Machine learning approach for the prediction of 30-day mortality in patients with sepsis-associated encephalopathy

Objective Our study aimed to identify predictors as well as develop machine learning (ML) models to predict the risk of 30-day mortality in patients with sepsis-associated encephalopathy (SAE). Materials and methods ML models were developed and validated based on a public database named Medical Info...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Peng, Liwei [verfasserIn]

Peng, Chi

Yang, Fan

Wang, Jian

Zuo, Wei

Cheng, Chao

Mao, Zilong

Jin, Zhichao

Li, Weixin

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Machine learning

Model interpretation

Sepsis-associated encephalopathy

SAE

Web-based calculator

Anmerkung:

© The Author(s) 2022

Übergeordnetes Werk:

Enthalten in: BMC medical research methodology - London : BioMed Central, 2001, 22(2022), 1 vom: 04. Juli

Übergeordnetes Werk:

volume:22 ; year:2022 ; number:1 ; day:04 ; month:07

Links:

Volltext

DOI / URN:

10.1186/s12874-022-01664-z

Katalog-ID:

SPR050827308

Nicht das Richtige dabei?

Schreiben Sie uns!