Chemical reactions of oily sludge catalyzed by iron oxide under supercritical water gasification condition
Abstract Supercritical water gasification is a promising technology in dealing with the degradation of hazardous waste, such as oily sludge, accompanied by the production of fuel gases. To evaluate the mechanism of $ Fe_{2} %$ O_{3} $ catalyst and the migration pathways of heteroatoms and to investi...
Ausführliche Beschreibung
Autor*in: |
Zhang, Houjun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Higher Education Press 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Frontiers of chemical engineering in China - Beijing : Higher Education Press, 2007, 16(2022), 6 vom: 07. März, Seite 886-896 |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2022 ; number:6 ; day:07 ; month:03 ; pages:886-896 |
Links: |
---|
DOI / URN: |
10.1007/s11705-021-2125-z |
---|
Katalog-ID: |
SPR050832409 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR050832409 | ||
003 | DE-627 | ||
005 | 20230507224344.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11705-021-2125-z |2 doi | |
035 | |a (DE-627)SPR050832409 | ||
035 | |a (SPR)s11705-021-2125-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Zhang, Houjun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Chemical reactions of oily sludge catalyzed by iron oxide under supercritical water gasification condition |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Higher Education Press 2022 | ||
520 | |a Abstract Supercritical water gasification is a promising technology in dealing with the degradation of hazardous waste, such as oily sludge, accompanied by the production of fuel gases. To evaluate the mechanism of $ Fe_{2} %$ O_{3} $ catalyst and the migration pathways of heteroatoms and to investigate the systems during the process, reactive force field molecular dynamics simulations are adopted. In terms of the catalytic mechanisms of $ Fe_{2} %$ O_{3} $, the surface lattice oxygen is consumed by small carbon fragments to produce CO and $ CO_{2} $, improving the catalytic performance of the cluster due to more unsaturated coordination Fe sites exposed. Lattice oxygen combines with •H radicals to form water molecules, improving the catalytic performance. Furthermore, the pathway of asphaltene degradation was revealed at an atomic level, as well as products. Moreover, the adsorption of hydroxyl radical on the S atom caused breakage of the two C-S bonds in turn, forming •HSO intermediate, so that the organic S element was fixed into the inorganic liquid phase. The heteroatom O was removed under the effects of supercritical water. Heavy metal particles presented in the oily sludge, such as iron in association with $ Fe_{2} %$ O_{3} $ catalyst, helped accelerate the degradation of asphaltenes. | ||
650 | 4 | |a oily sludge |7 (dpeaa)DE-He213 | |
650 | 4 | |a SCWG |7 (dpeaa)DE-He213 | |
650 | 4 | |a ReaxFF |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fe |7 (dpeaa)DE-He213 | |
650 | 4 | |a O |7 (dpeaa)DE-He213 | |
650 | 4 | |a heteroatoms |7 (dpeaa)DE-He213 | |
700 | 1 | |a Chen, Fang |4 aut | |
700 | 1 | |a Xu, Jipeng |4 aut | |
700 | 1 | |a Zhang, Jinli |4 aut | |
700 | 1 | |a Han, You |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Frontiers of chemical engineering in China |d Beijing : Higher Education Press, 2007 |g 16(2022), 6 vom: 07. März, Seite 886-896 |w (DE-627)545787602 |w (DE-600)2388862-3 |x 1673-7474 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2022 |g number:6 |g day:07 |g month:03 |g pages:886-896 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11705-021-2125-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
951 | |a AR | ||
952 | |d 16 |j 2022 |e 6 |b 07 |c 03 |h 886-896 |
author_variant |
h z hz f c fc j x jx j z jz y h yh |
---|---|
matchkey_str |
article:16737474:2022----::hmclecinoolsugctlzdyrnxdudrueciiaw |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s11705-021-2125-z doi (DE-627)SPR050832409 (SPR)s11705-021-2125-z-e DE-627 ger DE-627 rakwb eng Zhang, Houjun verfasserin aut Chemical reactions of oily sludge catalyzed by iron oxide under supercritical water gasification condition 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Higher Education Press 2022 Abstract Supercritical water gasification is a promising technology in dealing with the degradation of hazardous waste, such as oily sludge, accompanied by the production of fuel gases. To evaluate the mechanism of $ Fe_{2} %$ O_{3} $ catalyst and the migration pathways of heteroatoms and to investigate the systems during the process, reactive force field molecular dynamics simulations are adopted. In terms of the catalytic mechanisms of $ Fe_{2} %$ O_{3} $, the surface lattice oxygen is consumed by small carbon fragments to produce CO and $ CO_{2} $, improving the catalytic performance of the cluster due to more unsaturated