Circadian rhythm promotes the biomass and amylose hyperaccumulation by mixotrophic cultivation of marine microalga Platymonas helgolandica
Background Microalgal starch can be exploited for bioenergy, food, and bioplastics. Production of starch by green algae has been concerned for many years. Currently commonly used methods such as nutrient stress will affect cell growth, thereby inhibiting the production efficiency and quality of star...
Ausführliche Beschreibung
Autor*in: |
Shi, Qianwen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Biotechnology for biofuels - London : BioMed Central, 2008, 15(2022), 1 vom: 06. Juli |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2022 ; number:1 ; day:06 ; month:07 |
Links: |
---|
DOI / URN: |
10.1186/s13068-022-02174-2 |
---|
Katalog-ID: |
SPR050834037 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR050834037 | ||
003 | DE-627 | ||
005 | 20230507224354.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13068-022-02174-2 |2 doi | |
035 | |a (DE-627)SPR050834037 | ||
035 | |a (SPR)s13068-022-02174-2-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Shi, Qianwen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Circadian rhythm promotes the biomass and amylose hyperaccumulation by mixotrophic cultivation of marine microalga Platymonas helgolandica |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Background Microalgal starch can be exploited for bioenergy, food, and bioplastics. Production of starch by green algae has been concerned for many years. Currently commonly used methods such as nutrient stress will affect cell growth, thereby inhibiting the production efficiency and quality of starch production. Simpler and more efficient control strategies need to be developed. Result We proposed a novel regulation method to promote the growth and starch accumulation by a newly isolated Chlorophyta Platymonas helgolandica. By adding exogenous glucose and controlling the appropriate circadian light and dark time, the highest dry weight accumulation 6.53 g $ L^{−1} $ (Light:Dark = 12:12) can be achieved, and the highest starch concentration could reach 3.88 g $ L^{−1} $ (Light:Dark = 6:18). The highest production rate was 0.40 g $ L^{−1} $ $ d^{−1} $ after 9 days of production. And this method helps to improve the ability to produce amylose, with the highest accumulation of 39.79% DW amylose. We also discussed the possible mechanism of this phenomenon through revealing changes in the mRNA levels of key genes. Conclusion This study provides a new idea to regulate the production of amylose by green algae. For the first time, it is proposed to combine organic carbon source addition and circadian rhythm regulation to increase the starch production from marine green alga. A new starch-producing microalga has been isolated that can efficiently utilize organic matter and grow with or without photosynthesis. | ||
650 | 4 | |a Microalgae |7 (dpeaa)DE-He213 | |
650 | 4 | |a Starch |7 (dpeaa)DE-He213 | |
650 | 4 | |a Circadian rhythm |7 (dpeaa)DE-He213 | |
650 | 4 | |a Mixotrophy |7 (dpeaa)DE-He213 | |
650 | 4 | |a Amylose |7 (dpeaa)DE-He213 | |
700 | 1 | |a Chen, Cheng |4 aut | |
700 | 1 | |a He, Tingwei |4 aut | |
700 | 1 | |a Fan, Jianhua |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Biotechnology for biofuels |d London : BioMed Central, 2008 |g 15(2022), 1 vom: 06. Juli |w (DE-627)563167882 |w (DE-600)2421351-2 |x 1754-6834 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2022 |g number:1 |g day:06 |g month:07 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13068-022-02174-2 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4305 | ||
951 | |a AR | ||
952 | |d 15 |j 2022 |e 1 |b 06 |c 07 |
author_variant |
q s qs c c cc t h th j f jf |
---|---|
matchkey_str |
