection range of two acoustic transmitters in four reservoir habitat types using passive receivers 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Recently, South Dakota Department of Game, Fish, and Parks (SDGFP), has undertaken a suite of rigorous acoustic telemetry studies. The goals and scope of the individual research projects vary but all use the same receiver array throughout Lake Sharpe in central South Dakota. Prior to initiating the telemetry studies, we sought to describe the detection probability of receivers from a representation of habitats within Lake Sharpe, South Dakota. We used both a V9-2H transmitter and a V13-1L transmitter in combination with VR2W 69 kHz passive receivers [all from Innovasea (Vemco)] to determine detection probability in four novel habitats of Lake Sharpe. Both transmitter and receiver were moored at fixed distances (200 m 400, and 600 m) for multiple consecutive days and detection probability compared between transmitter type, distance, site, and diel period using ANOVA following arcsine square-root transformation. Results We found significant differences in detection probability between the four habitat types for both the V9 and V13 transmitters. Sites protected from wind and wave action, and with little boat traffic, had larger detection ranges compared to areas that were wind exposed and host more boat traffic. The site immediately downstream from a hydroelectric dam that is exposed to both high wind fetch and is popular for boating, exhibited the poorest detection probability at all distances for both transmitter types. V13 transmitters consistently exhibited greater detection probability relative to V9 transmitters and this difference was greater at further distances. In general, detection probability was higher at nighttime compared to daytime and these differences were significant dependent on transmitter, site, and distance. Conclusions Using the information presented, SDGFP has modified their receiver array to maximize the ability to detect acoustic transmitters in the novel habitats of Lake Sharpe. Specifically, receiver spacing was reduced and/or expanded dependent on the distance, where 50% detection probability was attained. More work is needed to identify those factors that influence detection probability of acoustic telemetry systems. Acoustic telemetry (dpeaa)DE-He213 Detection probability (dpeaa)DE-He213 Freshwater fish telemetry (dpeaa)DE-He213 Passive array (dpeaa)DE-He213 Range testing (dpeaa)DE-He213 Goble, Cameron aut Gravenhof, Dylan aut Morey, Hilary aut Enthalten in Animal Biotelemetry London : BioMed Central, 2013 10(2022), 1 vom: 17. Juni (DE-627)742220176 (DE-600)2711027-8 2050-3385 nnns volume:10 year:2022 number:1 day:17 month:06 https://dx.doi.org/10.1186/s40317-022-00291-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 1 17 06 |
language |
English |
source |
Enthalten in Animal Biotelemetry 10(2022), 1 vom: 17. Juni volume:10 year:2022 number:1 day:17 month:06 |
sourceStr |
Enthalten in Animal Biotelemetry 10(2022), 1 vom: 17. Juni volume:10 year:2022 number:1 day:17 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Acoustic telemetry Detection probability Freshwater fish telemetry Passive array Range testing |
isfreeaccess_bool |
true |
container_title |
Animal Biotelemetry |
authorswithroles_txt_mv |
Fincel, Mark @@aut@@ Goble, Cameron @@aut@@ Gravenhof, Dylan @@aut@@ Morey, Hilary @@aut@@ |
publishDateDaySort_date |
2022-06-17T00:00:00Z |
hierarchy_top_id |
742220176 |
id |
SPR050793292 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050793292</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507210859.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40317-022-00291-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050793292</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40317-022-00291-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fincel, Mark</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Detection range of two acoustic transmitters in four reservoir habitat types using passive receivers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Recently, South Dakota Department of Game, Fish, and Parks (SDGFP), has undertaken a suite of rigorous acoustic telemetry studies. The goals and scope of the individual research projects vary but all use the same receiver array throughout Lake Sharpe in central South Dakota. Prior to initiating the telemetry studies, we sought to describe the detection probability of receivers from a representation of habitats within Lake Sharpe, South Dakota. We used both a V9-2H transmitter and a V13-1L transmitter in combination with VR2W 69 kHz passive receivers [all from Innovasea (Vemco)] to determine detection probability in four novel habitats of Lake Sharpe. Both transmitter and receiver were moored at fixed distances (200 m 400, and 600 m) for multiple consecutive days and detection probability compared between transmitter type, distance, site, and diel period using ANOVA following arcsine square-root transformation. Results We found significant differences in detection probability between the four habitat types for both the V9 and V13 