coordination Fe sites exposed. Lattice oxygen combines with •H radicals to form water molecules, improving the catalytic performance. Furthermore, the pathway of asphaltene degradation was revealed at an atomic level, as well as products. Moreover, the adsorption of hydroxyl radical on the S atom caused breakage of the two C-S bonds in turn, forming •HSO intermediate, so that the organic S element was fixed into the inorganic liquid phase. The heteroatom O was removed under the effects of supercritical water. Heavy metal particles presented in the oily sludge, such as iron in association with $ Fe_{2} %$ O_{3} $ catalyst, helped accelerate the degradation of asphaltenes. oily sludge (dpeaa)DE-He213 SCWG (dpeaa)DE-He213 ReaxFF (dpeaa)DE-He213 Fe (dpeaa)DE-He213 O (dpeaa)DE-He213 heteroatoms (dpeaa)DE-He213 Chen, Fang aut Xu, Jipeng aut Zhang, Jinli aut Han, You aut Enthalten in Frontiers of chemical engineering in China Beijing : Higher Education Press, 2007 16(2022), 6 vom: 07. März, Seite 886-896 (DE-627)545787602 (DE-600)2388862-3 1673-7474 nnns volume:16 year:2022 number:6 day:07 month:03 pages:886-896 https://dx.doi.org/10.1007/s11705-021-2125-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 16 2022 6 07 03 886-896 |
spelling |
10.1007/s11705-021-2125-z doi (DE-627)SPR050832409 (SPR)s11705-021-2125-z-e DE-627 ger DE-627 rakwb eng Zhang, Houjun verfasserin aut Chemical reactions of oily sludge catalyzed by iron oxide under supercritical water gasification condition 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Higher Education Press 2022 Abstract Supercritical water gasification is a promising technology in dealing with the degradation of hazardous waste, such as oily sludge, accompanied by the production of fuel gases. To evaluate the mechanism of $ Fe_{2} %$ O_{3} $ catalyst and the migration pathways of heteroatoms and to investigate the systems during the process, reactive force field molecular dynamics simulations are adopted. In terms of the catalytic mechanisms of $ Fe_{2} %$ O_{3} $, the surface lattice oxygen is consumed by small carbon fragments to produce CO and $ CO_{2} $, improving the catalytic performance of the cluster due to more unsaturated coordination Fe sites exposed. Lattice oxygen combines with •H radicals to form water molecules, improving the catalytic performance. Furthermore, the pathway of asphaltene degradation was revealed at an atomic level, as well as products. Moreover, the adsorption of hydroxyl radical on the S atom caused breakage of the two C-S bonds in turn, forming •HSO intermediate, so that the organic S element was fixed into the inorganic liquid phase. The heteroatom O was removed under the effects of supercritical water. Heavy metal particles presented in the oily sludge, such as iron in association with $ Fe_{2} %$ O_{3} $ catalyst, helped accelerate the degradation of asphaltenes. oily sludge (dpeaa)DE-He213 SCWG (dpeaa)DE-He213 ReaxFF (dpeaa)DE-He213 Fe (dpeaa)DE-He213 O (dpeaa)DE-He213 heteroatoms (dpeaa)DE-He213 Chen, Fang aut Xu, Jipeng aut Zhang, Jinli aut Han, You aut Enthalten in Frontiers of chemical engineering in China Beijing : Higher Education Press, 2007 16(2022), 6 vom: 07. März, Seite 886-896 (DE-627)545787602 (DE-600)2388862-3 1673-7474 nnns volume:16 year:2022 number:6 day:07 month:03 pages:886-896 https://dx.doi.org/10.1007/s11705-021-2125-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 16 2022 6 07 03 886-896 |
allfields_unstemmed |
10.1007/s11705-021-2125-z doi (DE-627)SPR050832409 (SPR)s11705-021-2125-z-e DE-627 ger DE-627 rakwb eng Zhang, Houjun verfasserin aut Chemical reactions of oily sludge catalyzed by iron oxide under supercritical water gasification condition 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Higher Education Press 2022 Abstract Supercritical water gasification is a promising technology in dealing with the degradation of hazardous waste, such as oily sludge, accompanied by the production of fuel gases. To evaluate the mechanism of $ Fe_{2} %$ O_{3} $ catalyst and the migration pathways of heteroatoms and to investigate the systems during the process, reactive force field molecular dynamics simulations are adopted. In terms of the catalytic mechanisms of $ Fe_{2} %$ O_{3} $, the surface lattice oxygen is consumed by small carbon fragments to produce CO and $ CO_{2} $, improving the catalytic performance of the cluster due to more unsaturated coordination Fe sites exposed. Lattice oxygen combines with •H radicals to form water molecules, improving the catalytic performance. Furthermore, the pathway of asphaltene degradation was revealed at an atomic level, as well as products. Moreover, the adsorption of hydroxyl radical on the S atom caused breakage of the two C-S bonds in turn, forming •HSO intermediate, so that the organic S element was fixed into the inorganic liquid phase. The heteroatom