article:17546834:2022----::icdaryhpooeteimsadmlshprcuuainyiorpicliainfai |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s13068-022-02174-2 doi (DE-627)SPR050834037 (SPR)s13068-022-02174-2-e DE-627 ger DE-627 rakwb eng Shi, Qianwen verfasserin aut Circadian rhythm promotes the biomass and amylose hyperaccumulation by mixotrophic cultivation of marine microalga Platymonas helgolandica 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Microalgal starch can be exploited for bioenergy, food, and bioplastics. Production of starch by green algae has been concerned for many years. Currently commonly used methods such as nutrient stress will affect cell growth, thereby inhibiting the production efficiency and quality of starch production. Simpler and more efficient control strategies need to be developed. Result We proposed a novel regulation method to promote the growth and starch accumulation by a newly isolated Chlorophyta Platymonas helgolandica. By adding exogenous glucose and controlling the appropriate circadian light and dark time, the highest dry weight accumulation 6.53 g $ L^{−1} $ (Light:Dark = 12:12) can be achieved, and the highest starch concentration could reach 3.88 g $ L^{−1} $ (Light:Dark = 6:18). The highest production rate was 0.40 g $ L^{−1} $ $ d^{−1} $ after 9 days of production. And this method helps to improve the ability to produce amylose, with the highest accumulation of 39.79% DW amylose. We also discussed the possible mechanism of this phenomenon through revealing changes in the mRNA levels of key genes. Conclusion This study provides a new idea to regulate the production of amylose by green algae. For the first time, it is proposed to combine organic carbon source addition and circadian rhythm regulation to increase the starch production from marine green alga. A new starch-producing microalga has been isolated that can efficiently utilize organic matter and grow with or without photosynthesis. Microalgae (dpeaa)DE-He213 Starch (dpeaa)DE-He213 Circadian rhythm (dpeaa)DE-He213 Mixotrophy (dpeaa)DE-He213 Amylose (dpeaa)DE-He213 Chen, Cheng aut He, Tingwei aut Fan, Jianhua aut Enthalten in Biotechnology for biofuels London : BioMed Central, 2008 15(2022), 1 vom: 06. Juli (DE-627)563167882 (DE-600)2421351-2 1754-6834 nnns volume:15 year:2022 number:1 day:06 month:07 https://dx.doi.org/10.1186/s13068-022-02174-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_22 GBV_ILN_2003 GBV_ILN_2027 GBV_ILN_4305 AR 15 2022 1 06 07 |
spelling |
10.1186/s13068-022-02174-2 doi (DE-627)SPR050834037 (SPR)s13068-022-02174-2-e DE-627 ger DE-627 rakwb eng Shi, Qianwen verfasserin aut Circadian rhythm promotes the biomass and amylose hyperaccumulation by mixotrophic cultivation of marine microalga Platymonas helgolandica 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Microalgal starch can be exploited for bioenergy, food, and bioplastics. Production of starch by green algae has been concerned for many years. Currently commonly used methods such as nutrient stress will affect cell growth, thereby inhibiting the production efficiency and quality of starch production. Simpler and more efficient control strategies need to be developed. Result We proposed a novel regulation method to promote the growth and starch accumulation by a newly isolated Chlorophyta Platymonas helgolandica. By adding exogenous glucose and controlling the appropriate circadian light and dark time, the highest dry weight accumulation 6.53 g $ L^{−1} $ (Light:Dark = 12:12) can be achieved, and the highest starch concentration could reach 3.88 g $ L^{−1} $ (Light:Dark = 6:18). The highest production rate was 0.40 g $ L^{−1} $ $ d^{−1} $ after 9 days of production. And this method helps to improve the ability to produce amylose, with the highest accumulation of 39.79% DW amylose. We also discussed the possible mechanism of this phenomenon through revealing changes in the mRNA levels of key genes. Conclusion This study provides a new idea to regulate the production of amylose by green algae. For the first time, it is proposed to combine organic carbon source addition and circadian rhythm regulation to increase the starch production from marine green alga. A new starch-producing microalga has been isolated that can efficiently utilize organic matter and grow with or without photosynthesis. Microalgae (dpeaa)DE-He213 Starch (dpeaa)DE-He213 Circadian rhythm (dpeaa)DE-He213 Mixotrophy (dpeaa)DE-He213 Amylose (dpeaa)DE-He213 Chen, Cheng aut He, Tingwei aut Fan, Jianhua aut Enthalten in Biotechnology for biofuels London : BioMed Central, 2008 15(2022), 1 vom: 06. Juli (DE-627)563167882 (DE-600)2421351-2 1754-6834 nnns volume:15 year:2022 number:1 day:06 month:07 https://dx.doi.org/10.1186/s13068-022-02174-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_22 GBV_ILN_2003 GBV_ILN_2027 GBV_ILN_4305 AR 15 2022 1 06 07 |
allfields_unstemmed |