transmitters. Sites protected from wind and wave action, and with little boat traffic, had larger detection ranges compared to areas that were wind exposed and host more boat traffic. The site immediately downstream from a hydroelectric dam that is exposed to both high wind fetch and is popular for boating, exhibited the poorest detection probability at all distances for both transmitter types. V13 transmitters consistently exhibited greater detection probability relative to V9 transmitters and this difference was greater at further distances. In general, detection probability was higher at nighttime compared to daytime and these differences were significant dependent on transmitter, site, and distance. Conclusions Using the information presented, SDGFP has modified their receiver array to maximize the ability to detect acoustic transmitters in the novel habitats of Lake Sharpe. Specifically, receiver spacing was reduced and/or expanded dependent on the distance, where 50% detection probability was attained. More work is needed to identify those factors that influence detection probability of acoustic telemetry systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acoustic telemetry</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Detection probability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Freshwater fish telemetry</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Passive array</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Range testing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goble, Cameron</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gravenhof, Dylan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Morey, Hilary</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Animal Biotelemetry</subfield><subfield code="d">London : BioMed Central, 2013</subfield><subfield code="g">10(2022), 1 vom: 17. Juni</subfield><subfield code="w">(DE-627)742220176</subfield><subfield code="w">(DE-600)2711027-8</subfield><subfield code="x">2050-3385</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:17</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40317-022-00291-1</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">17</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Fincel, Mark |
spellingShingle |
Fincel, Mark misc Acoustic telemetry misc Detection probability misc Freshwater fish telemetry misc Passive array misc Range testing Detection range of two acoustic transmitters in four reservoir habitat types using passive receivers |
authorStr |
Fincel, Mark |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)742220176 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2050-3385 |
topic_title |
Detection range of two acoustic transmitters in four reservoir habitat types using passive receivers Acoustic telemetry (dpeaa)DE-He213 Detection probability (dpeaa)DE-He213 Freshwater fish telemetry (dpeaa)DE-He213 Passive array (dpeaa)DE-He213 Range testing (dpeaa)DE-He213 |
topic |
misc Acoustic telemetry misc Detection probability misc Freshwater fish telemetry misc Passive array misc Range testing |
topic_unstemmed |
misc Acoustic telemetry misc Detection probability misc Freshwater fish telemetry misc Passive array misc Range testing |
topic_browse |
misc Acoustic telemetry misc Detection probability misc Freshwater fish telemetry misc Passive array misc Range testing |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Animal Biotelemetry |
hierarchy_parent_id |
742220176 |
hierarchy_top_title |
Animal Biotelemetry |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)742220176 (DE-600)2711027-8 |
title |
Detection range of two acoustic transmitters in four reservoir habitat types using passive receivers |
ctrlnum |
(DE-627)SPR050793292 (SPR)s40317-022-00291-1-e |
title_full |
Detection range of two acoustic transmitters in four reservoir habitat types using passive receivers |
author_sort |
Fincel, Mark |
journal |
Animal Biotelemetry |
journalStr |
Animal Biotelemetry |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Fincel, Mark Goble, Cameron Gravenhof, Dylan Morey, Hilary |
container_volume |
10 |
format_se |
Elektronische Aufsätze |
author-letter |
Fincel, Mark |
doi_str_mv |
10.1186/s40317-022-00291-1 |
title_sort |
detection range of two acoustic transmitters in four reservoir habitat types using passive receivers |
title_auth |
Detection range of two acoustic transmitters in four reservoir habitat types using passive receivers |
abstract |