O was removed under the effects of supercritical water. Heavy metal particles presented in the oily sludge, such as iron in association with $ Fe_{2} %$ O_{3} $ catalyst, helped accelerate the degradation of asphaltenes. oily sludge (dpeaa)DE-He213 SCWG (dpeaa)DE-He213 ReaxFF (dpeaa)DE-He213 Fe (dpeaa)DE-He213 O (dpeaa)DE-He213 heteroatoms (dpeaa)DE-He213 Chen, Fang aut Xu, Jipeng aut Zhang, Jinli aut Han, You aut Enthalten in Frontiers of chemical engineering in China Beijing : Higher Education Press, 2007 16(2022), 6 vom: 07. März, Seite 886-896 (DE-627)545787602 (DE-600)2388862-3 1673-7474 nnns volume:16 year:2022 number:6 day:07 month:03 pages:886-896 https://dx.doi.org/10.1007/s11705-021-2125-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 16 2022 6 07 03 886-896 |
allfieldsGer |
10.1007/s11705-021-2125-z doi (DE-627)SPR050832409 (SPR)s11705-021-2125-z-e DE-627 ger DE-627 rakwb eng Zhang, Houjun verfasserin aut Chemical reactions of oily sludge catalyzed by iron oxide under supercritical water gasification condition 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Higher Education Press 2022 Abstract Supercritical water gasification is a promising technology in dealing with the degradation of hazardous waste, such as oily sludge, accompanied by the production of fuel gases. To evaluate the mechanism of $ Fe_{2} %$ O_{3} $ catalyst and the migration pathways of heteroatoms and to investigate the systems during the process, reactive force field molecular dynamics simulations are adopted. In terms of the catalytic mechanisms of $ Fe_{2} %$ O_{3} $, the surface lattice oxygen is consumed by small carbon fragments to produce CO and $ CO_{2} $, improving the catalytic performance of the cluster due to more unsaturated coordination Fe sites exposed. Lattice oxygen combines with •H radicals to form water molecules, improving the catalytic performance. Furthermore, the pathway of asphaltene degradation was revealed at an atomic level, as well as products. Moreover, the adsorption of hydroxyl radical on the S atom caused breakage of the two C-S bonds in turn, forming •HSO intermediate, so that the organic S element was fixed into the inorganic liquid phase. The heteroatom O was removed under the effects of supercritical water. Heavy metal particles presented in the oily sludge, such as iron in association with $ Fe_{2} %$ O_{3} $ catalyst, helped accelerate the degradation of asphaltenes. oily sludge (dpeaa)DE-He213 SCWG (dpeaa)DE-He213 ReaxFF (dpeaa)DE-He213 Fe (dpeaa)DE-He213 O (dpeaa)DE-He213 heteroatoms (dpeaa)DE-He213 Chen, Fang aut Xu, Jipeng aut Zhang, Jinli aut Han, You aut Enthalten in Frontiers of chemical engineering in China Beijing : Higher Education Press, 2007 16(2022), 6 vom: 07. März, Seite 886-896 (DE-627)545787602 (DE-600)2388862-3 1673-7474 nnns volume:16 year:2022 number:6 day:07 month:03 pages:886-896 https://dx.doi.org/10.1007/s11705-021-2125-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 16 2022 6 07 03 886-896 |
allfieldsSound |
10.1007/s11705-021-2125-z doi (DE-627)SPR050832409 (SPR)s11705-021-2125-z-e DE-627 ger DE-627 rakwb eng Zhang, Houjun verfasserin aut Chemical reactions of oily sludge catalyzed by iron oxide under supercritical water gasification condition 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Higher Education Press 2022 Abstract Supercritical water gasification is a promising technology in dealing with the degradation of hazardous waste, such as oily sludge, accompanied by the production of fuel gases. To evaluate the mechanism of $ Fe_{2} %$ O_{3} $ catalyst and the migration pathways of heteroatoms and to investigate the systems during the process, reactive force field molecular dynamics simulations are adopted. In terms of the catalytic mechanisms of $ Fe_{2} %$ O_{3} $, the surface lattice oxygen is consumed by small carbon fragments to produce CO and $ CO_{2} $, improving the catalytic performance of the cluster due to more unsaturated coordination Fe sites exposed. Lattice oxygen combines with •H radicals to form water molecules, improving the catalytic performance. Furthermore, the pathway of asphaltene degradation was revealed at an atomic level, as well as products. Moreover, the adsorption of hydroxyl radical on the S atom caused breakage of the two C-S bonds in turn, forming •HSO intermediate, so that the organic S element was fixed into the inorganic liquid phase. The heteroatom O was removed under the effects of supercritical water. Heavy metal particles presented in the oily sludge, such as iron in association with $ Fe_{2} %$ O_{3} $ catalyst, helped accelerate the degradation of asphaltenes. oily sludge (dpeaa)DE-He213 SCWG (dpeaa)DE-He213 ReaxFF (dpeaa)DE-He213 Fe (dpeaa)DE-He213 O (dpeaa)DE-He213 heteroatoms (dpeaa)DE-He213 Chen, Fang aut Xu, Jipeng aut Zhang, Jinli aut Han, You aut Enthalten in Frontiers of chemical engineering in China Beijing : Higher Education Press, 2007 16(2022), 6 vom: 07. März, Seite 886-896 (DE-627)545787602 (DE-600)2388862-3 1673-7474 nnns volume:16 year:2022 number:6 day:07 month:03 pages:886-896 https://dx.doi.org/10.1007/s11705-021-2125-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 16 2022 6 07 03 886-896 |