10.1186/s13068-022-02174-2 doi (DE-627)SPR050834037 (SPR)s13068-022-02174-2-e DE-627 ger DE-627 rakwb eng Shi, Qianwen verfasserin aut Circadian rhythm promotes the biomass and amylose hyperaccumulation by mixotrophic cultivation of marine microalga Platymonas helgolandica 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Microalgal starch can be exploited for bioenergy, food, and bioplastics. Production of starch by green algae has been concerned for many years. Currently commonly used methods such as nutrient stress will affect cell growth, thereby inhibiting the production efficiency and quality of starch production. Simpler and more efficient control strategies need to be developed. Result We proposed a novel regulation method to promote the growth and starch accumulation by a newly isolated Chlorophyta Platymonas helgolandica. By adding exogenous glucose and controlling the appropriate circadian light and dark time, the highest dry weight accumulation 6.53 g $ L^{−1} $ (Light:Dark = 12:12) can be achieved, and the highest starch concentration could reach 3.88 g $ L^{−1} $ (Light:Dark = 6:18). The highest production rate was 0.40 g $ L^{−1} $ $ d^{−1} $ after 9 days of production. And this method helps to improve the ability to produce amylose, with the highest accumulation of 39.79% DW amylose. We also discussed the possible mechanism of this phenomenon through revealing changes in the mRNA levels of key genes. Conclusion This study provides a new idea to regulate the production of amylose by green algae. For the first time, it is proposed to combine organic carbon source addition and circadian rhythm regulation to increase the starch production from marine green alga. A new starch-producing microalga has been isolated that can efficiently utilize organic matter and grow with or without photosynthesis. Microalgae (dpeaa)DE-He213 Starch (dpeaa)DE-He213 Circadian rhythm (dpeaa)DE-He213 Mixotrophy (dpeaa)DE-He213 Amylose (dpeaa)DE-He213 Chen, Cheng aut He, Tingwei aut Fan, Jianhua aut Enthalten in Biotechnology for biofuels London : BioMed Central, 2008 15(2022), 1 vom: 06. Juli (DE-627)563167882 (DE-600)2421351-2 1754-6834 nnns volume:15 year:2022 number:1 day:06 month:07 https://dx.doi.org/10.1186/s13068-022-02174-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_22 GBV_ILN_2003 GBV_ILN_2027 GBV_ILN_4305 AR 15 2022 1 06 07 |
allfieldsGer |
10.1186/s13068-022-02174-2 doi (DE-627)SPR050834037 (SPR)s13068-022-02174-2-e DE-627 ger DE-627 rakwb eng Shi, Qianwen verfasserin aut Circadian rhythm promotes the biomass and amylose hyperaccumulation by mixotrophic cultivation of marine microalga Platymonas helgolandica 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Microalgal starch can be exploited for bioenergy, food, and bioplastics. Production of starch by green algae has been concerned for many years. Currently commonly used methods such as nutrient stress will affect cell growth, thereby inhibiting the production efficiency and quality of starch production. Simpler and more efficient control strategies need to be developed. Result We proposed a novel regulation method to promote the growth and starch accumulation by a newly isolated Chlorophyta Platymonas helgolandica. By adding exogenous glucose and controlling the appropriate circadian light and dark time, the highest dry weight accumulation 6.53 g $ L^{−1} $ (Light:Dark = 12:12) can be achieved, and the highest starch concentration could reach 3.88 g $ L^{−1} $ (Light:Dark = 6:18). The highest production rate was 0.40 g $ L^{−1} $ $ d^{−1} $ after 9 days of production. And this method helps to improve the ability to produce amylose, with the highest accumulation of 39.79% DW amylose. We also discussed the possible mechanism of this phenomenon through revealing changes in the mRNA levels of key genes. Conclusion This study provides a new idea to regulate the production of amylose by green algae. For the first time, it is proposed to combine organic carbon source addition and circadian rhythm regulation to increase the starch production from marine green alga. A new starch-producing microalga has been isolated that can efficiently utilize organic matter and grow with or without photosynthesis. Microalgae (dpeaa)DE-He213 Starch (dpeaa)DE-He213 Circadian rhythm (dpeaa)DE-He213 Mixotrophy (dpeaa)DE-He213 Amylose (dpeaa)DE-He213 Chen, Cheng aut He, Tingwei aut Fan, Jianhua aut Enthalten in Biotechnology for biofuels London : BioMed Central, 2008 15(2022), 1 vom: 06. Juli (DE-627)563167882 (DE-600)2421351-2 1754-6834 nnns volume:15 year:2022 number:1 day:06 month:07 https://dx.doi.org/10.1186/s13068-022-02174-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_22 GBV_ILN_2003 GBV_ILN_2027 GBV_ILN_4305 AR 15 2022 1 06 07 |