Background Recently, South Dakota Department of Game, Fish, and Parks (SDGFP), has undertaken a suite of rigorous acoustic telemetry studies. The goals and scope of the individual research projects vary but all use the same receiver array throughout Lake Sharpe in central South Dakota. Prior to initiating the telemetry studies, we sought to describe the detection probability of receivers from a representation of habitats within Lake Sharpe, South Dakota. We used both a V9-2H transmitter and a V13-1L transmitter in combination with VR2W 69 kHz passive receivers [all from Innovasea (Vemco)] to determine detection probability in four novel habitats of Lake Sharpe. Both transmitter and receiver were moored at fixed distances (200 m 400, and 600 m) for multiple consecutive days and detection probability compared between transmitter type, distance, site, and diel period using ANOVA following arcsine square-root transformation. Results We found significant differences in detection probability between the four habitat types for both the V9 and V13 transmitters. Sites protected from wind and wave action, and with little boat traffic, had larger detection ranges compared to areas that were wind exposed and host more boat traffic. The site immediately downstream from a hydroelectric dam that is exposed to both high wind fetch and is popular for boating, exhibited the poorest detection probability at all distances for both transmitter types. V13 transmitters consistently exhibited greater detection probability relative to V9 transmitters and this difference was greater at further distances. In general, detection probability was higher at nighttime compared to daytime and these differences were significant dependent on transmitter, site, and distance. Conclusions Using the information presented, SDGFP has modified their receiver array to maximize the ability to detect acoustic transmitters in the novel habitats of Lake Sharpe. Specifically, receiver spacing was reduced and/or expanded dependent on the distance, where 50% detection probability was attained. More work is needed to identify those factors that influence detection probability of acoustic telemetry systems. © The Author(s) 2022 |
abstractGer |
Background Recently, South Dakota Department of Game, Fish, and Parks (SDGFP), has undertaken a suite of rigorous acoustic telemetry studies. The goals and scope of the individual research projects vary but all use the same receiver array throughout Lake Sharpe in central South Dakota. Prior to initiating the telemetry studies, we sought to describe the detection probability of receivers from a representation of habitats within Lake Sharpe, South Dakota. We used both a V9-2H transmitter and a V13-1L transmitter in combination with VR2W 69 kHz passive receivers [all from Innovasea (Vemco)] to determine detection probability in four novel habitats of Lake Sharpe. Both transmitter and receiver were moored at fixed distances (200 m 400, and 600 m) for multiple consecutive days and detection probability compared between transmitter type, distance, site, and diel period using ANOVA following arcsine square-root transformation. Results We found significant differences in detection probability between the four habitat types for both the V9 and V13 transmitters. Sites protected from wind and wave action, and with little boat traffic, had larger detection ranges compared to areas that were wind exposed and host more boat traffic. The site immediately downstream from a hydroelectric dam that is exposed to both high wind fetch and is popular for boating, exhibited the poorest detection probability at all distances for both transmitter types. V13 transmitters consistently exhibited greater detection probability relative to V9 transmitters and this difference was greater at further distances. In general, detection probability was higher at nighttime compared to daytime and these differences were significant dependent on transmitter, site, and distance. Conclusions Using the information presented, SDGFP has modified their receiver array to maximize the ability to detect acoustic transmitters in the novel habitats of Lake Sharpe. Specifically, receiver spacing was reduced and/or expanded dependent on the distance, where 50% detection probability was attained. More work is needed to identify those factors that influence detection probability of acoustic telemetry systems. © The Author(s) 2022 |
abstract_unstemmed |
Background Recently, South Dakota Department of Game, Fish, and Parks (SDGFP), has undertaken a suite of rigorous acoustic telemetry studies. The goals and scope of the individual research projects vary but all use the same receiver array throughout Lake Sharpe in central South Dakota. Prior to initiating the telemetry studies, we sought to describe the detection probability of receivers from a representation of habitats within Lake Sharpe, South Dakota. We used both a V9-2H transmitter and a V13-1L transmitter in combination with VR2W 69 kHz passive receivers [all from Innovasea (Vemco)] to determine detection probability in four novel habitats of Lake Sharpe. Both transmitter and receiver were moored at fixed distances (200 m 400, and 600 m) for multiple consecutive days and detection probability compared between transmitter type, distance, site, and diel period using ANOVA following arcsine square-root transformation. Results We found significant differences in detection probability between the four habitat types for both the V9 and V13 transmitters. Sites protected from wind and wave action, and with little boat traffic, had larger detection ranges compared to areas that were wind exposed and host more boat traffic. The site immediately downstream from a hydroelectric dam that is exposed to both high wind fetch and is popular for boating, exhibited the poorest detection probability at all distances for both transmitter types. V13 transmitters consistently exhibited greater detection probability relative to V9 transmitters and this difference was greater at further distances. In general, detection probability was higher at nighttime compared to daytime and these differences were significant dependent on transmitter, site, and distance. Conclusions Using the information presented, SDGFP has modified their receiver array to maximize the ability to detect acoustic transmitters in the novel habitats of Lake Sharpe. Specifically, receiver spacing was reduced and/or expanded dependent on the distance, where 50% detection probability was attained. More work is needed to identify those factors that influence detection probability of acoustic telemetry systems. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Detection range of two acoustic transmitters in four reservoir habitat types using passive receivers |
url |
https://dx.doi.org/10.1186/s40317-022-00291-1 |
remote_bool |
true |
author2 |
Goble, Cameron Gravenhof, Dylan Morey, Hilary |
author2Str |
Goble, Cameron Gravenhof, Dylan Morey, Hilary |
ppnlink |
742220176 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40317-022-00291-1 |
up_date |
2024-07-03T17:48:58.022Z |
_version_ |
1803581063714308096 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050793292</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507210859.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40317-022-00291-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050793292</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40317-022-00291-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fincel, Mark</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Detection range of two acoustic transmitters in four reservoir habitat types using passive receivers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Recently, South Dakota Department of Game, Fish, and Parks (SDGFP), has undertaken a suite of rigorous acoustic telemetry studies. The goals and scope of the individual research projects vary but all use the same receiver array throughout Lake Sharpe in central South Dakota. Prior to initiating the telemetry studies, we sought to describe the detection probability of receivers from a representation of habitats within Lake Sharpe, South Dakota. We used both a V9-2H transmitter and a V13-1L transmitter in combination with VR2W 69 kHz passive receivers [all from Innovasea (Vemco)] to determine detection probability in four novel habitats of Lake Sharpe. Both transmitter and receiver were moored at fixed distances (200 m 400, and 600 m) for multiple consecutive days and detection probability compared between transmitter type, distance, site, and diel period using ANOVA following arcsine square-root transformation. Results We found significant differences in detection probability between the four habitat types for both the V9 and V13 transmitters. Sites protected from wind and wave action, and with little boat traffic, had larger detection ranges compared to areas that were wind exposed and host more boat traffic. The site immediately downstream from a hydroelectric dam that is exposed to both high wind fetch and is popular for boating, exhibited the poorest detection probability at all distances for both transmitter types. V13 transmitters consistently exhibited greater detection probability relative to V9 transmitters and this difference was greater at further distances. In general, detection probability was higher at nighttime compared to daytime and these differences were significant dependent on transmitter, site, and distance. Conclusions Using the information presented, SDGFP has modified their receiver array to maximize the ability to detect acoustic transmitters in the novel habitats of Lake Sharpe. Specifically, receiver spacing was reduced and/or expanded dependent on the distance, where 50% detection probability was attained. More work is needed to identify those factors that influence detection probability of acoustic telemetry systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acoustic telemetry</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Detection probability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Freshwater fish telemetry</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Passive array</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Range testing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goble, Cameron</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gravenhof, Dylan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Morey, Hilary</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Animal Biotelemetry</subfield><subfield code="d">London : BioMed Central, 2013</subfield><subfield code="g">10(2022), 1 vom: 17. Juni</subfield><subfield code="w">(DE-627)742220176</subfield><subfield code="w">(DE-600)2711027-8</subfield><subfield code="x">2050-3385</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:17</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40317-022-00291-1</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">17</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.40055 |