language |
English |
source |
Enthalten in Frontiers of chemical engineering in China 16(2022), 6 vom: 07. März, Seite 886-896 volume:16 year:2022 number:6 day:07 month:03 pages:886-896 |
sourceStr |
Enthalten in Frontiers of chemical engineering in China 16(2022), 6 vom: 07. März, Seite 886-896 volume:16 year:2022 number:6 day:07 month:03 pages:886-896 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
oily sludge SCWG ReaxFF Fe O heteroatoms |
isfreeaccess_bool |
false |
container_title |
Frontiers of chemical engineering in China |
authorswithroles_txt_mv |
Zhang, Houjun @@aut@@ Chen, Fang @@aut@@ Xu, Jipeng @@aut@@ Zhang, Jinli @@aut@@ Han, You @@aut@@ |
publishDateDaySort_date |
2022-03-07T00:00:00Z |
hierarchy_top_id |
545787602 |
id |
SPR050832409 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050832409</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507224344.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11705-021-2125-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050832409</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11705-021-2125-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Houjun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chemical reactions of oily sludge catalyzed by iron oxide under supercritical water gasification condition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Higher Education Press 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Supercritical water gasification is a promising technology in dealing with the degradation of hazardous waste, such as oily sludge, accompanied by the production of fuel gases. To evaluate the mechanism of $ Fe_{2} %$ O_{3} $ catalyst and the migration pathways of heteroatoms and to investigate the systems during the process, reactive force field molecular dynamics simulations are adopted. In terms of the catalytic mechanisms of $ Fe_{2} %$ O_{3} $, the surface lattice oxygen is consumed by small carbon fragments to produce CO and $ CO_{2} $, improving the catalytic performance of the cluster due to more unsaturated coordination Fe sites exposed. Lattice oxygen combines with •H radicals to form water molecules, improving the catalytic performance. Furthermore, the pathway of asphaltene degradation was revealed at an atomic level, as well as products. Moreover, the adsorption of hydroxyl radical on the S atom caused breakage of the two C-S bonds in turn, forming •HSO intermediate, so that the organic S element was fixed into the inorganic liquid phase. The heteroatom O was removed under the effects of supercritical water. Heavy metal particles presented in the oily sludge, such as iron in association with $ Fe_{2} %$ O_{3} $ catalyst, helped accelerate the degradation of asphaltenes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oily sludge</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SCWG</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ReaxFF</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fe</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">O</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heteroatoms</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Fang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Jipeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jinli</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, You</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Frontiers of chemical engineering in China</subfield><subfield code="d">Beijing : Higher Education Press, 2007</subfield><subfield code="g">16(2022), 6 vom: 07. März, Seite 886-896</subfield><subfield code="w">(DE-627)545787602</subfield><subfield code="w">(DE-600)2388862-3</subfield><subfield code="x">1673-7474</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:6</subfield><subfield code="g">day:07</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:886-896</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11705-021-2125-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2022</subfield><subfield code="e">6</subfield><subfield code="b">07</subfield><subfield code="c">03</subfield><subfield code="h">886-896</subfield></datafield></record></collection>
|
author |
Zhang, Houjun |
spellingShingle |
Zhang, Houjun misc oily sludge misc SCWG misc ReaxFF misc Fe misc O misc heteroatoms Chemical reactions of oily sludge catalyzed by iron oxide under supercritical water gasification condition |
authorStr |
Zhang, Houjun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)545787602 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1673-7474 |