allfieldsSound |
10.1186/s13068-022-02174-2 doi (DE-627)SPR050834037 (SPR)s13068-022-02174-2-e DE-627 ger DE-627 rakwb eng Shi, Qianwen verfasserin aut Circadian rhythm promotes the biomass and amylose hyperaccumulation by mixotrophic cultivation of marine microalga Platymonas helgolandica 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Microalgal starch can be exploited for bioenergy, food, and bioplastics. Production of starch by green algae has been concerned for many years. Currently commonly used methods such as nutrient stress will affect cell growth, thereby inhibiting the production efficiency and quality of starch production. Simpler and more efficient control strategies need to be developed. Result We proposed a novel regulation method to promote the growth and starch accumulation by a newly isolated Chlorophyta Platymonas helgolandica. By adding exogenous glucose and controlling the appropriate circadian light and dark time, the highest dry weight accumulation 6.53 g $ L^{−1} $ (Light:Dark = 12:12) can be achieved, and the highest starch concentration could reach 3.88 g $ L^{−1} $ (Light:Dark = 6:18). The highest production rate was 0.40 g $ L^{−1} $ $ d^{−1} $ after 9 days of production. And this method helps to improve the ability to produce amylose, with the highest accumulation of 39.79% DW amylose. We also discussed the possible mechanism of this phenomenon through revealing changes in the mRNA levels of key genes. Conclusion This study provides a new idea to regulate the production of amylose by green algae. For the first time, it is proposed to combine organic carbon source addition and circadian rhythm regulation to increase the starch production from marine green alga. A new starch-producing microalga has been isolated that can efficiently utilize organic matter and grow with or without photosynthesis. Microalgae (dpeaa)DE-He213 Starch (dpeaa)DE-He213 Circadian rhythm (dpeaa)DE-He213 Mixotrophy (dpeaa)DE-He213 Amylose (dpeaa)DE-He213 Chen, Cheng aut He, Tingwei aut Fan, Jianhua aut Enthalten in Biotechnology for biofuels London : BioMed Central, 2008 15(2022), 1 vom: 06. Juli (DE-627)563167882 (DE-600)2421351-2 1754-6834 nnns volume:15 year:2022 number:1 day:06 month:07 https://dx.doi.org/10.1186/s13068-022-02174-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_22 GBV_ILN_2003 GBV_ILN_2027 GBV_ILN_4305 AR 15 2022 1 06 07 |
language |
English |
source |
Enthalten in Biotechnology for biofuels 15(2022), 1 vom: 06. Juli volume:15 year:2022 number:1 day:06 month:07 |
sourceStr |
Enthalten in Biotechnology for biofuels 15(2022), 1 vom: 06. Juli volume:15 year:2022 number:1 day:06 month:07 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Microalgae Starch Circadian rhythm Mixotrophy Amylose |
isfreeaccess_bool |
true |
container_title |
Biotechnology for biofuels |
authorswithroles_txt_mv |
Shi, Qianwen @@aut@@ Chen, Cheng @@aut@@ He, Tingwei @@aut@@ Fan, Jianhua @@aut@@ |
publishDateDaySort_date |
2022-07-06T00:00:00Z |
hierarchy_top_id |
563167882 |
id |
SPR050834037 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050834037</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507224354.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13068-022-02174-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050834037</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13068-022-02174-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shi, Qianwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Circadian rhythm promotes the biomass and amylose hyperaccumulation by mixotrophic cultivation of marine microalga Platymonas helgolandica</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Microalgal starch can be exploited for bioenergy, food, and bioplastics. Production of starch by green algae has been concerned for many years. Currently commonly used methods such as nutrient stress will affect cell growth, thereby inhibiting the production efficiency and quality of starch production. Simpler and more efficient control strategies need to be developed. Result We proposed a novel regulation method to promote the growth and starch accumulation by a newly isolated Chlorophyta Platymonas helgolandica. By adding exogenous glucose and controlling the appropriate circadian light and dark time, the highest dry weight accumulation 6.53 g $ L^{−1} $ (Light:Dark = 12:12) can be achieved, and the highest starch concentration could reach 3.88 g $ L^{−1} $ (Light:Dark = 6:18). The highest production rate was 0.40 g $ L^{−1} $ $ d^{−1} $ after 9 days of production. And this method helps to improve the ability to produce amylose, with the highest accumulation of 39.79% DW amylose. We also discussed the possible mechanism of this phenomenon through revealing changes in the mRNA levels of key genes. Conclusion This study provides a new idea to regulate the production of amylose by green algae. For the first time, it is proposed to combine organic carbon source addition and circadian rhythm regulation to increase the starch production from marine green alga. A new starch-producing microalga has been isolated that can efficiently utilize organic matter and grow with or without photosynthesis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microalgae</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Starch</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Circadian rhythm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixotrophy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amylose</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Cheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Tingwei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Jianhua</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Biotechnology for biofuels</subfield><subfield code="d">London : BioMed Central, 2008</subfield><subfield code="g">15(2022), 1 vom: 06. Juli</subfield><subfield code="w">(DE-627)563167882</subfield><subfield code="w">(DE-600)2421351-2</subfield><subfield code="x">1754-6834</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:06</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13068-022-02174-2</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">06</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
author |
Shi, Qianwen |
spellingShingle |
Shi, Qianwen misc Microalgae misc Starch misc Circadian rhythm misc Mixotrophy misc Amylose Circadian rhythm promotes the biomass and amylose hyperaccumulation by mixotrophic cultivation of marine microalga Platymonas helgolandica |
authorStr |
Shi, Qianwen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)563167882 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1754-6834 |
topic_title |
Circadian rhythm promotes the biomass and amylose hyperaccumulation by mixotrophic cultivation of marine microalga Platymonas helgolandica Microalgae (dpeaa)DE-He213 Starch (dpeaa)DE-He213 Circadian rhythm (dpeaa)DE-He213 Mixotrophy (dpeaa)DE-He213 Amylose (dpeaa)DE-He213 |
topic |
misc Microalgae misc Starch misc Circadian rhythm misc Mixotrophy misc Amylose |
topic_unstemmed |
misc Microalgae misc Starch misc Circadian rhythm misc Mixotrophy misc Amylose |
topic_browse |
misc Microalgae misc Starch misc Circadian rhythm misc Mixotrophy misc Amylose |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Biotechnology for biofuels |
hierarchy_parent_id |
563167882 |
hierarchy_top_title |
Biotechnology for biofuels |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)563167882 (DE-600)2421351-2 |
title |
Circadian rhythm promotes the biomass and amylose hyperaccumulation by mixotrophic cultivation of marine microalga Platymonas helgolandica |
ctrlnum |
(DE-627)SPR050834037 (SPR)s13068-022-02174-2-e |
title_full |
Circadian rhythm promotes the biomass and amylose hyperaccumulation by mixotrophic cultivation of marine microalga Platymonas helgolandica |
author_sort |
Shi, Qianwen |
journal |
Biotechnology for biofuels |
journalStr |
Biotechnology for biofuels |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Shi, Qianwen Chen, Cheng He, Tingwei Fan, Jianhua |
container_volume |
15 |
format_se |
Elektronische Aufsätze |
author-letter |
Shi, Qianwen |
doi_str_mv |
10.1186/s13068-022-02174-2 |
title_sort |
circadian rhythm promotes the biomass and amylose hyperaccumulation by mixotrophic cultivation of marine microalga platymonas helgolandica |