topic_title |
Chemical reactions of oily sludge catalyzed by iron oxide under supercritical water gasification condition oily sludge (dpeaa)DE-He213 SCWG (dpeaa)DE-He213 ReaxFF (dpeaa)DE-He213 Fe (dpeaa)DE-He213 O (dpeaa)DE-He213 heteroatoms (dpeaa)DE-He213 |
topic |
misc oily sludge misc SCWG misc ReaxFF misc Fe misc O misc heteroatoms |
topic_unstemmed |
misc oily sludge misc SCWG misc ReaxFF misc Fe misc O misc heteroatoms |
topic_browse |
misc oily sludge misc SCWG misc ReaxFF misc Fe misc O misc heteroatoms |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers of chemical engineering in China |
hierarchy_parent_id |
545787602 |
hierarchy_top_title |
Frontiers of chemical engineering in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)545787602 (DE-600)2388862-3 |
title |
Chemical reactions of oily sludge catalyzed by iron oxide under supercritical water gasification condition |
ctrlnum |
(DE-627)SPR050832409 (SPR)s11705-021-2125-z-e |
title_full |
Chemical reactions of oily sludge catalyzed by iron oxide under supercritical water gasification condition |
author_sort |
Zhang, Houjun |
journal |
Frontiers of chemical engineering in China |
journalStr |
Frontiers of chemical engineering in China |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
886 |
author_browse |
Zhang, Houjun Chen, Fang Xu, Jipeng Zhang, Jinli Han, You |
container_volume |
16 |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Houjun |
doi_str_mv |
10.1007/s11705-021-2125-z |
title_sort |
chemical reactions of oily sludge catalyzed by iron oxide under supercritical water gasification condition |
title_auth |
Chemical reactions of oily sludge catalyzed by iron oxide under supercritical water gasification condition |
abstract |
Abstract Supercritical water gasification is a promising technology in dealing with the degradation of hazardous waste, such as oily sludge, accompanied by the production of fuel gases. To evaluate the mechanism of $ Fe_{2} %$ O_{3} $ catalyst and the migration pathways of heteroatoms and to investigate the systems during the process, reactive force field molecular dynamics simulations are adopted. In terms of the catalytic mechanisms of $ Fe_{2} %$ O_{3} $, the surface lattice oxygen is consumed by small carbon fragments to produce CO and $ CO_{2} $, improving the catalytic performance of the cluster due to more unsaturated coordination Fe sites exposed. Lattice oxygen combines with •H radicals to form water molecules, improving the catalytic performance. Furthermore, the pathway of asphaltene degradation was revealed at an atomic level, as well as products. Moreover, the adsorption of hydroxyl radical on the S atom caused breakage of the two C-S bonds in turn, forming •HSO intermediate, so that the organic S element was fixed into the inorganic liquid phase. The heteroatom O was removed under the effects of supercritical water. Heavy metal particles presented in the oily sludge, such as iron in association with $ Fe_{2} %$ O_{3} $ catalyst, helped accelerate the degradation of asphaltenes. © Higher Education Press 2022 |
abstractGer |
Abstract Supercritical water gasification is a promising technology in dealing with the degradation of hazardous waste, such as oily sludge, accompanied by the production of fuel gases. To evaluate the mechanism of $ Fe_{2} %$ O_{3} $ catalyst and the migration pathways of heteroatoms and to investigate the systems during the process, reactive force field molecular dynamics simulations are adopted. In terms of the catalytic mechanisms of $ Fe_{2} %$ O_{3} $, the surface lattice oxygen is consumed by small carbon fragments to produce CO and $ CO_{2} $, improving the catalytic performance of the cluster due to more unsaturated coordination Fe sites exposed. Lattice oxygen combines with •H radicals to form water molecules, improving the catalytic performance. Furthermore, the pathway of asphaltene degradation was revealed at an atomic level, as well as products. Moreover, the adsorption of hydroxyl radical on the S atom caused breakage of the two C-S bonds in turn, forming •HSO intermediate, so that the organic S element was fixed into the inorganic liquid phase. The heteroatom O was removed under the effects of supercritical water. Heavy metal particles presented in the oily sludge, such as iron in association with $ Fe_{2} %$ O_{3} $ catalyst, helped accelerate the degradation of asphaltenes. © Higher Education Press 2022 |
abstract_unstemmed |