title_auth |
Circadian rhythm promotes the biomass and amylose hyperaccumulation by mixotrophic cultivation of marine microalga Platymonas helgolandica |
abstract |
Background Microalgal starch can be exploited for bioenergy, food, and bioplastics. Production of starch by green algae has been concerned for many years. Currently commonly used methods such as nutrient stress will affect cell growth, thereby inhibiting the production efficiency and quality of starch production. Simpler and more efficient control strategies need to be developed. Result We proposed a novel regulation method to promote the growth and starch accumulation by a newly isolated Chlorophyta Platymonas helgolandica. By adding exogenous glucose and controlling the appropriate circadian light and dark time, the highest dry weight accumulation 6.53 g $ L^{−1} $ (Light:Dark = 12:12) can be achieved, and the highest starch concentration could reach 3.88 g $ L^{−1} $ (Light:Dark = 6:18). The highest production rate was 0.40 g $ L^{−1} $ $ d^{−1} $ after 9 days of production. And this method helps to improve the ability to produce amylose, with the highest accumulation of 39.79% DW amylose. We also discussed the possible mechanism of this phenomenon through revealing changes in the mRNA levels of key genes. Conclusion This study provides a new idea to regulate the production of amylose by green algae. For the first time, it is proposed to combine organic carbon source addition and circadian rhythm regulation to increase the starch production from marine green alga. A new starch-producing microalga has been isolated that can efficiently utilize organic matter and grow with or without photosynthesis. © The Author(s) 2022 |
abstractGer |
Background Microalgal starch can be exploited for bioenergy, food, and bioplastics. Production of starch by green algae has been concerned for many years. Currently commonly used methods such as nutrient stress will affect cell growth, thereby inhibiting the production efficiency and quality of starch production. Simpler and more efficient control strategies need to be developed. Result We proposed a novel regulation method to promote the growth and starch accumulation by a newly isolated Chlorophyta Platymonas helgolandica. By adding exogenous glucose and controlling the appropriate circadian light and dark time, the highest dry weight accumulation 6.53 g $ L^{−1} $ (Light:Dark = 12:12) can be achieved, and the highest starch concentration could reach 3.88 g $ L^{−1} $ (Light:Dark = 6:18). The highest production rate was 0.40 g $ L^{−1} $ $ d^{−1} $ after 9 days of production. And this method helps to improve the ability to produce amylose, with the highest accumulation of 39.79% DW amylose. We also discussed the possible mechanism of this phenomenon through revealing changes in the mRNA levels of key genes. Conclusion This study provides a new idea to regulate the production of amylose by green algae. For the first time, it is proposed to combine organic carbon source addition and circadian rhythm regulation to increase the starch production from marine green alga. A new starch-producing microalga has been isolated that can efficiently utilize organic matter and grow with or without photosynthesis. © The Author(s) 2022 |
abstract_unstemmed |
Background Microalgal starch can be exploited for bioenergy, food, and bioplastics. Production of starch by green algae has been concerned for many years. Currently commonly used methods such as nutrient stress will affect cell growth, thereby inhibiting the production efficiency and quality of starch production. Simpler and more efficient control strategies need to be developed. Result We proposed a novel regulation method to promote the growth and starch accumulation by a newly isolated Chlorophyta Platymonas helgolandica. By adding exogenous glucose and controlling the appropriate circadian light and dark time, the highest dry weight accumulation 6.53 g $ L^{−1} $ (Light:Dark = 12:12) can be achieved, and the highest starch concentration could reach 3.88 g $ L^{−1} $ (Light:Dark = 6:18). The highest production rate was 0.40 g $ L^{−1} $ $ d^{−1} $ after 9 days of production. And this method helps to improve the ability to produce amylose, with the highest accumulation of 39.79% DW amylose. We also discussed the possible mechanism of this phenomenon through revealing changes in the mRNA levels of key genes. Conclusion This study provides a new idea to regulate the production of amylose by green algae. For the first time, it is proposed to combine organic carbon source addition and circadian rhythm regulation to increase the starch production from marine green alga. A new starch-producing microalga has been isolated that can efficiently utilize organic matter and grow with or without photosynthesis. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_22 GBV_ILN_2003 GBV_ILN_2027 GBV_ILN_4305 |
container_issue |
1 |
title_short |
Circadian rhythm promotes the biomass and amylose hyperaccumulation by mixotrophic cultivation of marine microalga Platymonas helgolandica |
url |
https://dx.doi.org/10.1186/s13068-022-02174-2 |
remote_bool |
true |
author2 |
Chen, Cheng He, Tingwei Fan, Jianhua |
author2Str |
Chen, Cheng He, Tingwei Fan, Jianhua |
ppnlink |
563167882 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13068-022-02174-2 |
up_date |
2024-07-03T18:04:31.569Z |
_version_ |
1803582042612432896 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050834037</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507224354.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13068-022-02174-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050834037</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13068-022-02174-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shi, Qianwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Circadian rhythm promotes the biomass and amylose hyperaccumulation by mixotrophic cultivation of marine microalga Platymonas helgolandica</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Microalgal starch can be exploited for bioenergy, food, and bioplastics. Production of starch by green algae has been concerned for many years. Currently commonly used methods such as nutrient stress will affect cell growth, thereby inhibiting the production efficiency and quality of starch production. Simpler and more efficient control strategies need to be developed. Result We proposed a novel regulation method to promote the growth and starch accumulation by a newly isolated Chlorophyta Platymonas helgolandica. By adding exogenous glucose and controlling the appropriate circadian light and dark time, the highest dry weight accumulation 6.53 g $ L^{−1} $ (Light:Dark = 12:12) can be achieved, and the highest starch concentration could reach 3.88 g $ L^{−1} $ (Light:Dark = 6:18). The highest production rate was 0.40 g $ L^{−1} $ $ d^{−1} $ after 9 days of production. And this method helps to improve the ability to produce amylose, with the highest accumulation of 39.79% DW amylose. We also discussed the possible mechanism of this phenomenon through revealing changes in the mRNA levels of key genes. Conclusion This study provides a new idea to regulate the production of amylose by green algae. For the first time, it is proposed to combine organic carbon source addition and circadian rhythm regulation to increase the starch production from marine green alga. A new starch-producing microalga has been isolated that can efficiently utilize organic matter and grow with or without photosynthesis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microalgae</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Starch</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Circadian rhythm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixotrophy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amylose</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Cheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Tingwei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Jianhua</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Biotechnology for biofuels</subfield><subfield code="d">London : BioMed Central, 2008</subfield><subfield code="g">15(2022), 1 vom: 06. Juli</subfield><subfield code="w">(DE-627)563167882</subfield><subfield code="w">(DE-600)2421351-2</subfield><subfield code="x">1754-6834</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:06</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13068-022-02174-2</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">06</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
score |
7.4007416 |