Abstract Supercritical water gasification is a promising technology in dealing with the degradation of hazardous waste, such as oily sludge, accompanied by the production of fuel gases. To evaluate the mechanism of $ Fe_{2} %$ O_{3} $ catalyst and the migration pathways of heteroatoms and to investigate the systems during the process, reactive force field molecular dynamics simulations are adopted. In terms of the catalytic mechanisms of $ Fe_{2} %$ O_{3} $, the surface lattice oxygen is consumed by small carbon fragments to produce CO and $ CO_{2} $, improving the catalytic performance of the cluster due to more unsaturated coordination Fe sites exposed. Lattice oxygen combines with •H radicals to form water molecules, improving the catalytic performance. Furthermore, the pathway of asphaltene degradation was revealed at an atomic level, as well as products. Moreover, the adsorption of hydroxyl radical on the S atom caused breakage of the two C-S bonds in turn, forming •HSO intermediate, so that the organic S element was fixed into the inorganic liquid phase. The heteroatom O was removed under the effects of supercritical water. Heavy metal particles presented in the oily sludge, such as iron in association with $ Fe_{2} %$ O_{3} $ catalyst, helped accelerate the degradation of asphaltenes. © Higher Education Press 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
6 |
title_short |
Chemical reactions of oily sludge catalyzed by iron oxide under supercritical water gasification condition |
url |
https://dx.doi.org/10.1007/s11705-021-2125-z |
remote_bool |
true |
author2 |
Chen, Fang Xu, Jipeng Zhang, Jinli Han, You |
author2Str |
Chen, Fang Xu, Jipeng Zhang, Jinli Han, You |
ppnlink |
545787602 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11705-021-2125-z |
up_date |
2024-07-03T18:03:50.606Z |
_version_ |
1803581999660662784 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050832409</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507224344.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11705-021-2125-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050832409</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11705-021-2125-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Houjun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chemical reactions of oily sludge catalyzed by iron oxide under supercritical water gasification condition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Higher Education Press 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Supercritical water gasification is a promising technology in dealing with the degradation of hazardous waste, such as oily sludge, accompanied by the production of fuel gases. To evaluate the mechanism of $ Fe_{2} %$ O_{3} $ catalyst and the migration pathways of heteroatoms and to investigate the systems during the process, reactive force field molecular dynamics simulations are adopted. In terms of the catalytic mechanisms of $ Fe_{2} %$ O_{3} $, the surface lattice oxygen is consumed by small carbon fragments to produce CO and $ CO_{2} $, improving the catalytic performance of the cluster due to more unsaturated coordination Fe sites exposed. Lattice oxygen combines with •H radicals to form water molecules, improving the catalytic performance. Furthermore, the pathway of asphaltene degradation was revealed at an atomic level, as well as products. Moreover, the adsorption of hydroxyl radical on the S atom caused breakage of the two C-S bonds in turn, forming •HSO intermediate, so that the organic S element was fixed into the inorganic liquid phase. The heteroatom O was removed under the effects of supercritical water. Heavy metal particles presented in the oily sludge, such as iron in association with $ Fe_{2} %$ O_{3} $ catalyst, helped accelerate the degradation of asphaltenes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oily sludge</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SCWG</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ReaxFF</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fe</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">O</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heteroatoms</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Fang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Jipeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jinli</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, You</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Frontiers of chemical engineering in China</subfield><subfield code="d">Beijing : Higher Education Press, 2007</subfield><subfield code="g">16(2022), 6 vom: 07. März, Seite 886-896</subfield><subfield code="w">(DE-627)545787602</subfield><subfield code="w">(DE-600)2388862-3</subfield><subfield code="x">1673-7474</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:6</subfield><subfield code="g">day:07</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:886-896</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11705-021-2125-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2022</subfield><subfield code="e">6</subfield><subfield code="b">07</subfield><subfield code="c">03</subfield><subfield code="h">886-896</subfield></datafield></record></collection>
|
score |
7.401412 |